-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy patheval_avg.py
375 lines (321 loc) · 20.3 KB
/
eval_avg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import sys
import time
import numpy as np
from datetime import datetime
import argparse
import torch
from torch.utils.data import DataLoader
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
from utils import setup_logger
from models import GroupFreeDetector, get_loss
from models import APCalculator, parse_predictions, parse_groundtruths
def parse_option():
parser = argparse.ArgumentParser()
# Eval
parser.add_argument('--checkpoint_path', default=None, required=True, help='Model checkpoint path [default: None]')
parser.add_argument('--avg_times', default=5, type=int, help='Average times')
parser.add_argument("--rng_seed", type=int, default=0, help='manual seed')
parser.add_argument('--dump_dir', default='dump', help='Dump dir to save sample outputs [default: None]')
parser.add_argument('--use_old_type_nms', action='store_true', help='Use old type of NMS, IoBox2Area.')
parser.add_argument('--nms_iou', type=float, default=0.25, help='NMS IoU threshold. [default: 0.25]')
parser.add_argument('--conf_thresh', type=float, default=0.0,
help='Filter out predictions with obj prob less than it. [default: 0.05]')
parser.add_argument('--ap_iou_thresholds', type=float, default=[0.25, 0.5], nargs='+',
help='A list of AP IoU thresholds [default: 0.25,0.5]')
parser.add_argument('--faster_eval', action='store_true',
help='Faster evaluation by skippling empty bounding box removal.')
parser.add_argument('--shuffle_dataset', action='store_true', help='Shuffle the dataset (random order).')
# Model
parser.add_argument('--width', default=1, type=int, help='backbone width')
parser.add_argument('--num_target', type=int, default=256, help='Proposal number [default: 256]')
parser.add_argument('--sampling', default='kps', type=str, help='Query points sampling method (kps, fps)')
# Transformer
parser.add_argument('--nhead', default=8, type=int, help='multi-head number')
parser.add_argument('--num_decoder_layers', default=6, type=int, help='number of decoder layers')
parser.add_argument('--dim_feedforward', default=2048, type=int, help='dim_feedforward')
parser.add_argument('--transformer_dropout', default=0.1, type=float, help='transformer_dropout')
parser.add_argument('--transformer_activation', default='relu', type=str, help='transformer_activation')
parser.add_argument('--self_position_embedding', default='loc_learned', type=str,
help='position_embedding in self attention (none, xyz_learned, loc_learned)')
parser.add_argument('--cross_position_embedding', default='xyz_learned', type=str,
help='position embedding in cross attention (none, xyz_learned)')
# Loss
parser.add_argument('--query_points_generator_loss_coef', default=0.8, type=float)
parser.add_argument('--obj_loss_coef', default=0.1, type=float, help='Loss weight for objectness loss')
parser.add_argument('--box_loss_coef', default=1, type=float, help='Loss weight for box loss')
parser.add_argument('--sem_cls_loss_coef', default=0.1, type=float, help='Loss weight for classification loss')
parser.add_argument('--center_loss_type', default='smoothl1', type=str, help='(smoothl1, l1)')
parser.add_argument('--center_delta', default=1.0, type=float, help='delta for smoothl1 loss in center loss')
parser.add_argument('--size_loss_type', default='smoothl1', type=str, help='(smoothl1, l1)')
parser.add_argument('--size_delta', default=1.0, type=float, help='delta for smoothl1 loss in size loss')
parser.add_argument('--heading_loss_type', default='smoothl1', type=str, help='(smoothl1, l1)')
parser.add_argument('--heading_delta', default=1.0, type=float, help='delta for smoothl1 loss in heading loss')
parser.add_argument('--query_points_obj_topk', default=4, type=int, help='query_points_obj_topk')
parser.add_argument('--size_cls_agnostic', action='store_true', help='Use class-agnostic size prediction.')
