You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi @missbook520 ,
I'm sorry that the checkpoint provided here is not correspond to the latest code(we change all LeakyReLU to ReLU in the latest code), I'll re-train all models and update them soon. To use the current models, you can git checkout f388452b and then retry it.
Hello, thank you very much for your work!
But I used the pospool_sin_cos_avg pre-trained model you provided to predict modelnet40, and the results are as follows:
[11/29 13:58:30] modelnet40_eval INFO: Full config saved to log_eval/modelnet40/pospool_sin_cos_avg_1606629510/config.json
[11/29 14:25:04] modelnet40_eval INFO: length of testing dataset: 2468
[11/29 14:25:41] modelnet40_eval INFO: => loading checkpoint 'weights/pospool_sin_cos_avg.pth'
[11/29 14:25:42] modelnet40_eval INFO: => loaded successfully 'weights/pospool_sin_cos_avg.pth' (epoch 270)
[11/29 14:25:43] modelnet40_eval INFO: ==> checking loaded ckpt
[11/29 14:25:49] modelnet40_eval INFO: Test: [0/155] Time 6.572 (6.572) Loss 3.9528 (3.9528) Acc@1 0.000% (0.000%)
[11/29 14:25:58] modelnet40_eval INFO: Test: [10/155] Time 0.912 (1.387) Loss 3.8535 (3.8445) Acc@1 0.000% (0.000%)
[11/29 14:26:06] modelnet40_eval INFO: Test: [20/155] Time 0.738 (1.133) Loss 3.9266 (3.8434) Acc@1 0.000% (0.000%)
[11/29 14:26:15] modelnet40_eval INFO: Test: [30/155] Time 0.819 (1.049) Loss 3.6361 (3.8057) Acc@1 0.000% (0.000%)
[11/29 14:26:24] modelnet40_eval INFO: Test: [40/155] Time 0.923 (1.007) Loss 4.3326 (3.8251) Acc@1 0.000% (0.000%)
[11/29 14:26:32] modelnet40_eval INFO: Test: [50/155] Time 0.875 (0.977) Loss 2.8819 (3.7561) Acc@1 56.250% (5.760%)
[11/29 14:26:42] modelnet40_eval INFO: Test: [60/155] Time 0.936 (0.968) Loss 3.6222 (3.7104) Acc@1 12.500% (7.480%)
[11/29 14:26:50] modelnet40_eval INFO: Test: [70/155] Time 0.844 (0.955) Loss 3.8727 (3.7256) Acc@1 0.000% (6.426%)
[11/29 14:26:58] modelnet40_eval INFO: Test: [80/155] Time 0.809 (0.935) Loss 3.5683 (3.7146) Acc@1 0.000% (5.864%)
[11/29 14:27:07] modelnet40_eval INFO: Test: [90/155] Time 0.954 (0.931) Loss 3.8353 (3.7245) Acc@1 0.000% (5.220%)
[11/29 14:27:16] modelnet40_eval INFO: Test: [100/155] Time 0.737 (0.928) Loss 3.6307 (3.7281) Acc@1 0.000% (4.703%)
[11/29 14:27:24] modelnet40_eval INFO: Test: [110/155] Time 0.922 (0.918) Loss 3.7987 (3.7046) Acc@1 0.000% (4.617%)
[11/29 14:27:33] modelnet40_eval INFO: Test: [120/155] Time 0.924 (0.915) Loss 3.7480 (3.7105) Acc@1 0.000% (4.236%)
[11/29 14:27:43] modelnet40_eval INFO: Test: [130/155] Time 1.049 (0.917) Loss 3.9255 (3.7225) Acc@1 0.000% (3.912%)
