-
Notifications
You must be signed in to change notification settings - Fork 18
/
main.py
240 lines (213 loc) · 13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import warnings
warnings.filterwarnings("ignore")
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import os, argparse, shutil, random, imp
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import numpy as np
import torch, torchvision, time, datetime, copy
from sklearn.utils.class_weight import compute_class_weight
from copy import deepcopy
from utils.utils_fit import fitting, fitting_distill
from utils.utils_model import select_model
from utils import utils_aug
from utils.utils import save_model, plot_train_batch, WarmUpLR, show_config, setting_optimizer, check_batch_size, \
plot_log, update_opt, load_weights, get_channels, dict_to_PrettyTable, ModelEMA, select_device
from utils.utils_distill import *
from utils.utils_loss import *
torch.backends.cudnn.deterministic = True
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='resnet18', help='model name')
parser.add_argument('--pretrained', action="store_true", help='using pretrain weight')
parser.add_argument('--weight', type=str, default='', help='loading weight path')
parser.add_argument('--config', type=str, default='config/config.py', help='config path')
parser.add_argument('--device', type=str, default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--train_path', type=str, default=r'dataset/train', help='train data path')
parser.add_argument('--val_path', type=str, default=r'dataset/val', help='val data path')
parser.add_argument('--test_path', type=str, default=r'dataset/test', help='test data path')
parser.add_argument('--label_path', type=str, default=r'dataset/label.txt', help='label path')
parser.add_argument('--image_size', type=int, default=224, help='image size')
parser.add_argument('--image_channel', type=int, default=3, help='image channel')
parser.add_argument('--workers', type=int, default=4, help='dataloader workers')
parser.add_argument('--batch_size', type=int, default=64, help='batch size (-1 for autobatch)')
parser.add_argument('--epoch', type=int, default=100, help='epoch')
parser.add_argument('--save_path', type=str, default=r'runs/exp', help='save path for model and log')
parser.add_argument('--resume', action="store_true", help='resume from save_path traning')
# optimizer parameters
parser.add_argument('--loss', type=str, choices=['PolyLoss', 'CrossEntropyLoss', 'FocalLoss'],
default='CrossEntropyLoss', help='loss function')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'AdamW', 'RMSProp'], default='AdamW', help='optimizer')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--label_smoothing', type=float, default=0.1, help='label smoothing')
parser.add_argument('--class_balance', action="store_true", help='using class balance in loss')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight_decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum in optimizer')
parser.add_argument('--amp', action="store_true", help='using AMP(Automatic Mixed Precision)')
parser.add_argument('--warmup', action="store_true", help='using WarmUp LR')
parser.add_argument('--warmup_ratios', type=float, default=0.05,
help='warmup_epochs = int(warmup_ratios * epoch) if warmup=True')
parser.add_argument('--warmup_minlr', type=float, default=1e-6,
help='minimum lr in warmup(also as minimum lr in training)')
parser.add_argument('--metrice', type=str, choices=['loss', 'acc', 'mean_acc'], default='acc', help='best.pt save relu')
parser.add_argument('--patience', type=int, default=30, help='EarlyStopping patience (--metrice without improvement)')
# Data Processing parameters
parser.add_argument('--imagenet_meanstd', action="store_true", help='using ImageNet Mean and Std')
