Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Modelnet40 eval #23

Open
missbook520 opened this issue Nov 29, 2020 · 2 comments
Open

Modelnet40 eval #23

missbook520 opened this issue Nov 29, 2020 · 2 comments

Comments

@missbook520
Copy link

Hello, thank you very much for your work!
But I used the pospool_sin_cos_avg pre-trained model you provided to predict modelnet40, and the results are as follows:
[11/29 13:58:30] modelnet40_eval INFO: Full config saved to log_eval/modelnet40/pospool_sin_cos_avg_1606629510/config.json
[11/29 14:25:04] modelnet40_eval INFO: length of testing dataset: 2468
[11/29 14:25:41] modelnet40_eval INFO: => loading checkpoint 'weights/pospool_sin_cos_avg.pth'
[11/29 14:25:42] modelnet40_eval INFO: => loaded successfully 'weights/pospool_sin_cos_avg.pth' (epoch 270)
[11/29 14:25:43] modelnet40_eval INFO: ==> checking loaded ckpt
[11/29 14:25:49] modelnet40_eval INFO: Test: [0/155] Time 6.572 (6.572) Loss 3.9528 (3.9528) Acc@1 0.000% (0.000%)
[11/29 14:25:58] modelnet40_eval INFO: Test: [10/155] Time 0.912 (1.387) Loss 3.8535 (3.8445) Acc@1 0.000% (0.000%)
[11/29 14:26:06] modelnet40_eval INFO: Test: [20/155] Time 0.738 (1.133) Loss 3.9266 (3.8434) Acc@1 0.000% (0.000%)
[11/29 14:26:15] modelnet40_eval INFO: Test: [30/155] Time 0.819 (1.049) Loss 3.6361 (3.8057) Acc@1 0.000% (0.000%)
[11/29 14:26:24] modelnet40_eval INFO: Test: [40/155] Time 0.923 (1.007) Loss 4.3326 (3.8251) Acc@1 0.000% (0.000%)
[11/29 14:26:32] modelnet40_eval INFO: Test: [50/155] Time 0.875 (0.977) Loss 2.8819 (3.7561) Acc@1 56.250% (5.760%)
[11/29 14:26:42] modelnet40_eval INFO: Test: [60/155] Time 0.936 (0.968) Loss 3.6222 (3.7104) Acc@1 12.500% (7.480%)
[11/29 14:26:50] modelnet40_eval INFO: Test: [70/155] Time 0.844 (0.955) Loss 3.8727 (3.7256) Acc@1 0.000% (6.426%)
[11/29 14:26:58] modelnet40_eval INFO: Test: [80/155] Time 0.809 (0.935) Loss 3.5683 (3.7146) Acc@1 0.000% (5.864%)
[11/29 14:27:07] modelnet40_eval INFO: Test: [90/155] Time 0.954 (0.931) Loss 3.8353 (3.7245) Acc@1 0.000% (5.220%)
[11/29 14:27:16] modelnet40_eval INFO: Test: [100/155] Time 0.737 (0.928) Loss 3.6307 (3.7281) Acc@1 0.000% (4.703%)
[11/29 14:27:24] modelnet40_eval INFO: Test: [110/155] Time 0.922 (0.918) Loss 3.7987 (3.7046) Acc@1 0.000% (4.617%)
[11/29 14:27:33] modelnet40_eval INFO: Test: [120/155] Time 0.924 (0.915) Loss 3.7480 (3.7105) Acc@1 0.000% (4.236%)
[11/29 14:27:43] modelnet40_eval INFO: Test: [130/155] Time 1.049 (0.917) Loss 3.9255 (3.7225) Acc@1 0.000% (3.912%)
[11/29 14:27:52] modelnet40_eval INFO: Test: [140/155] Time 0.821 (0.919) Loss 4.0577 (3.7144) Acc@1 0.000% (3.635%)