[11/29 14:27:52] modelnet40_eval INFO: Test: [140/155] Time 0.821 (0.919) Loss 4.0577 (3.7144) Acc@1 0.000% (3.635%)
[11/29 14:28:01] modelnet40_eval INFO: Test: [150/155] Time 0.955 (0.914) Loss 4.4066 (3.7499) Acc@1 0.000% (3.394%)
[11/29 14:28:04] modelnet40_eval INFO: * Acc@1 3.323%
[11/29 14:28:04] modelnet40_eval INFO: * Vote0 Acc@1 3.323%
[11/29 14:28:07] modelnet40_eval INFO: Test: [0/155] Time 3.408 (0.929) Loss 4.0015 (3.7566) Acc@1 0.000% (0.000%)
[11/29 14:28:20] modelnet40_eval INFO: Test: [10/155] Time 1.210 (0.948) Loss 3.8147 (3.7612) Acc@1 0.000% (0.000%)
[11/29 14:28:31] modelnet40_eval INFO: Test: [20/155] Time 1.014 (0.958) Loss 4.0274 (3.7657) Acc@1 0.000% (0.000%)
[11/29 14:28:42] modelnet40_eval INFO: Test: [30/155] Time 0.981 (0.964) Loss 3.6712 (3.7635) Acc@1 0.000% (0.000%)
[11/29 14:28:52] modelnet40_eval INFO: Test: [40/155] Time 1.137 (0.969) Loss 4.2934 (3.7681) Acc@1 0.000% (0.000%)
[11/29 14:29:03] modelnet40_eval INFO: Test: [50/155] Time 1.154 (0.972) Loss 2.7808 (3.7535) Acc@1 81.250% (6.740%)
[11/29 14:29:14] modelnet40_eval INFO: Test: [60/155] Time 0.986 (0.977) Loss 3.5801 (3.7426) Acc@1 12.500% (7.889%)
[11/29 14:29:24] modelnet40_eval INFO: Test: [70/155] Time 1.054 (0.981) Loss 3.8196 (3.7444) Acc@1 0.000% (6.778%)
[11/29 14:29:35] modelnet40_eval INFO: Test: [80/155] Time 1.089 (0.985) Loss 3.5128 (3.7382) Acc@1 0.000% (6.404%)
[11/29 14:29:45] modelnet40_eval INFO: Test: [90/155] Time 1.170 (0.987) Loss 3.8592 (3.7419) Acc@1 0.000% (5.769%)
[11/29 14:29:56] modelnet40_eval INFO: Test: [100/155] Time 1.064 (0.992) Loss 3.6984 (3.7430) Acc@1 0.000% (5.198%)
[11/29 14:30:07] modelnet40_eval INFO: Test: [110/155] Time 1.231 (0.993) Loss 3.7226 (3.7339) Acc@1 0.000% (4.955%)
[11/29 14:30:17] modelnet40_eval INFO: Test: [120/155] Time 1.026 (0.995) Loss 3.7505 (3.7345) Acc@1 0.000% (4.545%)
[11/29 14:30:28] modelnet40_eval INFO: Test: [130/155] Time 0.915 (0.998) Loss 3.9110 (3.7391) Acc@1 0.000% (4.198%)
[11/29 14:30:38] modelnet40_eval INFO: Test: [140/155] Time 0.968 (0.999) Loss 4.0316 (3.7338) Acc@1 0.000% (3.901%)
[11/29 14:30:49] modelnet40_eval INFO: Test: [150/155] Time 1.129 (1.003) Loss 4.4362 (3.7506) Acc@1 0.000% (3.642%)
[11/29 14:30:53] modelnet40_eval INFO: * Acc@1 3.566%
[11/29 14:30:53] modelnet40_eval INFO: * Vote1 Acc@1 3.606%
[11/29 14:30:56] modelnet40_eval INFO: Test: [0/155] Time 2.464 (1.006) Loss 3.9860 (3.7538) Acc@1 0.000% (0.000%)
[11/29 14:31:06] modelnet40_eval INFO: Test: [10/155] Time 1.089 (1.009) Loss 3.7555 (3.7566) Acc@1 0.000% (0.000%)
[11/29 14:31:17] modelnet40_eval INFO: Test: [20/155] Time 1.149 (1.011) Loss 3.9376 (3.7588) Acc@1 0.000% (0.000%)