# Data
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 8]')
parser.add_argument('--dataset', default='scannet', help='Dataset name. sunrgbd or scannet. [default: scannet]')
parser.add_argument('--num_point', type=int, default=50000, help='Point Number [default: 50000]')
parser.add_argument('--data_root', default='data', help='data root path')
parser.add_argument('--use_height', action='store_true', help='Use height signal in input.')
parser.add_argument('--use_color', action='store_true', help='Use RGB color in input.')
parser.add_argument('--use_sunrgbd_v2', action='store_true', help='Use SUN RGB-D V2 box labels.')
args, unparsed = parser.parse_known_args()
return args
def get_loader(args):
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Create Dataset and Dataloader
if args.dataset == 'sunrgbd':
from sunrgbd.sunrgbd_detection_dataset import SunrgbdDetectionVotesDataset
from sunrgbd.model_util_sunrgbd import SunrgbdDatasetConfig
DATASET_CONFIG = SunrgbdDatasetConfig()
TEST_DATASET = SunrgbdDetectionVotesDataset('val', num_points=args.num_point,
augment=False,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
use_v1=(not args.use_sunrgbd_v2),
data_root=args.data_root)
elif args.dataset == 'scannet':
sys.path.append(os.path.join(ROOT_DIR, 'scannet'))
from scannet.scannet_detection_dataset import ScannetDetectionDataset
from scannet.model_util_scannet import ScannetDatasetConfig
DATASET_CONFIG = ScannetDatasetConfig()
TEST_DATASET = ScannetDetectionDataset('val', num_points=args.num_point,
augment=False,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
data_root=args.data_root)
else:
raise NotImplementedError(f'Unknown dataset {args.dataset}. Exiting...')
logger.info(str(len(TEST_DATASET)))
TEST_DATALOADER = DataLoader(TEST_DATASET, batch_size=args.batch_size * torch.cuda.device_count(),
shuffle=args.shuffle_dataset,
num_workers=4,
worker_init_fn=my_worker_init_fn)
return TEST_DATALOADER, DATASET_CONFIG
def get_model(args, DATASET_CONFIG):
if args.use_height:
num_input_channel = int(args.use_color) * 3 + 1
else:
num_input_channel = int(args.use_color) * 3
model = GroupFreeDetector(num_class=DATASET_CONFIG.num_class,
num_heading_bin=DATASET_CONFIG.num_heading_bin,
num_size_cluster=DATASET_CONFIG.num_size_cluster,
mean_size_arr=DATASET_CONFIG.mean_size_arr,
input_feature_dim=num_input_channel,
width=args.width,
num_proposal=args.num_target,
sampling=args.sampling,
dropout=args.transformer_dropout,
activation=args.transformer_activation,
nhead=args.nhead,
num_decoder_layers=args.num_decoder_layers,
dim_feedforward=args.dim_feedforward,
self_position_embedding=args.self_position_embedding,
cross_position_embedding=args.cross_position_embedding,
size_cls_agnostic=True if args.size_cls_agnostic else False)
criterion = get_loss
return model, criterion
def load_checkpoint(args, model):
# Load checkpoint if there is any
if args.checkpoint_path is not None and os.path.isfile(args.checkpoint_path):
checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
save_path = checkpoint.get('save_path', 'none')
for k in list(state_dict.keys()):
state_dict[k[len("module."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
model.load_state_dict(state_dict)
logger.info(f"{args.checkpoint_path} loaded successfully!!!")
