-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
71 lines (46 loc) · 1.69 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.svm import LinearSVC
from pprint import pprint
import json
# Data importation
_bio = []
_can_read = []
with open('antispam-data.json', 'r') as f:
_data = json.load(f)
for _elem in _data:
if not _elem['biography']:
continue
_bio.append(_elem['biography'])
_can_read.append(1 if _elem['can_read'] else 0)
_limit = int(round(len(_bio) * 0.8))
bio_train = _bio[:_limit]
can_read_train = _can_read[:_limit]
bio_test = _bio[_limit:]
can_read_test = _can_read[_limit:]
# Transformation text->number (text preprocessing, tokenizing and filtering of stopwords)
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(bio_train)
# Frequency calculation
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
# Classifier training
clf = LinearSVC(max_iter=5000, loss='hinge', dual="auto")
clf.fit(X_train_tfidf, can_read_train)
# Prediction of test data
X_new_counts = count_vect.transform(bio_test)
X_new_tfidf = tfidf_transformer.transform(X_new_counts)
predicted = clf.predict(X_new_tfidf)
if __name__ == '__main__':
average = 0
confusions = {}
for real, pred in zip(can_read_test, predicted):
if real==pred:
average += 1
elem = 'real {} => pred {}'.format(real, pred)
if not confusions.get(elem, False):
confusions[elem] = [0, '']
confusions[elem][0] += 1
for elem in confusions:
confusions[elem][1] = '{} %'.format(round(confusions[elem][0]/len(can_read_test)*100))
print('\n', round(average/len(can_read_test)*100,2), '%\n\n')
pprint(confusions)