parser.add_argument('--mixup', type=str, choices=['mixup', 'cutmix', 'none'], default='none', help='MixUp Methods')
parser.add_argument('--Augment', type=str,
choices=['RandAugment', 'AutoAugment', 'TrivialAugmentWide', 'AugMix', 'none'], default='none',
help='Data Augment')
parser.add_argument('--test_tta', action="store_true", help='using TTA')
# Knowledge Distillation parameters
parser.add_argument('--kd', action="store_true", help='Knowledge Distillation')
parser.add_argument('--kd_ratio', type=float, default=0.7, help='Knowledge Distillation Loss ratio')
parser.add_argument('--kd_method', type=str, choices=['SoftTarget', 'MGD', 'SP', 'AT'], default='SoftTarget', help='Knowledge Distillation Method')
parser.add_argument('--teacher_path', type=str, default='', help='teacher model path')
# Tricks parameters
parser.add_argument('--rdrop', action="store_true", help='using R-Drop')
parser.add_argument('--ema', action="store_true", help='using EMA(Exponential Moving Average) Reference to YOLOV5')
opt = parser.parse_known_args()[0]
if opt.resume:
opt.resume = True
if not os.path.exists(os.path.join(opt.save_path, 'last.pt')):
raise Exception('last.pt not found. please check your --save_path folder and --resume parameters')
ckpt = torch.load(os.path.join(opt.save_path, 'last.pt'))
opt = ckpt['opt']
opt.resume = True
print('found checkpoint from {}, model type:{}\n{}'.format(opt.save_path, ckpt['model'].name, dict_to_PrettyTable(ckpt['best_metrice'], 'Best Metrice')))
else:
if os.path.exists(opt.save_path):
shutil.rmtree(opt.save_path)
os.makedirs(opt.save_path)
config = imp.load_source('config', opt.config).Config()
shutil.copy(__file__, os.path.join(opt.save_path, 'main.py'))
shutil.copy(opt.config, os.path.join(opt.save_path, 'config.py'))
opt = update_opt(opt, config._get_opt())
set_seed(opt.random_seed)
show_config(deepcopy(opt))
CLASS_NUM = len(os.listdir(opt.train_path))
DEVICE = select_device(opt.device, opt.batch_size)
train_transform, test_transform = utils_aug.get_dataprocessing(torchvision.datasets.ImageFolder(opt.train_path),
opt)
train_dataset = torchvision.datasets.ImageFolder(opt.train_path, transform=train_transform)
test_dataset = torchvision.datasets.ImageFolder(opt.val_path, transform=test_transform)
if opt.resume:
model = ckpt['model'].to(DEVICE).float()
else:
model = select_model(opt.model_name, CLASS_NUM, (opt.image_size, opt.image_size), opt.image_channel,
opt.pretrained)
model = load_weights(model, opt).to(DEVICE)
plot_train_batch(copy.deepcopy(train_dataset), opt)
batch_size = opt.batch_size if opt.batch_size != -1 else check_batch_size(model, opt.image_size, amp=opt.amp)
if opt.class_balance:
class_weight = np.sqrt(compute_class_weight('balanced', classes=np.unique(train_dataset.targets), y=train_dataset.targets))
else:
class_weight = np.ones_like(np.unique(train_dataset.targets))
print('class weight: {}'.format(class_weight))
train_dataset = torch.utils.data.DataLoader(train_dataset, batch_size, shuffle=True, num_workers=opt.workers)
test_dataset = torch.utils.data.DataLoader(test_dataset, max(batch_size // (10 if opt.test_tta else 1), 1),
shuffle=False, num_workers=(0 if opt.test_tta else opt.workers))
scaler = torch.cuda.amp.GradScaler(enabled=(opt.amp if torch.cuda.is_available() else False))
ema = ModelEMA(model) if opt.ema else None
optimizer = setting_optimizer(opt, model)
lr_scheduler = WarmUpLR(optimizer, opt)
if opt.resume:
optimizer.load_state_dict(ckpt['optimizer'])
lr_scheduler.load_state_dict(ckpt['lr_scheduler'])
loss = ckpt['loss'].to(DEVICE)
scaler.load_state_dict(ckpt['scaler'])
if opt.ema:
ema.ema = ckpt['ema'].to(DEVICE).float()
ema.updates = ckpt['updates']
else:
loss = eval(opt.loss)(label_smoothing=opt.label_smoothing,
weight=torch.from_numpy(class_weight).to(DEVICE).float())