del checkpoint
torch.cuda.empty_cache()
else:
raise FileNotFoundError
return save_path
def evaluate_one_time(test_loader, DATASET_CONFIG, CONFIG_DICT, AP_IOU_THRESHOLDS, model, criterion, args, time=0):
stat_dict = {}
if args.num_decoder_layers > 0:
if args.dataset == 'sunrgbd':
_prefixes = ['last_', 'proposal_']
_prefixes += [f'{i}head_' for i in range(args.num_decoder_layers - 1)]
prefixes = _prefixes.copy() + ['all_layers_']
elif args.dataset == 'scannet':
_prefixes = ['last_', 'proposal_']
_prefixes += [f'{i}head_' for i in range(args.num_decoder_layers - 1)]
prefixes = _prefixes.copy() + ['last_three_'] + ['all_layers_']
else:
prefixes = ['proposal_'] # only proposal
_prefixes = prefixes
if args.num_decoder_layers >= 3:
last_three_prefixes = ['last_', f'{args.num_decoder_layers - 2}head_', f'{args.num_decoder_layers - 3}head_']
elif args.num_decoder_layers == 2:
last_three_prefixes = ['last_', '0head_']
elif args.num_decoder_layers == 1:
last_three_prefixes = ['last_']
else:
last_three_prefixes = []
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
for iou_thresh in AP_IOU_THRESHOLDS]
mAPs = [[iou_thresh, {k: 0 for k in prefixes}] for iou_thresh in AP_IOU_THRESHOLDS]
model.eval() # set model to eval mode (for bn and dp)
batch_pred_map_cls_dict = {k: [] for k in prefixes}
batch_gt_map_cls_dict = {k: [] for k in prefixes}
for batch_idx, batch_data_label in enumerate(test_loader):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].cuda(non_blocking=True)
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
with torch.no_grad():
end_points = model(inputs)
# Compute loss
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
loss, end_points = criterion(end_points, DATASET_CONFIG,
num_decoder_layers=args.num_decoder_layers,
query_points_generator_loss_coef=args.query_points_generator_loss_coef,
obj_loss_coef=args.obj_loss_coef,
box_loss_coef=args.box_loss_coef,
sem_cls_loss_coef=args.sem_cls_loss_coef,
query_points_obj_topk=args.query_points_obj_topk,
center_loss_type=args.center_loss_type,
center_delta=args.center_delta,
size_loss_type=args.size_loss_type,
size_delta=args.size_delta,
heading_loss_type=args.heading_loss_type,
heading_delta=args.heading_delta,
size_cls_agnostic=args.size_cls_agnostic)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
if isinstance(end_points[key], float):
stat_dict[key] += end_points[key]
else:
stat_dict[key] += end_points[key].item()
for prefix in prefixes:
if prefix == 'last_three_':
end_points[f'{prefix}center'] = torch.cat([end_points[f'{ppx}center']
for ppx in last_three_prefixes], 1)
end_points[f'{prefix}heading_scores'] = torch.cat([end_points[f'{ppx}heading_scores']
for ppx in last_three_prefixes], 1)
end_points[f'{prefix}heading_residuals'] = torch.cat([end_points[f'{ppx}heading_residuals']
for ppx in last_three_prefixes], 1)
if args.size_cls_agnostic:
end_points[f'{prefix}pred_size'] = torch.cat([end_points[f'{ppx}pred_size']
for ppx in last_three_prefixes], 1)
else:
end_points[f'{prefix}size_scores'] = torch.cat([end_points[f'{ppx}size_scores']
for ppx in last_three_prefixes], 1)
end_points[f'{prefix}size_residuals'] = torch.cat([end_points[f'{ppx}size_residuals']
for ppx in last_three_prefixes], 1)
end_points[f'{prefix}sem_cls_scores'] = torch.cat([end_points[f'{ppx}sem_cls_scores']
for ppx in last_three_prefixes], 1)
end_points[f'{prefix}objectness_scores'] = torch.cat([end_points[f'{ppx}objectness_scores']
for ppx in last_three_prefixes], 1)
elif prefix == 'all_layers_':
end_points[f'{prefix}center'] = torch.cat([end_points[f'{ppx}center']
for ppx in _prefixes], 1)
end_points[f'{prefix}heading_scores'] = torch.cat([end_points[f'{ppx}heading_scores']
for ppx in _prefixes], 1)
end_points[f'{prefix}heading_residuals'] = torch.cat([end_points[f'{ppx}heading_residuals']
for ppx in _prefixes], 1)
if args.size_cls_agnostic:
end_points[f'{prefix}pred_size'] = torch.cat([end_points[f'{ppx}pred_size']