[11/29 14:28:01] modelnet40_eval INFO: Test: [150/155] Time 0.955 (0.914) Loss 4.4066 (3.7499) Acc@1 0.000% (3.394%)
[11/29 14:28:04] modelnet40_eval INFO: * Acc@1 3.323%
[11/29 14:28:04] modelnet40_eval INFO: * Vote0 Acc@1 3.323%
[11/29 14:28:07] modelnet40_eval INFO: Test: [0/155] Time 3.408 (0.929) Loss 4.0015 (3.7566) Acc@1 0.000% (0.000%)
[11/29 14:28:20] modelnet40_eval INFO: Test: [10/155] Time 1.210 (0.948) Loss 3.8147 (3.7612) Acc@1 0.000% (0.000%)
[11/29 14:28:31] modelnet40_eval INFO: Test: [20/155] Time 1.014 (0.958) Loss 4.0274 (3.7657) Acc@1 0.000% (0.000%)
[11/29 14:28:42] modelnet40_eval INFO: Test: [30/155] Time 0.981 (0.964) Loss 3.6712 (3.7635) Acc@1 0.000% (0.000%)
[11/29 14:28:52] modelnet40_eval INFO: Test: [40/155] Time 1.137 (0.969) Loss 4.2934 (3.7681) Acc@1 0.000% (0.000%)
[11/29 14:29:03] modelnet40_eval INFO: Test: [50/155] Time 1.154 (0.972) Loss 2.7808 (3.7535) Acc@1 81.250% (6.740%)
[11/29 14:29:14] modelnet40_eval INFO: Test: [60/155] Time 0.986 (0.977) Loss 3.5801 (3.7426) Acc@1 12.500% (7.889%)
[11/29 14:29:24] modelnet40_eval INFO: Test: [70/155] Time 1.054 (0.981) Loss 3.8196 (3.7444) Acc@1 0.000% (6.778%)
[11/29 14:29:35] modelnet40_eval INFO: Test: [80/155] Time 1.089 (0.985) Loss 3.5128 (3.7382) Acc@1 0.000% (6.404%)
[11/29 14:29:45] modelnet40_eval INFO: Test: [90/155] Time 1.170 (0.987) Loss 3.8592 (3.7419) Acc@1 0.000% (5.769%)
[11/29 14:29:56] modelnet40_eval INFO: Test: [100/155] Time 1.064 (0.992) Loss 3.6984 (3.7430) Acc@1 0.000% (5.198%)
[11/29 14:30:07] modelnet40_eval INFO: Test: [110/155] Time 1.231 (0.993) Loss 3.7226 (3.7339) Acc@1 0.000% (4.955%)
[11/29 14:30:17] modelnet40_eval INFO: Test: [120/155] Time 1.026 (0.995) Loss 3.7505 (3.7345) Acc@1 0.000% (4.545%)
[11/29 14:30:28] modelnet40_eval INFO: Test: [130/155] Time 0.915 (0.998) Loss 3.9110 (3.7391) Acc@1 0.000% (4.198%)
[11/29 14:30:38] modelnet40_eval INFO: Test: [140/155] Time 0.968 (0.999) Loss 4.0316 (3.7338) Acc@1 0.000% (3.901%)
[11/29 14:30:49] modelnet40_eval INFO: Test: [150/155] Time 1.129 (1.003) Loss 4.4362 (3.7506) Acc@1 0.000% (3.642%)
[11/29 14:30:53] modelnet40_eval INFO: * Acc@1 3.566%
[11/29 14:30:53] modelnet40_eval INFO: * Vote1 Acc@1 3.606%
[11/29 14:30:56] modelnet40_eval INFO: Test: [0/155] Time 2.464 (1.006) Loss 3.9860 (3.7538) Acc@1 0.000% (0.000%)
[11/29 14:31:06] modelnet40_eval INFO: Test: [10/155] Time 1.089 (1.009) Loss 3.7555 (3.7566) Acc@1 0.000% (0.000%)
[11/29 14:31:17] modelnet40_eval INFO: Test: [20/155] Time 1.149 (1.011) Loss 3.9376 (3.7588) Acc@1 0.000% (0.000%)
[11/29 14:31:28] modelnet40_eval INFO: Test: [30/155] Time 1.099 (1.012) Loss 3.6077 (3.7575) Acc@1 6.250% (0.202%)
[11/29 14:31:38] modelnet40_eval INFO: Test: [40/155] Time 1.014 (1.014) Loss 4.2509 (3.7600) Acc@1 0.000% (0.152%)
