-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtrain_dist.py
497 lines (426 loc) · 26.6 KB
/
train_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import os
import sys
import time
import numpy as np
import json
import argparse
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'pointnet2'))
from utils import get_scheduler, setup_logger
from models import GroupFreeDetector, get_loss
from models import APCalculator, parse_predictions, parse_groundtruths
def parse_option():
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--width', default=1, type=int, help='backbone width')
parser.add_argument('--num_target', type=int, default=256, help='Proposal number [default: 256]')
parser.add_argument('--sampling', default='kps', type=str, help='Query points sampling method (kps, fps)')
# Transformer
parser.add_argument('--nhead', default=8, type=int, help='multi-head number')
parser.add_argument('--num_decoder_layers', default=6, type=int, help='number of decoder layers')
parser.add_argument('--dim_feedforward', default=2048, type=int, help='dim_feedforward')
parser.add_argument('--transformer_dropout', default=0.1, type=float, help='transformer_dropout')
parser.add_argument('--transformer_activation', default='relu', type=str, help='transformer_activation')
parser.add_argument('--self_position_embedding', default='loc_learned', type=str,
help='position_embedding in self attention (none, xyz_learned, loc_learned)')
parser.add_argument('--cross_position_embedding', default='xyz_learned', type=str,
help='position embedding in cross attention (none, xyz_learned)')
# Loss
parser.add_argument('--query_points_generator_loss_coef', default=0.8, type=float)
parser.add_argument('--obj_loss_coef', default=0.1, type=float, help='Loss weight for objectness loss')
parser.add_argument('--box_loss_coef', default=1, type=float, help='Loss weight for box loss')
parser.add_argument('--sem_cls_loss_coef', default=0.1, type=float, help='Loss weight for classification loss')
parser.add_argument('--center_loss_type', default='smoothl1', type=str, help='(smoothl1, l1)')
parser.add_argument('--center_delta', default=1.0, type=float, help='delta for smoothl1 loss in center loss')
parser.add_argument('--size_loss_type', default='smoothl1', type=str, help='(smoothl1, l1)')
parser.add_argument('--size_delta', default=1.0, type=float, help='delta for smoothl1 loss in size loss')
parser.add_argument('--heading_loss_type', default='smoothl1', type=str, help='(smoothl1, l1)')
parser.add_argument('--heading_delta', default=1.0, type=float, help='delta for smoothl1 loss in heading loss')
parser.add_argument('--query_points_obj_topk', default=4, type=int, help='query_points_obj_topk')
parser.add_argument('--size_cls_agnostic', action='store_true', help='Use class-agnostic size prediction.')
# Data
parser.add_argument('--batch_size', type=int, default=8, help='Batch Size per GPU during training [default: 8]')
parser.add_argument('--dataset', default='scannet', help='Dataset name. sunrgbd or scannet. [default: scannet]')
parser.add_argument('--num_point', type=int, default=50000, help='Point Number [default: 50000]')
parser.add_argument('--data_root', default='data', help='data root path')
parser.add_argument('--use_height', action='store_true', help='Use height signal in input.')
parser.add_argument('--use_color', action='store_true', help='Use RGB color in input.')
parser.add_argument('--use_sunrgbd_v2', action='store_true', help='Use V2 box labels for SUN RGB-D dataset')
parser.add_argument('--num_workers', type=int, default=4, help='num of workers to use')
# Training
parser.add_argument('--start_epoch', type=int, default=1, help='Epoch to run [default: 1]')
parser.add_argument('--max_epoch', type=int, default=400, help='Epoch to run [default: 180]')
parser.add_argument('--optimizer', type=str, default='adamW', help='optimizer')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum for SGD')
parser.add_argument('--weight_decay', type=float, default=0.0005,
help='Optimization L2 weight decay [default: 0.0005]')
parser.add_argument('--learning_rate', type=float, default=0.004,
help='Initial learning rate for all except decoder [default: 0.004]')
parser.add_argument('--decoder_learning_rate', type=float, default=0.0004,
help='Initial learning rate for decoder [default: 0.0004]')
parser.add_argument('--lr-scheduler', type=str, default='step',
choices=["step", "cosine"], help="learning rate scheduler")
parser.add_argument('--warmup-epoch', type=int, default=-1, help='warmup epoch')
parser.add_argument('--warmup-multiplier', type=int, default=100, help='warmup multiplier')
parser.add_argument('--lr_decay_epochs', type=int, default=[280, 340], nargs='+',
help='for step scheduler. where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='for step scheduler. decay rate for learning rate')
parser.add_argument('--clip_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--bn_momentum', type=float, default=0.1, help='Default bn momeuntum')
parser.add_argument('--syncbn', action='store_true', help='whether to use sync bn')
# io
parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint path [default: None]')
parser.add_argument('--log_dir', default='log', help='Dump dir to save model checkpoint [default: log]')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--save_freq', type=int, default=100, help='save frequency')
parser.add_argument('--val_freq', type=int, default=50, help='val frequency')
# others
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
parser.add_argument('--ap_iou_thresholds', type=float, default=[0.25, 0.5], nargs='+',
help='A list of AP IoU thresholds [default: 0.25,0.5]')
parser.add_argument("--rng_seed", type=int, default=0, help='manual seed')
args, unparsed = parser.parse_known_args()
return args
def load_checkpoint(args, model, optimizer, scheduler):
logger.info("=> loading checkpoint '{}'".format(args.checkpoint_path))
checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
args.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
logger.info("=> loaded successfully '{}' (epoch {})".format(args.checkpoint_path, checkpoint['epoch']))
del checkpoint
torch.cuda.empty_cache()
def save_checkpoint(args, epoch, model, optimizer, scheduler, save_cur=False):
logger.info('==> Saving...')