[11/29 14:31:28] modelnet40_eval INFO: Test: [30/155] Time 1.099 (1.012) Loss 3.6077 (3.7575) Acc@1 6.250% (0.202%)
[11/29 14:31:38] modelnet40_eval INFO: Test: [40/155] Time 1.014 (1.014) Loss 4.2509 (3.7600) Acc@1 0.000% (0.152%)
[11/29 14:31:49] modelnet40_eval INFO: Test: [50/155] Time 1.146 (1.015) Loss 2.8229 (3.7521) Acc@1 50.000% (6.250%)
[11/29 14:32:00] modelnet40_eval INFO: Test: [60/155] Time 1.005 (1.017) Loss 3.6266 (3.7457) Acc@1 12.500% (7.582%)
[11/29 14:32:11] modelnet40_eval INFO: Test: [70/155] Time 1.010 (1.019) Loss 3.8605 (3.7469) Acc@1 0.000% (6.514%)
[11/29 14:32:21] modelnet40_eval INFO: Test: [80/155] Time 1.179 (1.019) Loss 3.5332 (3.7433) Acc@1 0.000% (6.096%)
[11/29 14:32:32] modelnet40_eval INFO: Test: [90/155] Time 1.017 (1.020) Loss 3.8547 (3.7454) Acc@1 0.000% (5.426%)
[11/29 14:32:42] modelnet40_eval INFO: Test: [100/155] Time 0.947 (1.021) Loss 3.6940 (3.7461) Acc@1 0.000% (4.889%)
[11/29 14:32:53] modelnet40_eval INFO: Test: [110/155] Time 0.944 (1.022) Loss 3.7454 (3.7411) Acc@1 0.000% (4.673%)
[11/29 14:33:03] modelnet40_eval INFO: Test: [120/155] Time 1.006 (1.023) Loss 3.7019 (3.7411) Acc@1 0.000% (4.287%)
[11/29 14:33:14] modelnet40_eval INFO: Test: [130/155] Time 0.940 (1.023) Loss 4.0530 (3.7445) Acc@1 0.000% (3.960%)
[11/29 14:33:24] modelnet40_eval INFO: Test: [140/155] Time 1.174 (1.024) Loss 4.0547 (3.7407) Acc@1 0.000% (3.723%)
[11/29 14:33:35] modelnet40_eval INFO: Test: [150/155] Time 1.107 (1.025) Loss 4.4534 (3.7519) Acc@1 0.000% (3.477%)
[11/29 14:33:39] modelnet40_eval INFO: * Acc@1 3.404%
[11/29 14:33:39] modelnet40_eval INFO: * Vote2 Acc@1 3.849%
[11/29 14:33:41] modelnet40_eval INFO: Test: [0/155] Time 2.628 (1.028) Loss 3.9853 (3.7541) Acc@1 0.000% (0.000%)
[11/29 14:33:52] modelnet40_eval INFO: Test: [10/155] Time 1.153 (1.028) Loss 3.7854 (3.7556) Acc@1 0.000% (0.000%)
[11/29 14:34:03] modelnet40_eval INFO: Test: [20/155] Time 0.946 (1.029) Loss 4.0336 (3.7574) Acc@1 0.000% (0.000%)
[11/29 14:34:13] modelnet40_eval INFO: Test: [30/155] Time 1.095 (1.030) Loss 3.6432 (3.7567) Acc@1 0.000% (0.000%)
[11/29 14:34:24] modelnet40_eval INFO: Test: [40/155] Time 1.017 (1.031) Loss 4.3070 (3.7586) Acc@1 0.000% (0.000%)
[11/29 14:34:35] modelnet40_eval INFO: Test: [50/155] Time 0.964 (1.031) Loss 2.8068 (3.7530) Acc@1 62.500% (6.373%)
[11/29 14:34:45] modelnet40_eval INFO: Test: [60/155] Time 1.162 (1.032) Loss 3.6481 (3.7488) Acc@1 6.250% (7.787%)
[11/29 14:34:56] modelnet40_eval INFO: Test: [70/155] Time 1.064 (1.032) Loss 3.8415 (3.7494) Acc@1 0.000% (6.690%)
[11/29 14:35:07] modelnet40_eval INFO: Test: [80/155] Time 1.031 (1.033) Loss 3.5724 (3.7470) Acc@1 0.000% (6.250%)