[11/29 14:31:49] modelnet40_eval INFO: Test: [50/155] Time 1.146 (1.015) Loss 2.8229 (3.7521) Acc@1 50.000% (6.250%)
[11/29 14:32:00] modelnet40_eval INFO: Test: [60/155] Time 1.005 (1.017) Loss 3.6266 (3.7457) Acc@1 12.500% (7.582%)
[11/29 14:32:11] modelnet40_eval INFO: Test: [70/155] Time 1.010 (1.019) Loss 3.8605 (3.7469) Acc@1 0.000% (6.514%)
[11/29 14:32:21] modelnet40_eval INFO: Test: [80/155] Time 1.179 (1.019) Loss 3.5332 (3.7433) Acc@1 0.000% (6.096%)
[11/29 14:32:32] modelnet40_eval INFO: Test: [90/155] Time 1.017 (1.020) Loss 3.8547 (3.7454) Acc@1 0.000% (5.426%)
[11/29 14:32:42] modelnet40_eval INFO: Test: [100/155] Time 0.947 (1.021) Loss 3.6940 (3.7461) Acc@1 0.000% (4.889%)
[11/29 14:32:53] modelnet40_eval INFO: Test: [110/155] Time 0.944 (1.022) Loss 3.7454 (3.7411) Acc@1 0.000% (4.673%)
[11/29 14:33:03] modelnet40_eval INFO: Test: [120/155] Time 1.006 (1.023) Loss 3.7019 (3.7411) Acc@1 0.000% (4.287%)
[11/29 14:33:14] modelnet40_eval INFO: Test: [130/155] Time 0.940 (1.023) Loss 4.0530 (3.7445) Acc@1 0.000% (3.960%)
[11/29 14:33:24] modelnet40_eval INFO: Test: [140/155] Time 1.174 (1.024) Loss 4.0547 (3.7407) Acc@1 0.000% (3.723%)
[11/29 14:33:35] modelnet40_eval INFO: Test: [150/155] Time 1.107 (1.025) Loss 4.4534 (3.7519) Acc@1 0.000% (3.477%)
[11/29 14:33:39] modelnet40_eval INFO: * Acc@1 3.404%
[11/29 14:33:39] modelnet40_eval INFO: * Vote2 Acc@1 3.849%
[11/29 14:33:41] modelnet40_eval INFO: Test: [0/155] Time 2.628 (1.028) Loss 3.9853 (3.7541) Acc@1 0.000% (0.000%)
[11/29 14:33:52] modelnet40_eval INFO: Test: [10/155] Time 1.153 (1.028) Loss 3.7854 (3.7556) Acc@1 0.000% (0.000%)
[11/29 14:34:03] modelnet40_eval INFO: Test: [20/155] Time 0.946 (1.029) Loss 4.0336 (3.7574) Acc@1 0.000% (0.000%)
[11/29 14:34:13] modelnet40_eval INFO: Test: [30/155] Time 1.095 (1.030) Loss 3.6432 (3.7567) Acc@1 0.000% (0.000%)
[11/29 14:34:24] modelnet40_eval INFO: Test: [40/155] Time 1.017 (1.031) Loss 4.3070 (3.7586) Acc@1 0.000% (0.000%)
[11/29 14:34:35] modelnet40_eval INFO: Test: [50/155] Time 0.964 (1.031) Loss 2.8068 (3.7530) Acc@1 62.500% (6.373%)
[11/29 14:34:45] modelnet40_eval INFO: Test: [60/155] Time 1.162 (1.032) Loss 3.6481 (3.7488) Acc@1 6.250% (7.787%)
[11/29 14:34:56] modelnet40_eval INFO: Test: [70/155] Time 1.064 (1.032) Loss 3.8415 (3.7494) Acc@1 0.000% (6.690%)
[11/29 14:35:07] modelnet40_eval INFO: Test: [80/155] Time 1.031 (1.033) Loss 3.5724 (3.7470) Acc@1 0.000% (6.250%)
[11/29 14:35:17] modelnet40_eval INFO: Test: [90/155] Time 1.100 (1.034) Loss 3.8922 (3.7488) Acc@1 0.000% (5.563%)
[11/29 14:35:28] modelnet40_eval INFO: Test: [100/155] Time 1.120 (1.034) Loss 3.6246 (3.7488) Acc@1 0.000% (5.012%)