for ppx in _prefixes], 1)
else:
end_points[f'{prefix}size_scores'] = torch.cat([end_points[f'{ppx}size_scores']
for ppx in _prefixes], 1)
end_points[f'{prefix}size_residuals'] = torch.cat([end_points[f'{ppx}size_residuals']
for ppx in _prefixes], 1)
end_points[f'{prefix}sem_cls_scores'] = torch.cat([end_points[f'{ppx}sem_cls_scores']
for ppx in _prefixes], 1)
end_points[f'{prefix}objectness_scores'] = torch.cat([end_points[f'{ppx}objectness_scores']
for ppx in _prefixes], 1)
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT, prefix,
size_cls_agnostic=args.size_cls_agnostic)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT,
size_cls_agnostic=args.size_cls_agnostic)
batch_pred_map_cls_dict[prefix].append(batch_pred_map_cls)
batch_gt_map_cls_dict[prefix].append(batch_gt_map_cls)
if (batch_idx + 1) % 10 == 0:
logger.info(f'T[{time}] Eval: [{batch_idx + 1}/{len(test_loader)}] ' + ''.join(
[f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'loss' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if
'loss' in key and 'proposal_' not in key and 'last_' not in key and 'head_' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'last_' in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'proposal_' in key]))
for ihead in range(args.num_decoder_layers - 2, -1, -1):
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if f'{ihead}head_' in key]))
for prefix in prefixes:
for (batch_pred_map_cls, batch_gt_map_cls) in zip(batch_pred_map_cls_dict[prefix],
batch_gt_map_cls_dict[prefix]):
for ap_calculator in ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
# Evaluate average precision
for i, ap_calculator in enumerate(ap_calculator_list):
metrics_dict = ap_calculator.compute_metrics()
logger.info(f'===================>T{time} {prefix} IOU THRESH: {AP_IOU_THRESHOLDS[i]}<==================')
for key in metrics_dict:
logger.info(f'{key} {metrics_dict[key]}')
mAPs[i][1][prefix] = metrics_dict['mAP']
ap_calculator.reset()
for mAP in mAPs:
logger.info(f'T[{time}] IoU[{mAP[0]}]: ' +
''.join([f'{key}: {mAP[1][key]:.4f} \t' for key in sorted(mAP[1].keys())]))
return mAPs
def eval(args, avg_times=5):
test_loader, DATASET_CONFIG = get_loader(args)
n_data = len(test_loader.dataset)
logger.info(f"length of testing dataset: {n_data}")
model, criterion = get_model(args, DATASET_CONFIG)
logger.info(str(model))
save_path = load_checkpoint(args, model)
model = model.cuda()
if torch.cuda.device_count() > 1:
logger.info("Let's use %d GPUs!" % (torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
# Used for AP calculation
CONFIG_DICT = {'remove_empty_box': (not args.faster_eval), 'use_3d_nms': True, 'nms_iou': args.nms_iou,
'use_old_type_nms': args.use_old_type_nms, 'cls_nms': True,
'per_class_proposal': True,
'conf_thresh': args.conf_thresh, 'dataset_config': DATASET_CONFIG}
logger.info(str(datetime.now()))
mAPs_times = [None for i in range(avg_times)]
for i in range(avg_times):
np.random.seed(i + args.rng_seed)
mAPs = evaluate_one_time(test_loader, DATASET_CONFIG, CONFIG_DICT, args.ap_iou_thresholds,
model, criterion, args, i)
mAPs_times[i] = mAPs
logger.info(f"checkpoint path {save_path}")
mAPs_avg = mAPs.copy()
for i, mAP in enumerate(mAPs_avg):
for key in mAP[1].keys():
avg = 0
for t in range(avg_times):
cur = mAPs_times[t][i][1][key]
avg += cur
avg /= avg_times
mAP[1][key] = avg
for mAP in mAPs_avg:
logger.info(f'AVG IoU[{mAP[0]}]: \n' +
''.join([f'{key}: {mAP[1][key]:.4f} \n' for key in sorted(mAP[1].keys())]))
for mAP in mAPs_avg:
logger.info(f'AVG IoU[{mAP[0]}]: \t' +
''.join([f'{key}: {mAP[1][key]:.4f} \t' for key in sorted(mAP[1].keys())]))
logger.info(f"checkpoint path {save_path}")
if __name__ == '__main__':
opt = parse_option()
opt.dump_dir = os.path.join(opt.dump_dir, f'eval_{opt.dataset}_{int(time.time())}_{np.random.randint(100000000)}')
logger = setup_logger(output=opt.dump_dir, name="eval")
eval(opt, opt.avg_times)