[11/29 14:35:17] modelnet40_eval INFO: Test: [90/155] Time 1.100 (1.034) Loss 3.8922 (3.7488) Acc@1 0.000% (5.563%)
[11/29 14:35:28] modelnet40_eval INFO: Test: [100/155] Time 1.120 (1.034) Loss 3.6246 (3.7488) Acc@1 0.000% (5.012%)
[11/29 14:35:38] modelnet40_eval INFO: Test: [110/155] Time 0.994 (1.034) Loss 3.7005 (3.7446) Acc@1 0.000% (4.730%)
[11/29 14:35:49] modelnet40_eval INFO: Test: [120/155] Time 1.144 (1.035) Loss 3.6256 (3.7444) Acc@1 0.000% (4.339%)
[11/29 14:36:00] modelnet40_eval INFO: Test: [130/155] Time 1.052 (1.035) Loss 3.9319 (3.7460) Acc@1 0.000% (4.008%)
[11/29 14:36:10] modelnet40_eval INFO: Test: [140/155] Time 0.971 (1.036) Loss 4.0477 (3.7433) Acc@1 0.000% (3.723%)
[11/29 14:36:21] modelnet40_eval INFO: Test: [150/155] Time 1.064 (1.036) Loss 4.4978 (3.7514) Acc@1 0.000% (3.477%)
[11/29 14:36:25] modelnet40_eval INFO: * Acc@1 3.404%
[11/29 14:36:25] modelnet40_eval INFO: * Vote3 Acc@1 3.809%
[11/29 14:36:27] modelnet40_eval INFO: Test: [0/155] Time 2.517 (1.038) Loss 4.0088 (3.7531) Acc@1 0.000% (0.000%)
[11/29 14:36:38] modelnet40_eval INFO: Test: [10/155] Time 0.997 (1.039) Loss 3.7598 (3.7546) Acc@1 0.000% (0.000%)
[11/29 14:36:49] modelnet40_eval INFO: Test: [20/155] Time 1.153 (1.039) Loss 3.9763 (3.7559) Acc@1 0.000% (0.000%)
[11/29 14:36:59] modelnet40_eval INFO: Test: [30/155] Time 0.986 (1.040) Loss 3.6495 (3.7556) Acc@1 0.000% (0.000%)
[11/29 14:37:10] modelnet40_eval INFO: Test: [40/155] Time 1.209 (1.040) Loss 4.2321 (3.7570) Acc@1 0.000% (0.000%)
[11/29 14:37:21] modelnet40_eval INFO: Test: [50/155] Time 0.933 (1.040) Loss 2.7845 (3.7523) Acc@1 75.000% (6.250%)
[11/29 14:37:32] modelnet40_eval INFO: Test: [60/155] Time 1.171 (1.041) Loss 3.6392 (3.7490) Acc@1 12.500% (7.582%)
[11/29 14:37:42] modelnet40_eval INFO: Test: [70/155] Time 0.942 (1.041) Loss 3.8255 (3.7495) Acc@1 0.000% (6.514%)
[11/29 14:37:53] modelnet40_eval INFO: Test: [80/155] Time 1.103 (1.042) Loss 3.5287 (3.7477) Acc@1 0.000% (6.096%)
[11/29 14:38:03] modelnet40_eval INFO: Test: [90/155] Time 1.008 (1.042) Loss 3.8621 (3.7487) Acc@1 0.000% (5.495%)
[11/29 14:38:14] modelnet40_eval INFO: Test: [100/155] Time 1.002 (1.043) Loss 3.6615 (3.7489) Acc@1 0.000% (4.950%)
[11/29 14:38:25] modelnet40_eval INFO: Test: [110/155] Time 1.145 (1.043) Loss 3.7387 (3.7459) Acc@1 0.000% (4.899%)
[11/29 14:38:36] modelnet40_eval INFO: Test: [120/155] Time 1.161 (1.043) Loss 3.6656 (3.7459) Acc@1 0.000% (4.494%)
[11/29 14:38:46] modelnet40_eval INFO: Test: [130/155] Time 1.067 (1.043) Loss 3.9450 (3.7475) Acc@1 0.000% (4.151%)