[11/29 14:35:38] modelnet40_eval INFO: Test: [110/155] Time 0.994 (1.034) Loss 3.7005 (3.7446) Acc@1 0.000% (4.730%)
[11/29 14:35:49] modelnet40_eval INFO: Test: [120/155] Time 1.144 (1.035) Loss 3.6256 (3.7444) Acc@1 0.000% (4.339%)
[11/29 14:36:00] modelnet40_eval INFO: Test: [130/155] Time 1.052 (1.035) Loss 3.9319 (3.7460) Acc@1 0.000% (4.008%)
[11/29 14:36:10] modelnet40_eval INFO: Test: [140/155] Time 0.971 (1.036) Loss 4.0477 (3.7433) Acc@1 0.000% (3.723%)
[11/29 14:36:21] modelnet40_eval INFO: Test: [150/155] Time 1.064 (1.036) Loss 4.4978 (3.7514) Acc@1 0.000% (3.477%)
[11/29 14:36:25] modelnet40_eval INFO: * Acc@1 3.404%
[11/29 14:36:25] modelnet40_eval INFO: * Vote3 Acc@1 3.809%
[11/29 14:36:27] modelnet40_eval INFO: Test: [0/155] Time 2.517 (1.038) Loss 4.0088 (3.7531) Acc@1 0.000% (0.000%)
[11/29 14:36:38] modelnet40_eval INFO: Test: [10/155] Time 0.997 (1.039) Loss 3.7598 (3.7546) Acc@1 0.000% (0.000%)
[11/29 14:36:49] modelnet40_eval INFO: Test: [20/155] Time 1.153 (1.039) Loss 3.9763 (3.7559) Acc@1 0.000% (0.000%)
[11/29 14:36:59] modelnet40_eval INFO: Test: [30/155] Time 0.986 (1.040) Loss 3.6495 (3.7556) Acc@1 0.000% (0.000%)
[11/29 14:37:10] modelnet40_eval INFO: Test: [40/155] Time 1.209 (1.040) Loss 4.2321 (3.7570) Acc@1 0.000% (0.000%)
[11/29 14:37:21] modelnet40_eval INFO: Test: [50/155] Time 0.933 (1.040) Loss 2.7845 (3.7523) Acc@1 75.000% (6.250%)
[11/29 14:37:32] modelnet40_eval INFO: Test: [60/155] Time 1.171 (1.041) Loss 3.6392 (3.7490) Acc@1 12.500% (7.582%)
[11/29 14:37:42] modelnet40_eval INFO: Test: [70/155] Time 0.942 (1.041) Loss 3.8255 (3.7495) Acc@1 0.000% (6.514%)
[11/29 14:37:53] modelnet40_eval INFO: Test: [80/155] Time 1.103 (1.042) Loss 3.5287 (3.7477) Acc@1 0.000% (6.096%)
[11/29 14:38:03] modelnet40_eval INFO: Test: [90/155] Time 1.008 (1.042) Loss 3.8621 (3.7487) Acc@1 0.000% (5.495%)
[11/29 14:38:14] modelnet40_eval INFO: Test: [100/155] Time 1.002 (1.043) Loss 3.6615 (3.7489) Acc@1 0.000% (4.950%)
[11/29 14:38:25] modelnet40_eval INFO: Test: [110/155] Time 1.145 (1.043) Loss 3.7387 (3.7459) Acc@1 0.000% (4.899%)
[11/29 14:38:36] modelnet40_eval INFO: Test: [120/155] Time 1.161 (1.043) Loss 3.6656 (3.7459) Acc@1 0.000% (4.494%)
[11/29 14:38:46] modelnet40_eval INFO: Test: [130/155] Time 1.067 (1.043) Loss 3.9450 (3.7475) Acc@1 0.000% (4.151%)
[11/29 14:38:56] modelnet40_eval INFO: Test: [140/155] Time 0.956 (1.043) Loss 4.0510 (3.7452) Acc@1 0.000% (3.945%)
[11/29 14:39:07] modelnet40_eval INFO: Test: [150/155] Time 1.051 (1.044) Loss 4.3686 (3.7517) Acc@1 0.000% (3.684%)
[11/29 14:39:11] modelnet40_eval INFO: * Acc@1 3.606%