if opt.rdrop:
loss = RDropLoss(loss)
return opt, model, ema, train_dataset, test_dataset, optimizer, scaler, lr_scheduler, loss, DEVICE, CLASS_NUM, (
ckpt['epoch'] if opt.resume else 0), (ckpt['best_metrice'] if opt.resume else None)
if __name__ == '__main__':
opt, model, ema, train_dataset, test_dataset, optimizer, scaler, lr_scheduler, loss, DEVICE, CLASS_NUM, begin_epoch, best_metrice = parse_opt()
if not opt.resume:
save_epoch = 0
with open(os.path.join(opt.save_path, 'train.log'), 'w+') as f:
if opt.kd:
f.write('epoch,lr,loss,kd_loss,acc,mean_acc,test_loss,test_acc,test_mean_acc')
else:
f.write('epoch,lr,loss,acc,mean_acc,test_loss,test_acc,test_mean_acc')
else:
save_epoch = torch.load(os.path.join(opt.save_path, 'last.pt'))['best_epoch']
if opt.kd:
if not os.path.exists(os.path.join(opt.teacher_path, 'best.pt')):
raise Exception('teacher best.pt not found. please check your --teacher_path folder')
teacher_ckpt = torch.load(os.path.join(opt.teacher_path, 'best.pt'))
teacher_model = teacher_ckpt['model'].float().to(DEVICE).eval()
print('found teacher checkpoint from {}, model type:{}\n{}'.format(opt.teacher_path, teacher_model.name, dict_to_PrettyTable(teacher_ckpt['best_metrice'], 'Best Metrice')))
if opt.resume:
kd_loss = torch.load(os.path.join(opt.save_path, 'last.pt'))['kd_loss'].to(DEVICE)
else:
if opt.kd_method == 'SoftTarget':
kd_loss = SoftTarget().to(DEVICE)
elif opt.kd_method == 'MGD':
kd_loss = MGD(get_channels(model, opt), get_channels(teacher_model, opt)).to(DEVICE)
optimizer.add_param_group({'params': kd_loss.parameters(), 'weight_decay': opt.weight_decay})
elif opt.kd_method == 'SP':
kd_loss = SP().to(DEVICE)
elif opt.kd_method == 'AT':
kd_loss = AT().to(DEVICE)
print('{} begin train!'.format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
for epoch in range(begin_epoch, opt.epoch):
if epoch > (save_epoch + opt.patience) and opt.patience != 0:
print('No Improve from {} to {}, EarlyStopping.'.format(save_epoch + 1, epoch))
break
begin = time.time()
if opt.kd:
metrice = fitting_distill(teacher_model, model, ema, loss, kd_loss, optimizer, train_dataset, test_dataset, CLASS_NUM, DEVICE, scaler, '{}/{}'.format(epoch + 1,opt.epoch), opt)
else:
metrice = fitting(model, ema, loss, optimizer, train_dataset, test_dataset, CLASS_NUM, DEVICE, scaler,'{}/{}'.format(epoch + 1, opt.epoch), opt)
with open(os.path.join(opt.save_path, 'train.log'), 'a+') as f:
f.write(
'\n{},{:.10f},{}'.format(epoch + 1, optimizer.param_groups[2]['lr'], metrice[1]))
n_lr = optimizer.param_groups[2]['lr']
lr_scheduler.step()
if best_metrice is None:
best_metrice = metrice[0]
else:
if eval('{} {} {}'.format(metrice[0]['test_{}'.format(opt.metrice)], '<' if opt.metrice == 'loss' else '>', best_metrice['test_{}'.format(opt.metrice)])):
best_metrice = metrice[0]
save_model(
os.path.join(opt.save_path, 'best.pt'),
**{
'model': (deepcopy(ema.ema).to('cpu').half() if opt.ema else deepcopy(model).to('cpu').half()),
'opt': opt,
'best_metrice': best_metrice,
}
)
save_epoch = epoch
save_model(
os.path.join(opt.save_path, 'last.pt'),
**{
'model': deepcopy(model).to('cpu').half(),
'ema': (deepcopy(ema.ema).to('cpu').half() if opt.ema else None),
'updates': (ema.updates if opt.ema else None),
'opt': opt,
'epoch': epoch + 1,
'optimizer' : optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'best_metrice': best_metrice,
'loss': deepcopy(loss).to('cpu'),
'kd_loss': (deepcopy(kd_loss).to('cpu') if opt.kd else None),
'scaler': scaler.state_dict(),
'best_epoch': save_epoch,
}
)
print(dict_to_PrettyTable(metrice[0], '{} epoch:{}/{}, best_epoch:{}, time:{:.2f}s, lr:{:.8f}'.format(
datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
epoch + 1, opt.epoch, save_epoch + 1, time.time() - begin, n_lr,
)))
plot_log(opt)