[11/29 14:38:56] modelnet40_eval INFO: Test: [140/155] Time 0.956 (1.043) Loss 4.0510 (3.7452) Acc@1 0.000% (3.945%)
[11/29 14:39:07] modelnet40_eval INFO: Test: [150/155] Time 1.051 (1.044) Loss 4.3686 (3.7517) Acc@1 0.000% (3.684%)
[11/29 14:39:11] modelnet40_eval INFO: * Acc@1 3.606%
[11/29 14:39:11] modelnet40_eval INFO: * Vote4 Acc@1 3.890%
[11/29 14:39:13] modelnet40_eval INFO: Test: [0/155] Time 2.532 (1.045) Loss 4.0175 (3.7530) Acc@1 0.000% (0.000%)
[11/29 14:39:24] modelnet40_eval INFO: Test: [10/155] Time 1.107 (1.045) Loss 3.7895 (3.7543) Acc@1 0.000% (0.000%)
[11/29 14:39:35] modelnet40_eval INFO: Test: [20/155] Time 1.217 (1.046) Loss 3.9840 (3.7553) Acc@1 0.000% (0.000%)
[11/29 14:39:46] modelnet40_eval INFO: Test: [30/155] Time 1.033 (1.046) Loss 3.6501 (3.7550) Acc@1 0.000% (0.000%)
[11/29 14:39:56] modelnet40_eval INFO: Test: [40/155] Time 0.967 (1.046) Loss 4.2784 (3.7561) Acc@1 0.000% (0.000%)
[11/29 14:40:07] modelnet40_eval INFO: Test: [50/155] Time 0.979 (1.046) Loss 2.7975 (3.7524) Acc@1 56.250% (5.760%)
[11/29 14:40:16] modelnet40_eval INFO: Test: [60/155] Time 0.748 (1.045) Loss 3.6368 (3.7493) Acc@1 12.500% (7.582%)
[11/29 14:40:25] modelnet40_eval INFO: Test: [70/155] Time 0.865 (1.043) Loss 3.8345 (3.7498) Acc@1 0.000% (6.514%)
[11/29 14:40:37] modelnet40_eval INFO: Test: [80/155] Time 1.562 (1.045) Loss 3.5329 (3.7482) Acc@1 0.000% (6.327%)
[11/29 14:40:48] modelnet40_eval INFO: Test: [90/155] Time 0.888 (1.046) Loss 3.8715 (3.7492) Acc@1 0.000% (5.632%)
[11/29 14:40:59] modelnet40_eval INFO: Test: [100/155] Time 1.173 (1.047) Loss 3.6670 (3.7493) Acc@1 0.000% (5.074%)
[11/29 14:41:12] modelnet40_eval INFO: Test: [110/155] Time 1.302 (1.049) Loss 3.7494 (3.7467) Acc@1 0.000% (4.842%)
[11/29 14:41:24] modelnet40_eval INFO: Test: [120/155] Time 1.062 (1.051) Loss 3.7491 (3.7466) Acc@1 0.000% (4.442%)
[11/29 14:41:33] modelnet40_eval INFO: Test: [130/155] Time 0.823 (1.049) Loss 4.0204 (3.7480) Acc@1 0.000% (4.103%)
[11/29 14:41:45] modelnet40_eval INFO: Test: [140/155] Time 1.304 (1.050) Loss 4.0211 (3.7463) Acc@1 0.000% (3.812%)
[11/29 14:41:58] modelnet40_eval INFO: Test: [150/155] Time 1.058 (1.053) Loss 4.3938 (3.7515) Acc@1 0.000% (3.560%)
[11/29 14:42:02] modelnet40_eval INFO: * Acc@1 3.485%
[11/29 14:42:02] modelnet40_eval INFO: * Vote5 Acc@1 3.930%
[11/29 14:42:05] modelnet40_eval INFO: Test: [0/155] Time 3.213 (1.055) Loss 3.9715 (3.7526) Acc@1 0.000% (0.000%)
[11/29 14:42:16] modelnet40_eval INFO: Test: [10/155] Time 1.184 (1.056) Loss 3.7984 (3.7535) Acc@1 0.000% (0.000%)
[11/29 14:42:27] modelnet40_eval INFO: Test: [20/155] Time 1.061 (1.056) Loss 4.0312 (3.7547) Acc@1 0.000% (0.000%)