[11/29 14:39:11] modelnet40_eval INFO: * Vote4 Acc@1 3.890%
[11/29 14:39:13] modelnet40_eval INFO: Test: [0/155] Time 2.532 (1.045) Loss 4.0175 (3.7530) Acc@1 0.000% (0.000%)
[11/29 14:39:24] modelnet40_eval INFO: Test: [10/155] Time 1.107 (1.045) Loss 3.7895 (3.7543) Acc@1 0.000% (0.000%)
[11/29 14:39:35] modelnet40_eval INFO: Test: [20/155] Time 1.217 (1.046) Loss 3.9840 (3.7553) Acc@1 0.000% (0.000%)
[11/29 14:39:46] modelnet40_eval INFO: Test: [30/155] Time 1.033 (1.046) Loss 3.6501 (3.7550) Acc@1 0.000% (0.000%)
[11/29 14:39:56] modelnet40_eval INFO: Test: [40/155] Time 0.967 (1.046) Loss 4.2784 (3.7561) Acc@1 0.000% (0.000%)
[11/29 14:40:07] modelnet40_eval INFO: Test: [50/155] Time 0.979 (1.046) Loss 2.7975 (3.7524) Acc@1 56.250% (5.760%)
[11/29 14:40:16] modelnet40_eval INFO: Test: [60/155] Time 0.748 (1.045) Loss 3.6368 (3.7493) Acc@1 12.500% (7.582%)
[11/29 14:40:25] modelnet40_eval INFO: Test: [70/155] Time 0.865 (1.043) Loss 3.8345 (3.7498) Acc@1 0.000% (6.514%)
[11/29 14:40:37] modelnet40_eval INFO: Test: [80/155] Time 1.562 (1.045) Loss 3.5329 (3.7482) Acc@1 0.000% (6.327%)
[11/29 14:40:48] modelnet40_eval INFO: Test: [90/155] Time 0.888 (1.046) Loss 3.8715 (3.7492) Acc@1 0.000% (5.632%)
[11/29 14:40:59] modelnet40_eval INFO: Test: [100/155] Time 1.173 (1.047) Loss 3.6670 (3.7493) Acc@1 0.000% (5.074%)
[11/29 14:41:12] modelnet40_eval INFO: Test: [110/155] Time 1.302 (1.049) Loss 3.7494 (3.7467) Acc@1 0.000% (4.842%)
[11/29 14:41:24] modelnet40_eval INFO: Test: [120/155] Time 1.062 (1.051) Loss 3.7491 (3.7466) Acc@1 0.000% (4.442%)
[11/29 14:41:33] modelnet40_eval INFO: Test: [130/155] Time 0.823 (1.049) Loss 4.0204 (3.7480) Acc@1 0.000% (4.103%)
[11/29 14:41:45] modelnet40_eval INFO: Test: [140/155] Time 1.304 (1.050) Loss 4.0211 (3.7463) Acc@1 0.000% (3.812%)
[11/29 14:41:58] modelnet40_eval INFO: Test: [150/155] Time 1.058 (1.053) Loss 4.3938 (3.7515) Acc@1 0.000% (3.560%)
[11/29 14:42:02] modelnet40_eval INFO: * Acc@1 3.485%
[11/29 14:42:02] modelnet40_eval INFO: * Vote5 Acc@1 3.930%
[11/29 14:42:05] modelnet40_eval INFO: Test: [0/155] Time 3.213 (1.055) Loss 3.9715 (3.7526) Acc@1 0.000% (0.000%)
[11/29 14:42:16] modelnet40_eval INFO: Test: [10/155] Time 1.184 (1.056) Loss 3.7984 (3.7535) Acc@1 0.000% (0.000%)
[11/29 14:42:27] modelnet40_eval INFO: Test: [20/155] Time 1.061 (1.056) Loss 4.0312 (3.7547) Acc@1 0.000% (0.000%)
[11/29 14:42:37] modelnet40_eval INFO: Test: [30/155] Time 0.991 (1.056) Loss 3.5954 (3.7543) Acc@1 0.000% (0.000%)
[11/29 14:42:48] modelnet40_eval INFO: Test: [40/155] Time 1.063 (1.056) Loss 4.3076 (3.7554) Acc@1 0.000% (0.000%)
[11/29 14:42:58] modelnet40_eval INFO: Test: [50/155] Time 1.079 (1.056) Loss 2.7333 (3.7522) Acc@1 75.000% (6.495%)
