-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpf.m
209 lines (182 loc) · 5.45 KB
/
pf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
%%
% Define the related parameters
% Information for the whole
% sampling interval Ts
close all;
clear all;
clc;
Ts = 2;
% Sampling time
Times = 300;
% Sampling numbers
K = Times / Ts;
T = 2; % targets numbers
M = 4; % sensors numbers
% Information for sensors, in this example there are 4 sensors.
x_sen0 = 0;
y_sen0 = 0;
sigma_r_sen0 = 500;
sigma_theta_sen0 = 2;
sigma_rdot_sen0 = 6;
x_sen1 = -30000;
y_sen1 = 0;
sigma_r_sen1 = 500;
sigma_theta_sen1 = 2;
sigma_rdot_sen1 = 6;
x_sen2 = 15000;
y_sen2 = 26000;
sigma_r_sen2 = 500;
sigma_theta_sen2 = 2;
sigma_rdot_sen2 = 6;
x_sen3 = 15000;
y_sen3 = -26000;
sigma_r_sen3 = 250;
sigma_theta_sen3 = 1;
sigma_rdot_sen3 = 3;
x_sen = [x_sen0, x_sen1, x_sen2, x_sen3];
y_sen = [y_sen0, y_sen1, y_sen2, y_sen3];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sensors sensible area
R_min = 0;
R_max = 10099000;
% the detection probability
Pd = 1;
%%%%%%%%%%%%%change it to 1 for debug
% false alarm probability
Pf = 0.47;
% false alarm rate
false_rate_beta = 1.0 * 10 ^ -8;
N = 200;
% numbers of particles
% targets Information
x_target0 = 2500;
y_target0 = 25000;
vx_target0 = 0;
vy_target0 = -222;
x_target1 = -5000;
y_target1 = -20000;
vx_target1 = 120;
vy_target1 = 0;
x_target = zeros(K, T);
vx_target = zeros(K, T);
y_target = zeros(K, T);
vy_target = zeros(K, T);
x_target(1, :) = [x_target0, x_target1];
y_target(1, :) = [y_target0, y_target1];
vx_target(1, :) = [vx_target0, vx_target1];
vy_target(1, :) = [vy_target0, vy_target1];
x_target_hat = x_target;
y_target_hat = y_target;
vx_target_hat = vx_target;
vy_target_hat = vy_target;
S_kpi = zeros(K, N, T, 4);
% vx = [randn, randn];
% vy = [randn, randn];
Qr = 1;
Qrdot = 1;
Qtheta = 1;
false_mean = 1;
weight_kp = ones(K, N);
% caculate the real location and v
for k = 1:K-1
for i = 1:T
a = randn;
b = randn;
x_target(k + 1, i) = x_target(k, i) + Ts * vx_target(k, i) + Ts^2 / 2 * a;
vx_target(k + 1, i) = vx_target(k, i) + Ts * a;
y_target(k + 1, i) = y_target(k, i) + Ts * vy_target(k, i) + Ts^2 / 2 * b;
vy_target(k + 1, i) = vy_target(k, i) + Ts * b;
end
end
% plot(1:K, vx_target(:,1));
% plot(x_target(:, 1), y_target(:, 1));
%%
% Initialization
% there is some problems in this part, the particles are not genearated by
% random,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ao jiao de fen ge xian%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for p = 1:N
for i = 1:T
S_kpi(1, p, i, :)= [x_target_hat(1, i) + 0 * randn; vx_target_hat(1, i) + 0 * randn; y_target_hat(1, i) + 0 * randn; vy_target_hat(1, i) + 0 * randn];
end
weight_kp(1, p) = 1 / N;
end
for k = 2:K
% disp(k);
% Prediction
for p = 1:N
temp = zeros(4, T);
for i = 1:T
temp(:, i) = S_kpi(k - 1, p, i, :);
end
for i = 1:T
S_kpi(k, p, i, :) = [1 Ts 0 0; 0 1 0 0; 0 0 1 Ts; 0 0 0 1]*temp(:, i) + [Ts^2 / 2, 0; Ts, 0; 0, Ts^2 / 2; 0 Ts] * [randn; randn];
end
end
% Weight update
% Problems: Only for the condition there are 4 sensors, try to find the matlab function to use a variables with a number
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for m = 1:M
FalseArr = false_alarm(R_min, R_max, false_mean);
[false_num, no_use] = size(FalseArr);
Hy = detected(x_target, y_target, vx_target, vy_target, x_sen, y_sen, k, m, T, Pd, R_min, R_max, FalseArr);
if m == 1
Hy1 = Hy;
elseif m == 2
Hy2 = Hy;
elseif m == 3
Hy3 = Hy;
else
Hy4 = Hy;
end
end
for p = 1:N
for m = 1:M
if m == 1
Hy = Hy1;
elseif m == 2
Hy = Hy2;
elseif m == 3
Hy = Hy3;
else
Hy = Hy4;
end
%%%problems here, there are two targets, but only one particle weight
weight_pmk = weight_cal(S_kpi, x_sen, y_sen, p, m, k, Qr, Qtheta, Qrdot, T, Hy, false_rate_beta, Pd);
weight_kp(k, p) = weight_kp(k, p) * weight_pmk;
end
end
%%
% normalization
weight_kp(k, :) = weight_kp(k, :) ./ sum(weight_kp(k, :));
% estimalation
for i = 1:T
x_target_hat(k, i) = sum(S_kpi(k, :, i, 1) .* weight_kp(k, :));
vx_target_hat(k, i) = sum(S_kpi(k, :, i, 2) .* weight_kp(k, :));
y_target_hat(k, i) = sum(S_kpi(k, :, i, 3) .* weight_kp(k, :));
vy_target_hat(k, i) = sum(S_kpi(k, :, i, 4) .* weight_kp(k, :));
end
% resampling
temp_wei = zeros(1, N);
temp_S = zeros(1, N, T, 4);
for i = 1:N
temp_u = rand;
for j = 1:N
sum_wei = sum(weight_kp(k, 1:j));
if sum_wei > temp_u
temp_wei(1, i) = weight_kp(k, j);
temp_S(1, i, :, :) = S_kpi(k, j, :, :);
break;
end
end
end
weight_kp(k,:) = temp_wei(1, :) ./ sum(temp_wei(1,:));
S_kpi(k, :, :, :) = temp_S(1, :, :, :);
end
for i = 1:T
figure;
plot(x_target(:, i), y_target(:, i), 'g*-', x_target_hat(:, i), y_target_hat(:, i), 'r+-');
axis([-30000 30000 -30000 30000]);
figure;
plot(1:K, x_target(:, i) - x_target_hat(:, i), 1:K, y_target(:, i) - y_target_hat(:, i));
end