[11/29 14:42:37] modelnet40_eval INFO: Test: [30/155] Time 0.991 (1.056) Loss 3.5954 (3.7543) Acc@1 0.000% (0.000%)
[11/29 14:42:48] modelnet40_eval INFO: Test: [40/155] Time 1.063 (1.056) Loss 4.3076 (3.7554) Acc@1 0.000% (0.000%)
[11/29 14:42:58] modelnet40_eval INFO: Test: [50/155] Time 1.079 (1.056) Loss 2.7333 (3.7522) Acc@1 75.000% (6.495%)
[11/29 14:43:09] modelnet40_eval INFO: Test: [60/155] Time 1.106 (1.056) Loss 3.6089 (3.7501) Acc@1 12.500% (7.787%)
[11/29 14:43:19] modelnet40_eval INFO: Test: [70/155] Time 0.992 (1.056) Loss 3.8443 (3.7505) Acc@1 0.000% (6.690%)
[11/29 14:43:30] modelnet40_eval INFO: Test: [80/155] Time 0.996 (1.056) Loss 3.5482 (3.7490) Acc@1 0.000% (6.173%)
[11/29 14:43:41] modelnet40_eval INFO: Test: [90/155] Time 1.055 (1.056) Loss 3.8434 (3.7499) Acc@1 0.000% (5.495%)
[11/29 14:43:51] modelnet40_eval INFO: Test: [100/155] Time 1.121 (1.056) Loss 3.6470 (3.7500) Acc@1 0.000% (4.950%)
[11/29 14:44:02] modelnet40_eval INFO: Test: [110/155] Time 1.174 (1.056) Loss 3.7180 (3.7476) Acc@1 0.000% (4.842%)
[11/29 14:44:12] modelnet40_eval INFO: Test: [120/155] Time 1.036 (1.056) Loss 3.6894 (3.7476) Acc@1 0.000% (4.442%)
[11/29 14:44:23] modelnet40_eval INFO: Test: [130/155] Time 1.149 (1.056) Loss 4.0758 (3.7487) Acc@1 0.000% (4.103%)
[11/29 14:44:34] modelnet40_eval INFO: Test: [140/155] Time 1.118 (1.056) Loss 4.0272 (3.7470) Acc@1 0.000% (3.856%)
[11/29 14:44:45] modelnet40_eval INFO: Test: [150/155] Time 0.970 (1.057) Loss 4.3587 (3.7517) Acc@1 0.000% (3.601%)
[11/29 14:44:49] modelnet40_eval INFO: * Acc@1 3.525%
[11/29 14:44:49] modelnet40_eval INFO: * Vote6 Acc@1 3.849%
[11/29 14:44:51] modelnet40_eval INFO: Test: [0/155] Time 2.593 (1.057) Loss 4.0289 (3.7526) Acc@1 0.000% (0.000%)
[11/29 14:45:02] modelnet40_eval INFO: Test: [10/155] Time 1.182 (1.058) Loss 3.7716 (3.7534) Acc@1 0.000% (0.568%)
[11/29 14:45:12] modelnet40_eval INFO: Test: [20/155] Time 1.012 (1.058) Loss 3.9894 (3.7542) Acc@1 0.000% (0.298%)
[11/29 14:45:23] modelnet40_eval INFO: Test: [30/155] Time 1.071 (1.058) Loss 3.6501 (3.7540) Acc@1 0.000% (0.202%)
[11/29 14:45:33] modelnet40_eval INFO: Test: [40/155] Time 1.060 (1.058) Loss 4.3594 (3.7550) Acc@1 0.000% (0.152%)
[11/29 14:45:44] modelnet40_eval INFO: Test: [50/155] Time 0.974 (1.058) Loss 2.7839 (3.7524) Acc@1 81.250% (6.127%)
[11/29 14:45:54] modelnet40_eval INFO: Test: [60/155] Time 0.930 (1.057) Loss 3.6214 (3.7503) Acc@1 12.500% (7.582%)
[11/29 14:46:05] modelnet40_eval INFO: Test: [70/155] Time 1.096 (1.057) Loss 3.8087 (3.7506) Acc@1 0.000% (6.514%)
[11/29 14:46:16] modelnet40_eval INFO: Test: [80/155] Time 1.296 (1.057) Loss 3.4563 (3.7495) Acc@1 6.250% (6.019%)