[11/29 14:43:09] modelnet40_eval INFO: Test: [60/155] Time 1.106 (1.056) Loss 3.6089 (3.7501) Acc@1 12.500% (7.787%)
[11/29 14:43:19] modelnet40_eval INFO: Test: [70/155] Time 0.992 (1.056) Loss 3.8443 (3.7505) Acc@1 0.000% (6.690%)
[11/29 14:43:30] modelnet40_eval INFO: Test: [80/155] Time 0.996 (1.056) Loss 3.5482 (3.7490) Acc@1 0.000% (6.173%)
[11/29 14:43:41] modelnet40_eval INFO: Test: [90/155] Time 1.055 (1.056) Loss 3.8434 (3.7499) Acc@1 0.000% (5.495%)
[11/29 14:43:51] modelnet40_eval INFO: Test: [100/155] Time 1.121 (1.056) Loss 3.6470 (3.7500) Acc@1 0.000% (4.950%)
[11/29 14:44:02] modelnet40_eval INFO: Test: [110/155] Time 1.174 (1.056) Loss 3.7180 (3.7476) Acc@1 0.000% (4.842%)
[11/29 14:44:12] modelnet40_eval INFO: Test: [120/155] Time 1.036 (1.056) Loss 3.6894 (3.7476) Acc@1 0.000% (4.442%)
[11/29 14:44:23] modelnet40_eval INFO: Test: [130/155] Time 1.149 (1.056) Loss 4.0758 (3.7487) Acc@1 0.000% (4.103%)
[11/29 14:44:34] modelnet40_eval INFO: Test: [140/155] Time 1.118 (1.056) Loss 4.0272 (3.7470) Acc@1 0.000% (3.856%)
[11/29 14:44:45] modelnet40_eval INFO: Test: [150/155] Time 0.970 (1.057) Loss 4.3587 (3.7517) Acc@1 0.000% (3.601%)
[11/29 14:44:49] modelnet40_eval INFO: * Acc@1 3.525%
[11/29 14:44:49] modelnet40_eval INFO: * Vote6 Acc@1 3.849%
[11/29 14:44:51] modelnet40_eval INFO: Test: [0/155] Time 2.593 (1.057) Loss 4.0289 (3.7526) Acc@1 0.000% (0.000%)
[11/29 14:45:02] modelnet40_eval INFO: Test: [10/155] Time 1.182 (1.058) Loss 3.7716 (3.7534) Acc@1 0.000% (0.568%)
[11/29 14:45:12] modelnet40_eval INFO: Test: [20/155] Time 1.012 (1.058) Loss 3.9894 (3.7542) Acc@1 0.000% (0.298%)
[11/29 14:45:23] modelnet40_eval INFO: Test: [30/155] Time 1.071 (1.058) Loss 3.6501 (3.7540) Acc@1 0.000% (0.202%)
[11/29 14:45:33] modelnet40_eval INFO: Test: [40/155] Time 1.060 (1.058) Loss 4.3594 (3.7550) Acc@1 0.000% (0.152%)
[11/29 14:45:44] modelnet40_eval INFO: Test: [50/155] Time 0.974 (1.058) Loss 2.7839 (3.7524) Acc@1 81.250% (6.127%)
[11/29 14:45:54] modelnet40_eval INFO: Test: [60/155] Time 0.930 (1.057) Loss 3.6214 (3.7503) Acc@1 12.500% (7.582%)
[11/29 14:46:05] modelnet40_eval INFO: Test: [70/155] Time 1.096 (1.057) Loss 3.8087 (3.7506) Acc@1 0.000% (6.514%)
[11/29 14:46:16] modelnet40_eval INFO: Test: [80/155] Time 1.296 (1.057) Loss 3.4563 (3.7495) Acc@1 6.250% (6.019%)
[11/29 14:46:26] modelnet40_eval INFO: Test: [90/155] Time 1.184 (1.058) Loss 3.8604 (3.7502) Acc@1 0.000% (5.357%)
[11/29 14:46:37] modelnet40_eval INFO: Test: [100/155] Time 1.098 (1.057) Loss 3.6172 (3.7502) Acc@1 0.000% (4.827%)
[11/29 14:46:47] modelnet40_eval INFO: Test: [110/155] Time 1.039 (1.057) Loss 3.7107 (3.7481) Acc@1 0.000% (4.673%)
