-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
200 lines (181 loc) · 7.52 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "pipeline.hpp"
using namespace std;
const char* clip_mode_name[] = {
"zeros_shot_image_classification",
"text_search_image",
};
typedef enum clip_mode {
ZEROS_SHOT_IMAGE_CLASSIFICATION = 0,
TEXT_SEARCH_IMAGE,
CLIP_MODE_COUNT
} clip_mode;
typedef struct text_search_img {
bool read_local_embeding = false;
bool save_embeding = true;
string save_path = "./embedings.bin";
string text;
string img_directory;
} text_search_img_params;
typedef struct zeros_shot_classification {
string img_path;
string label_path;
} zeros_shot_classification_params;
typedef struct clip_params {
ggml_type model_type = GGML_TYPE_Q8_0;
clip_mode mode = TEXT_SEARCH_IMAGE;
CLIPVersion version;
string model_path;
zeros_shot_classification_params classify_params;
text_search_img_params text_img_params;
} clip_params;
void print_help(int argc, char** argv) {
printf("Usage: %s [options]\n", argv[0]);
printf("\nOptions:\n");
printf(" -h, --help: Show this message and exit\n");
printf(" -m <path>, --model <path>: path to model\n");
printf(
" --model_version: the clip model version [openai_clip_vit_base_patch32,openai_clip_vit_large_pathc14, \
openai_clip_vit_large_patch14_336,openai_clip_vit_base_patch16]\n");
printf(" --mode: clip mode must be one of [zeros_shot_image_classification,text_search_image],default = text_search_image\n");
printf(" --model_type: clip model type choose from [f32,f16,q8_0],default = GGML_TYPE_Q8_0 \n");
printf(" --image_path <path>: path to an image file for zeros_shot_image_classify \n");
printf(" --label_path:txt file for zeros_shot_image_classification\n");
printf(" --text: the text for text_search_image\n");
printf(" --img_directory: the image directory for text_search_image\n");
}
bool params_parse(int argc, char** argv, clip_params& params) {
bool invalid_arg = false;
for (int i = 1; i < argc; i++) {
std::string arg = std::string(argv[i]);
if (arg == "-m" || arg == "--model") {
params.model_path = argv[++i];
} else if (arg == "--mode") {
const char* model_mode = argv[++i];
int mode_found = -1;
for (int d = 0; d < CLIP_MODE_COUNT; d++) {
if (!strcmp(model_mode, clip_mode_name[d])) {
mode_found = d;
}
}
if (mode_found == -1) {
fprintf(stderr,
"error: invalid mode %s, must be one of [zeros_shot_image_classify,text_search_image]\n",
model_mode);
exit(1);
}
params.mode = (clip_mode)mode_found;
} else if (arg == "--image_path") {
params.classify_params.img_path = argv[++i];
} else if (arg == "--model_type") {
string model_type = argv[++i];
if (model_type == "f32") {
params.model_type = GGML_TYPE_F32;
} else if (model_type == "f16") {
params.model_type = GGML_TYPE_F16;
} else if (model_type == "q8_0") {
params.model_type = GGML_TYPE_Q8_0;
} else {
fprintf(stderr, "error model type:%s\n", model_type.c_str());
exit(0);
}
} else if (arg == "--model_version") {
const char* model_version = argv[++i];
int version_found = -1;
for (int d = 0; d < VERSION_COUNT; d++) {
if (!strcmp(model_version, clip_version[d])) {
version_found = d;
}
}
if (version_found == -1) {
fprintf(stderr,
"error: invalid mode %s, must be one of [zeros_shot_image_classify,text_search_image]\n",
model_version);
exit(1);
}
params.version = (CLIPVersion)version_found;
} else if (arg == "--label_path") {
params.classify_params.label_path = argv[++i];
} else if (arg == "--text") {
params.text_img_params.text = argv[++i];
} else if (arg == "--img_directory") {
params.text_img_params.img_directory = argv[++i];
} else if (arg == "-h" || arg == "--help") {
print_help(argc, argv);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
print_help(argc, argv);
exit(1);
}
}
return true;
}
void print_result(string label, vector<pair<string, float>> scores) {
std::cout << "label:"<<label << std::endl;
for (auto& t : scores) {
std::cout << std::left << std::setw(70) << t.first << " :" << t.second << std::endl;
}
}
template <typename VisionModel, typename TextModel>
void run_example(clip_params params) {
ggml_type type = params.model_type;
CLIPVersion version = params.version;
clip_mode mode = params.mode;
string model_path = params.model_path;
ClipVisionParam vision_params(version);
ClipTextModelParam text_params(version);
std::unique_ptr<Pipeline<VisionModel, TextModel>> pipeline(new Pipeline<VisionModel, TextModel>(type, version, vision_params, text_params));
pipeline->model_load(model_path);
vector<std::pair<string, float>> scores;
if (params.mode == ZEROS_SHOT_IMAGE_CLASSIFICATION) {
string label_path = params.classify_params.label_path;
string img_path = params.classify_params.img_path;
vector<string> label_vec;
std::ifstream file(label_path);
if (file.is_open()) {
std::string line;
while (std::getline(file, line)) {
label_vec.push_back(line);
}
file.close();
} else {
fprintf(stderr, "fail to open file\n");
}
scores = pipeline->zeros_shot_image_classify(img_path, label_vec);
print_result(img_path, scores);
} else if (params.mode == TEXT_SEARCH_IMAGE) {
bool read_local_embeding = params.text_img_params.read_local_embeding;
bool save_embeding = params.text_img_params.save_embeding;
string save_path = params.text_img_params.save_path;
string text = params.text_img_params.text;
string img_directory = params.text_img_params.img_directory;
std::stringstream ss(text);
std::vector<std::string> text_vec;
std::string token;
while (std::getline(ss, token, ',')) {
text_vec.push_back(token);
}
vector<string> image_path = pipeline->find_image_path(img_directory);
for (int i = 0; i < text_vec.size(); i++) {
scores = pipeline->text_search_image(text_vec[i], image_path, read_local_embeding, save_embeding, save_path, 3);
read_local_embeding = true;
print_result(text_vec[i], scores);
}
}
}
int main(int argc, char** argv) {
clip_params params;
params_parse(argc, argv, params);
CLIPVersion version = params.version;
if (version == OFASYS_CHINESE_CLIP_VIT_HUGE_PATCH14 || version == OFASYS_CHINESE_CLIP_VIT_LARGE_PATCH14_336 ||
version == OFASYS_CHINESE_CLIP_VIT_BASE_PATCH16 || version == OFASYS_CHINESE_CLIP_VIT_LARGE_PATCH14) {
run_example<ClipVisionModel, ClipChineseTextModel>(params);
} else {
run_example<ClipVisionModel, ClipTextModel>(params);
}
return 0;
}