[11/29 14:46:26] modelnet40_eval INFO: Test: [90/155] Time 1.184 (1.058) Loss 3.8604 (3.7502) Acc@1 0.000% (5.357%)
[11/29 14:46:37] modelnet40_eval INFO: Test: [100/155] Time 1.098 (1.057) Loss 3.6172 (3.7502) Acc@1 0.000% (4.827%)
[11/29 14:46:47] modelnet40_eval INFO: Test: [110/155] Time 1.039 (1.057) Loss 3.7107 (3.7481) Acc@1 0.000% (4.673%)
[11/29 14:46:58] modelnet40_eval INFO: Test: [120/155] Time 0.946 (1.057) Loss 3.6744 (3.7481) Acc@1 0.000% (4.287%)
[11/29 14:47:08] modelnet40_eval INFO: Test: [130/155] Time 1.033 (1.057) Loss 3.8788 (3.7488) Acc@1 0.000% (3.960%)
[11/29 14:47:19] modelnet40_eval INFO: Test: [140/155] Time 1.138 (1.057) Loss 4.0242 (3.7475) Acc@1 0.000% (3.679%)
[11/29 14:47:29] modelnet40_eval INFO: Test: [150/155] Time 0.968 (1.057) Loss 4.4955 (3.7516) Acc@1 0.000% (3.435%)
[11/29 14:47:33] modelnet40_eval INFO: * Acc@1 3.363%
[11/29 14:47:33] modelnet40_eval INFO: * Vote7 Acc@1 3.809%
[11/29 14:47:36] modelnet40_eval INFO: Test: [0/155] Time 2.357 (1.058) Loss 3.9977 (3.7524) Acc@1 0.000% (0.000%)
[11/29 14:47:46] modelnet40_eval INFO: Test: [10/155] Time 1.186 (1.058) Loss 3.7635 (3.7531) Acc@1 0.000% (0.000%)
[11/29 14:47:56] modelnet40_eval INFO: Test: [20/155] Time 1.049 (1.058) Loss 3.9756 (3.7537) Acc@1 0.000% (0.000%)
[11/29 14:48:07] modelnet40_eval INFO: Test: [30/155] Time 1.118 (1.058) Loss 3.6174 (3.7533) Acc@1 0.000% (0.000%)
[11/29 14:48:18] modelnet40_eval INFO: Test: [40/155] Time 0.936 (1.058) Loss 4.2586 (3.7540) Acc@1 0.000% (0.000%)
[11/29 14:48:29] modelnet40_eval INFO: Test: [50/155] Time 1.249 (1.058) Loss 2.7986 (3.7516) Acc@1 81.250% (6.618%)
[11/29 14:48:40] modelnet40_eval INFO: Test: [60/155] Time 1.045 (1.058) Loss 3.6148 (3.7500) Acc@1 12.500% (7.992%)
[11/29 14:48:50] modelnet40_eval INFO: Test: [70/155] Time 0.935 (1.058) Loss 3.8245 (3.7503) Acc@1 0.000% (6.866%)
[11/29 14:49:01] modelnet40_eval INFO: Test: [80/155] Time 1.050 (1.058) Loss 3.5344 (3.7494) Acc@1 0.000% (6.096%)
[11/29 14:49:11] modelnet40_eval INFO: Test: [90/155] Time 1.072 (1.058) Loss 3.8560 (3.7501) Acc@1 0.000% (5.426%)
[11/29 14:49:22] modelnet40_eval INFO: Test: [100/155] Time 1.159 (1.058) Loss 3.6145 (3.7500) Acc@1 0.000% (4.889%)
[11/29 14:49:32] modelnet40_eval INFO: Test: [110/155] Time 1.093 (1.058) Loss 3.6729 (3.7483) Acc@1 0.000% (4.617%)
[11/29 14:49:43] modelnet40_eval INFO: Test: [120/155] Time 0.978 (1.058) Loss 3.6947 (3.7483) Acc@1 0.000% (4.236%)
[11/29 14:49:53] modelnet40_eval INFO: Test: [130/155] Time 1.012 (1.058) Loss 3.8309 (3.7491) Acc@1 0.000% (3.912%)