[11/29 14:46:58] modelnet40_eval INFO: Test: [120/155] Time 0.946 (1.057) Loss 3.6744 (3.7481) Acc@1 0.000% (4.287%)
[11/29 14:47:08] modelnet40_eval INFO: Test: [130/155] Time 1.033 (1.057) Loss 3.8788 (3.7488) Acc@1 0.000% (3.960%)
[11/29 14:47:19] modelnet40_eval INFO: Test: [140/155] Time 1.138 (1.057) Loss 4.0242 (3.7475) Acc@1 0.000% (3.679%)
[11/29 14:47:29] modelnet40_eval INFO: Test: [150/155] Time 0.968 (1.057) Loss 4.4955 (3.7516) Acc@1 0.000% (3.435%)
[11/29 14:47:33] modelnet40_eval INFO: * Acc@1 3.363%
[11/29 14:47:33] modelnet40_eval INFO: * Vote7 Acc@1 3.809%
[11/29 14:47:36] modelnet40_eval INFO: Test: [0/155] Time 2.357 (1.058) Loss 3.9977 (3.7524) Acc@1 0.000% (0.000%)
[11/29 14:47:46] modelnet40_eval INFO: Test: [10/155] Time 1.186 (1.058) Loss 3.7635 (3.7531) Acc@1 0.000% (0.000%)
[11/29 14:47:56] modelnet40_eval INFO: Test: [20/155] Time 1.049 (1.058) Loss 3.9756 (3.7537) Acc@1 0.000% (0.000%)
[11/29 14:48:07] modelnet40_eval INFO: Test: [30/155] Time 1.118 (1.058) Loss 3.6174 (3.7533) Acc@1 0.000% (0.000%)
[11/29 14:48:18] modelnet40_eval INFO: Test: [40/155] Time 0.936 (1.058) Loss 4.2586 (3.7540) Acc@1 0.000% (0.000%)
[11/29 14:48:29] modelnet40_eval INFO: Test: [50/155] Time 1.249 (1.058) Loss 2.7986 (3.7516) Acc@1 81.250% (6.618%)
[11/29 14:48:40] modelnet40_eval INFO: Test: [60/155] Time 1.045 (1.058) Loss 3.6148 (3.7500) Acc@1 12.500% (7.992%)
[11/29 14:48:50] modelnet40_eval INFO: Test: [70/155] Time 0.935 (1.058) Loss 3.8245 (3.7503) Acc@1 0.000% (6.866%)
[11/29 14:49:01] modelnet40_eval INFO: Test: [80/155] Time 1.050 (1.058) Loss 3.5344 (3.7494) Acc@1 0.000% (6.096%)
[11/29 14:49:11] modelnet40_eval INFO: Test: [90/155] Time 1.072 (1.058) Loss 3.8560 (3.7501) Acc@1 0.000% (5.426%)
[11/29 14:49:22] modelnet40_eval INFO: Test: [100/155] Time 1.159 (1.058) Loss 3.6145 (3.7500) Acc@1 0.000% (4.889%)
[11/29 14:49:32] modelnet40_eval INFO: Test: [110/155] Time 1.093 (1.058) Loss 3.6729 (3.7483) Acc@1 0.000% (4.617%)
[11/29 14:49:43] modelnet40_eval INFO: Test: [120/155] Time 0.978 (1.058) Loss 3.6947 (3.7483) Acc@1 0.000% (4.236%)
[11/29 14:49:53] modelnet40_eval INFO: Test: [130/155] Time 1.012 (1.058) Loss 3.8309 (3.7491) Acc@1 0.000% (3.912%)
[11/29 14:50:04] modelnet40_eval INFO: Test: [140/155] Time 1.066 (1.058) Loss 4.0289 (3.7480) Acc@1 0.000% (3.635%)
[11/29 14:50:14] modelnet40_eval INFO: Test: [150/155] Time 1.081 (1.058) Loss 4.3691 (3.7515) Acc@1 0.000% (3.394%)
[11/29 14:50:18] modelnet40_eval INFO: * Acc@1 3.323%
[11/29 14:50:18] modelnet40_eval INFO: * Vote8 Acc@1 3.849%
[11/29 14:50:21] modelnet40_eval INFO: Test: [0/155] Time 2.526 (1.059) Loss 4.0171 (3.7523) Acc@1 0.000% (0.000%)
[11/29 14:50:31] modelnet40_eval INFO: Test: [10/155] Time 1.065 (1.058) Loss 3.7515 (3.7529) Acc@1 0.000% (0.000%)
[11/29 14:50:41] modelnet40_eval INFO: Test: [20/155] Time 0.959 (1.058) Loss 3.9989 (3.7534) Acc@1 0.000% (0.000%)
[11/29 14:50:52] modelnet40_eval INFO: Test: [30/155] Time 1.050 (1.058) Loss 3.6395 (3.7531) Acc@1 0.000% (0.000%)
[11/29 14:51:03] modelnet40_eval INFO: Test: [40/155] Time 0.954 (1.058) Loss 4.2843 (3.7539) Acc@1 0.000% (0.000%)
[11/29 14:51:13] modelnet40_eval INFO: Test: [50/155] Time 1.034 (1.059) Loss 2.7649 (3.7518) Acc@1 87.500% (6.005%)
[11/29 14:51:24] modelnet40_eval INFO: Test: [60/155] Time 1.066 (1.059) Loss 3.6225 (3.7503) Acc@1 12.500% (7.172%)
[11/29 14:51:35] modelnet40_eval INFO: Test: [70/155] Time 1.119 (1.059) Loss 3.8787 (3.7506) Acc@1 0.000% (6.162%)
[11/29 14:51:45] modelnet40_eval INFO: Test: [80/155] Time 1.106 (1.059) Loss 3.5740 (3.7497) Acc@1 0.000% (5.787%)
[11/29 14:51:56] modelnet40_eval INFO: Test: [90/155] Time 0.973 (1.059) Loss 3.8728 (3.7503) Acc@1 0.000% (5.151%)
[11/29 14:52:07] modelnet40_eval INFO: Test: [100/155] Time 1.152 (1.059) Loss 3.6249 (3.7503) Acc@1 0.000% (4.641%)
[11/29 14:52:18] modelnet40_eval INFO: Test: [110/155] Time 0.924 (1.059) Loss 3.7242 (3.7488) Acc@1 0.000% (4.392%)
[11/29 14:52:29] modelnet40_eval INFO: Test: [120/155] Time 1.165 (1.059) Loss 3.7197 (3.7487) Acc@1 0.000% (4.029%)
[11/29 14:52:39] modelnet40_eval INFO: Test: [130/155] Time 1.071 (1.059) Loss 4.0915 (3.7496) Acc@1 0.000% (3.721%)
[11/29 14:52:50] modelnet40_eval INFO: Test: [140/155] Time 1.052 (1.059) Loss 4.0544 (3.7484) Acc@1 0.000% (3.457%)
[11/29 14:53:00] modelnet40_eval INFO: Test: [150/155] Time 1.138 (1.059) Loss 4.3561 (3.7516) Acc@1 0.000% (3.228%)
[11/29 14:53:04] modelnet40_eval INFO: * Acc@1 3.160%
[11/29 14:53:04] modelnet40_eval INFO: * Vote9 Acc@1 3.809%
It seems that the performance is not very good, can you help me solve it?
My calling command is python -m torch.distributed.launch --master_port 1234 --nproc_per_node 1 function/evaluate_modelnet_dist.py --cfg cfgs/modelnet/pospool_sin_cos_avg.yaml --load_path weights/pospool_sin_cos_avg.pth
THX!!

@zeliu98
Copy link
Owner

zeliu98 commented Dec 16, 2020

Hi @missbook520 ,
I'm sorry that the checkpoint provided here is not correspond to the latest code(we change all LeakyReLU to ReLU in the latest code), I'll re-train all models and update them soon. To use the current models, you can git checkout f388452b and then retry it.

Best,
Ze

@TaoHaozJ
Copy link

Hello, hasn't checkout been updated yet

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants