-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathour_attacks.py
55 lines (48 loc) · 2.07 KB
/
our_attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import argparse
from torch.utils.data import DataLoader
import os
import pandas as pd
import time
import pickle as pkl
from dataset import AdvDataset
import cnns_method
from utils import BASE_ADV_PATH, ROOT_PATH
import our_method
def arg_parse():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--attack', type=str, default='', help='the name of specific attack method')
parser.add_argument('--gpu', type=str, default='0', help='gpu device.')
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
help='input batch size for reference (default: 16)')
parser.add_argument('--model_name', type=str, default='', help='')
parser.add_argument('--filename_prefix', type=str, default='', help='')
args = parser.parse_args()
args.opt_path = os.path.join(BASE_ADV_PATH, 'model_{}-method_{}-{}'.format(args.model_name, args.attack, args.filename_prefix))
if not os.path.exists(args.opt_path):
os.makedirs(args.opt_path)
return args
if __name__ == '__main__':
args = arg_parse()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# loading dataset
dataset = AdvDataset(args.model_name, os.path.join(ROOT_PATH, 'clean_resized_images'))
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=4)
print (args.attack, args.model_name)
# Attack
attack_method = getattr(our_method, args.attack)(args.model_name)
# Main
all_loss_info = {}
for batch_idx, batch_data in enumerate(data_loader):
if batch_idx%10 == 0:
print ('Ruing batch_idx', batch_idx)
batch_x = batch_data[0]
batch_y = batch_data[1]
batch_name = batch_data[3]
adv_inps, loss_info = attack_method(batch_x, batch_y)
attack_method._save_images(adv_inps, batch_name, args.opt_path)
if loss_info is not None:
all_loss_info[batch_name] = loss_info
if loss_info is not None:
with open(os.path.join(args.opt_path, 'loss_info.json'), 'wb') as opt:
pkl.dump(all_loss_info, opt)