state = {
'config': args,
'save_path': '',
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch,
}
if save_cur:
state['save_path'] = os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')
torch.save(state, os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth'))
logger.info("Saved in {}".format(os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')))
elif epoch % args.save_freq == 0:
state['save_path'] = os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')
torch.save(state, os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth'))
logger.info("Saved in {}".format(os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')))
else:
# state['save_path'] = 'current.pth'
# torch.save(state, os.path.join(args.log_dir, 'current.pth'))
print("not saving checkpoint")
pass
def get_loader(args):
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Create Dataset and Dataloader
if args.dataset == 'sunrgbd':
from sunrgbd.sunrgbd_detection_dataset import SunrgbdDetectionVotesDataset
from sunrgbd.model_util_sunrgbd import SunrgbdDatasetConfig
DATASET_CONFIG = SunrgbdDatasetConfig()
TRAIN_DATASET = SunrgbdDetectionVotesDataset('train', num_points=args.num_point,
augment=True,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
use_v1=(not args.use_sunrgbd_v2),
data_root=args.data_root)
TEST_DATASET = SunrgbdDetectionVotesDataset('val', num_points=args.num_point,
augment=False,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
use_v1=(not args.use_sunrgbd_v2),
data_root=args.data_root)
elif args.dataset == 'scannet':
sys.path.append(os.path.join(ROOT_DIR, 'scannet'))
from scannet.scannet_detection_dataset import ScannetDetectionDataset
from scannet.model_util_scannet import ScannetDatasetConfig
DATASET_CONFIG = ScannetDatasetConfig()
TRAIN_DATASET = ScannetDetectionDataset('train', num_points=args.num_point,
augment=True,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
data_root=args.data_root)
TEST_DATASET = ScannetDetectionDataset('val', num_points=args.num_point,
augment=False,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
data_root=args.data_root)
else:
raise NotImplementedError(f'Unknown dataset {args.dataset}. Exiting...')
print(f"train_len: {len(TRAIN_DATASET)}, test_len: {len(TEST_DATASET)}")
train_sampler = torch.utils.data.distributed.DistributedSampler(TRAIN_DATASET)
train_loader = torch.utils.data.DataLoader(TRAIN_DATASET,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
worker_init_fn=my_worker_init_fn,
pin_memory=True,
sampler=train_sampler,
drop_last=True)
test_sampler = torch.utils.data.distributed.DistributedSampler(TEST_DATASET, shuffle=False)
test_loader = torch.utils.data.DataLoader(TEST_DATASET,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
worker_init_fn=my_worker_init_fn,
pin_memory=True,
sampler=test_sampler,
drop_last=False)
print(f"train_loader_len: {len(train_loader)}, test_loader_len: {len(test_loader)}")
return train_loader, test_loader, DATASET_CONFIG
def get_model(args, DATASET_CONFIG):
if args.use_height:
num_input_channel = int(args.use_color) * 3 + 1
else:
num_input_channel = int(args.use_color) * 3
model = GroupFreeDetector(num_class=DATASET_CONFIG.num_class,
num_heading_bin=DATASET_CONFIG.num_heading_bin,
num_size_cluster=DATASET_CONFIG.num_size_cluster,
mean_size_arr=DATASET_CONFIG.mean_size_arr,
input_feature_dim=num_input_channel,
width=args.width,
bn_momentum=args.bn_momentum,
sync_bn=True if args.syncbn else False,
num_proposal=args.num_target,
sampling=args.sampling,
dropout=args.transformer_dropout,
activation=args.transformer_activation,
nhead=args.nhead,
num_decoder_layers=args.num_decoder_layers,
dim_feedforward=args.dim_feedforward,
self_position_embedding=args.self_position_embedding,
cross_position_embedding=args.cross_position_embedding,
size_cls_agnostic=True if args.size_cls_agnostic else False)
criterion = get_loss
return model, criterion
def main(args):
train_loader, test_loader, DATASET_CONFIG = get_loader(args)
n_data = len(train_loader.dataset)
logger.info(f"length of training dataset: {n_data}")
n_data = len(test_loader.dataset)
logger.info(f"length of testing dataset: {n_data}")
model, criterion = get_model(args, DATASET_CONFIG)
if dist.get_rank() == 0:
logger.info(str(model))
# optimizer
if args.optimizer == 'adamW':
param_dicts = [
{"params": [p for n, p in model.named_parameters() if "decoder" not in n and p.requires_grad]},
{
"params": [p for n, p in model.named_parameters() if "decoder" in n and p.requires_grad],
"lr": args.decoder_learning_rate,
},
]
optimizer = optim.AdamW(param_dicts,
lr=args.learning_rate,
weight_decay=args.weight_decay)
else:
raise NotImplementedError
scheduler = get_scheduler(optimizer, len(train_loader), args)
model = model.cuda()
model = DistributedDataParallel(model, device_ids=[args.local_rank], broadcast_buffers=False)
if args.checkpoint_path:
assert os.path.isfile(args.checkpoint_path)
load_checkpoint(args, model, optimizer, scheduler)
# Used for AP calculation
CONFIG_DICT = {'remove_empty_box': False, 'use_3d_nms': True,
'nms_iou': 0.25, 'use_old_type_nms': False, 'cls_nms': True,
'per_class_proposal': True, 'conf_thresh': 0.0,
'dataset_config': DATASET_CONFIG}
for epoch in range(args.start_epoch, args.max_epoch + 1):
train_loader.sampler.set_epoch(epoch)
tic = time.time()
train_one_epoch(epoch, train_loader, DATASET_CONFIG, model, criterion, optimizer, scheduler, args)
logger.info('epoch {}, total time {:.2f}, '
'lr_base {:.5f}, lr_decoder {:.5f}'.format(epoch, (time.time() - tic),
optimizer.param_groups[0]['lr'],
optimizer.param_groups[1]['lr']))
if epoch % args.val_freq == 0:
evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, args.ap_iou_thresholds, model,
criterion, args)
if dist.get_rank() == 0:
# save model
save_checkpoint(args, epoch, model, optimizer, scheduler)
evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, args.ap_iou_thresholds, model, criterion, args)
save_checkpoint(args, 'last', model, optimizer, scheduler, save_cur=True)
logger.info("Saved in {}".format(os.path.join(args.log_dir, f'ckpt_epoch_last.pth')))
return os.path.join(args.log_dir, f'ckpt_epoch_last.pth')
def train_one_epoch(epoch, train_loader, DATASET_CONFIG, model, criterion, optimizer, scheduler, config):
stat_dict = {} # collect statistics
model.train() # set model to training mode
for batch_idx, batch_data_label in enumerate(train_loader):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].cuda(non_blocking=True)
inputs = {'point_clouds': batch_data_label['point_clouds']}
# Forward pass
end_points = model(inputs)
# Compute loss and gradients, update parameters.
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
loss, end_points = criterion(end_points, DATASET_CONFIG,
num_decoder_layers=config.num_decoder_layers,
query_points_generator_loss_coef=config.query_points_generator_loss_coef,
obj_loss_coef=config.obj_loss_coef,
box_loss_coef=config.box_loss_coef,
sem_cls_loss_coef=config.sem_cls_loss_coef,
query_points_obj_topk=config.query_points_obj_topk,
center_loss_type=config.center_loss_type,
center_delta=config.center_delta,
size_loss_type=config.size_loss_type,
size_delta=config.size_delta,
heading_loss_type=config.heading_loss_type,
heading_delta=config.heading_delta,
size_cls_agnostic=config.size_cls_agnostic)
optimizer.zero_grad()
loss.backward()
if config.clip_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.clip_norm)
optimizer.step()
scheduler.step()
# Accumulate statistics and print out
stat_dict['grad_norm'] = grad_total_norm
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
if isinstance(end_points[key], float):
stat_dict[key] += end_points[key]
else:
stat_dict[key] += end_points[key].item()
if (batch_idx + 1) % config.print_freq == 0:
logger.info(f'Train: [{epoch}][{batch_idx + 1}/{len(train_loader)}] ' + ''.join(
[f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if 'loss' not in key]))
logger.info(f"grad_norm: {stat_dict['grad_norm']}")
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if
'loss' in key and 'proposal_' not in key and 'last_' not in key and 'head_' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if 'last_' in key]))
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if 'proposal_' in key]))
for ihead in range(config.num_decoder_layers - 2, -1, -1):
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if f'{ihead}head_' in key]))
for key in sorted(stat_dict.keys()):
stat_dict[key] = 0
def evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, AP_IOU_THRESHOLDS, model, criterion, config):
stat_dict = {}
if config.num_decoder_layers > 0:
prefixes = ['last_', 'proposal_'] + [f'{i}head_' for i in range(config.num_decoder_layers - 1)]
else:
prefixes = ['proposal_'] # only proposal
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
for iou_thresh in AP_IOU_THRESHOLDS]
mAPs = [[iou_thresh, {k: 0 for k in prefixes}] for iou_thresh in AP_IOU_THRESHOLDS]
model.eval() # set model to eval mode (for bn and dp)
batch_pred_map_cls_dict = {k: [] for k in prefixes}
batch_gt_map_cls_dict = {k: [] for k in prefixes}
for batch_idx, batch_data_label in enumerate(test_loader):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].cuda(non_blocking=True)
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
with torch.no_grad():
end_points = model(inputs)
# Compute loss
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
loss, end_points = criterion(end_points, DATASET_CONFIG,
num_decoder_layers=config.num_decoder_layers,
query_points_generator_loss_coef=config.query_points_generator_loss_coef,
obj_loss_coef=config.obj_loss_coef,
box_loss_coef=config.box_loss_coef,
sem_cls_loss_coef=config.sem_cls_loss_coef,
query_points_obj_topk=config.query_points_obj_topk,
center_loss_type=config.center_loss_type,
center_delta=config.center_delta,
size_loss_type=config.size_loss_type,
size_delta=config.size_delta,
heading_loss_type=config.heading_loss_type,
heading_delta=config.heading_delta,
size_cls_agnostic=config.size_cls_agnostic)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
if isinstance(end_points[key], float):
stat_dict[key] += end_points[key]
else:
stat_dict[key] += end_points[key].item()
for prefix in prefixes:
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT, prefix,
size_cls_agnostic=config.size_cls_agnostic)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT,
size_cls_agnostic=config.size_cls_agnostic)
batch_pred_map_cls_dict[prefix].append(batch_pred_map_cls)
batch_gt_map_cls_dict[prefix].append(batch_gt_map_cls)
if (batch_idx + 1) % config.print_freq == 0:
logger.info(f'Eval: [{batch_idx + 1}/{len(test_loader)}] ' + ''.join(
[f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'loss' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if
'loss' in key and 'proposal_' not in key and 'last_' not in key and 'head_' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'last_' in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'proposal_' in key]))
for ihead in range(config.num_decoder_layers - 2, -1, -1):
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if f'{ihead}head_' in key]))
mAP = 0.0
for prefix in prefixes:
for (batch_pred_map_cls, batch_gt_map_cls) in zip(batch_pred_map_cls_dict[prefix],
batch_gt_map_cls_dict[prefix]):
for ap_calculator in ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
# Evaluate average precision
for i, ap_calculator in enumerate(ap_calculator_list):
metrics_dict = ap_calculator.compute_metrics()
logger.info(f'=====================>{prefix} IOU THRESH: {AP_IOU_THRESHOLDS[i]}<=====================')
for key in metrics_dict:
logger.info(f'{key} {metrics_dict[key]}')
if prefix == 'last_' and ap_calculator.ap_iou_thresh > 0.3:
mAP = metrics_dict['mAP']
mAPs[i][1][prefix] = metrics_dict['mAP']
ap_calculator.reset()
for mAP in mAPs:
logger.info(f'IoU[{mAP[0]}]:\t' + ''.join([f'{key}: {mAP[1][key]:.4f} \t' for key in sorted(mAP[1].keys())]))
return mAP, mAPs
if __name__ == '__main__':
opt = parse_option()
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
LOG_DIR = os.path.join(opt.log_dir, 'group_free',
f'{opt.dataset}_{int(time.time())}', f'{np.random.randint(100000000)}')
while os.path.exists(LOG_DIR):
LOG_DIR = os.path.join(opt.log_dir, 'group_free',
f'{opt.dataset}_{int(time.time())}', f'{np.random.randint(100000000)}')
opt.log_dir = LOG_DIR
os.makedirs(opt.log_dir, exist_ok=True)
logger = setup_logger(output=opt.log_dir, distributed_rank=dist.get_rank(), name="group-free")
if dist.get_rank() == 0:
path = os.path.join(opt.log_dir, "config.json")
with open(path, 'w') as f:
json.dump(vars(opt), f, indent=2)
logger.info("Full config saved to {}".format(path))
logger.info(str(vars(opt)))
ckpt_path = main(opt)