[11/29 14:50:04] modelnet40_eval INFO: Test: [140/155] Time 1.066 (1.058) Loss 4.0289 (3.7480) Acc@1 0.000% (3.635%)
[11/29 14:50:14] modelnet40_eval INFO: Test: [150/155] Time 1.081 (1.058) Loss 4.3691 (3.7515) Acc@1 0.000% (3.394%)
[11/29 14:50:18] modelnet40_eval INFO: * Acc@1 3.323%
[11/29 14:50:18] modelnet40_eval INFO: * Vote8 Acc@1 3.849%
[11/29 14:50:21] modelnet40_eval INFO: Test: [0/155] Time 2.526 (1.059) Loss 4.0171 (3.7523) Acc@1 0.000% (0.000%)
[11/29 14:50:31] modelnet40_eval INFO: Test: [10/155] Time 1.065 (1.058) Loss 3.7515 (3.7529) Acc@1 0.000% (0.000%)
[11/29 14:50:41] modelnet40_eval INFO: Test: [20/155] Time 0.959 (1.058) Loss 3.9989 (3.7534) Acc@1 0.000% (0.000%)
[11/29 14:50:52] modelnet40_eval INFO: Test: [30/155] Time 1.050 (1.058) Loss 3.6395 (3.7531) Acc@1 0.000% (0.000%)
[11/29 14:51:03] modelnet40_eval INFO: Test: [40/155] Time 0.954 (1.058) Loss 4.2843 (3.7539) Acc@1 0.000% (0.000%)
[11/29 14:51:13] modelnet40_eval INFO: Test: [50/155] Time 1.034 (1.059) Loss 2.7649 (3.7518) Acc@1 87.500% (6.005%)
[11/29 14:51:24] modelnet40_eval INFO: Test: [60/155] Time 1.066 (1.059) Loss 3.6225 (3.7503) Acc@1 12.500% (7.172%)
[11/29 14:51:35] modelnet40_eval INFO: Test: [70/155] Time 1.119 (1.059) Loss 3.8787 (3.7506) Acc@1 0.000% (6.162%)
[11/29 14:51:45] modelnet40_eval INFO: Test: [80/155] Time 1.106 (1.059) Loss 3.5740 (3.7497) Acc@1 0.000% (5.787%)
[11/29 14:51:56] modelnet40_eval INFO: Test: [90/155] Time 0.973 (1.059) Loss 3.8728 (3.7503) Acc@1 0.000% (5.151%)
[11/29 14:52:07] modelnet40_eval INFO: Test: [100/155] Time 1.152 (1.059) Loss 3.6249 (3.7503) Acc@1 0.000% (4.641%)
[11/29 14:52:18] modelnet40_eval INFO: Test: [110/155] Time 0.924 (1.059) Loss 3.7242 (3.7488) Acc@1 0.000% (4.392%)
[11/29 14:52:29] modelnet40_eval INFO: Test: [120/155] Time 1.165 (1.059) Loss 3.7197 (3.7487) Acc@1 0.000% (4.029%)
[11/29 14:52:39] modelnet40_eval INFO: Test: [130/155] Time 1.071 (1.059) Loss 4.0915 (3.7496) Acc@1 0.000% (3.721%)
[11/29 14:52:50] modelnet40_eval INFO: Test: [140/155] Time 1.052 (1.059) Loss 4.0544 (3.7484) Acc@1 0.000% (3.457%)
[11/29 14:53:00] modelnet40_eval INFO: Test: [150/155] Time 1.138 (1.059) Loss 4.3561 (3.7516) Acc@1 0.000% (3.228%)
[11/29 14:53:04] modelnet40_eval INFO: * Acc@1 3.160%
[11/29 14:53:04] modelnet40_eval INFO: * Vote9 Acc@1 3.809%
It seems that the performance is not very good, can you help me solve it?
My calling command is python -m torch.distributed.launch --master_port 1234 --nproc_per_node 1 function/evaluate_modelnet_dist.py --cfg cfgs/modelnet/pospool_sin_cos_avg.yaml --load_path weights/pospool_sin_cos_avg.pth
THX!!
The text was updated successfully, but these errors were encountered: