-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathFactor_Calculator.py
291 lines (245 loc) · 8.36 KB
/
Factor_Calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 19 15:59:46 2020
@author: yuba316
"""
import copy
import math
import numpy as np
import pandas as pd
from scipy.stats import rankdata
from pyfinance.ols import PandasRollingOLS
'''
stock = pd.read_csv(r"D:\work\back_test_system\DataBase\Stock\Stock.csv")
stock['trade_date'] = stock['trade_date'].apply(str)
factor = stock[stock['trade_date']>='20200101']
'''
#%%
def plus(factor,x,y,name):
if type(y)==int:
factor[name]=factor[x]+y
else:
factor[name]=factor[x]+factor[y]
return factor
def minus(factor,x,y,name):
if type(y)==int:
factor[name]=factor[x]-y
else:
factor[name]=factor[x]-factor[y]
return factor
def multiple(factor,x,y,name):
if type(y)==int:
factor[name]=factor[x]*y
else:
factor[name]=factor[x]*factor[y]
return factor
def divide(factor,x,y,name):
if type(y)==int:
factor[name]=factor[x]/y
else:
factor[name]=factor[x]/factor[y]
return factor
def log(factor,x,name,num=None):
if num!=None:
factor[name]=factor[x].apply(lambda x: math.log(x,num))
else:
factor[name]=np.log(factor[x])
return factor
def exp(factor,x,name,num=None):
if num!=None:
factor[name]=np.power(num,factor[x])
else:
factor[name]=np.exp(factor[x])
return factor
def sqrt(factor,x,name,num=None):
if num!=None:
factor[name]=np.power(factor[x],1/num)
else:
factor[name]=np.sqrt(factor[x])
return factor
def square(factor,x,name,num=None):
if num!=None:
factor[name]=np.power(factor[x],num)
else:
factor[name]=np.square(factor[x])
return factor
def reci(factor,x,name):
factor[name]=np.power(factor[x],-1)
return factor
def oppo(factor,x,name):
factor[name]=-1*factor[x]
return factor
def absl(factor,x,name):
factor[name]=abs(factor[x])
return factor
#%%
def TsMax(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).max()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def TsMin(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).min()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def TsMid(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).median()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def SMA(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).mean()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def WMA(factor,x,num,name):
day = np.arange(1,num+1,1)
temp = factor.groupby('ts_code')[x].rolling(num).apply(lambda x: (x*day/day.sum()).sum(),raw=True)
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def std(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).std()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def skew(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).skew()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def kurt(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).kurt()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def norm(factor,x,num,name):
gb = factor.groupby('ts_code')[x].rolling(num)
mean,std = gb.mean(),gb.std()
mean.index,std.index = mean.index.droplevel(),std.index.droplevel()
temp = (factor[x]-mean)/std
factor[name] = temp
return factor
def normMaxMin(factor,x,num,name):
gb = factor.groupby('ts_code')[x].rolling(num)
Min,Max = gb.min(),gb.max()
Min.index,Max.index = Min.index.droplevel(),Max.index.droplevel()
temp = (factor[x]-Min)/(Max-Min)
factor[name] = temp
return factor
def TsRank(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).apply(lambda x: rankdata(x)[-1],raw=True)
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def TsToMax(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).apply(lambda x: num-np.argmax(x)-1,raw=True)
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def TsToMin(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).apply(lambda x: num-np.argmin(x)-1,raw=True)
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def Corr(factor,x,y,num,name):
temp = factor.groupby('ts_code')[[x,y]].rolling(num).corr()
temp.index = temp.index.droplevel()
temp.index.names = ['index','key']
temp = temp.query('key==\''+x+'\'')[y]
temp.index = temp.index.droplevel('key')
factor[name] = temp
return factor
def Cov(factor,x,y,num,name):
temp = factor.groupby('ts_code')[[x,y]].rolling(num).cov()
temp.index = temp.index.droplevel()
temp.index.names = ['index','key']
temp = temp.query('key==\''+x+'\'')[y]
temp.index = temp.index.droplevel('key')
factor[name] = temp
return factor
def Sum(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).sum()
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def Prod(factor,x,num,name):
temp = factor.groupby('ts_code')[x].rolling(num).apply(lambda x: x.prod(),raw=True)
temp.index = temp.index.droplevel()
factor[name] = temp
return factor
def delay(factor,x,num,name):
temp = factor.groupby('ts_code')[x].shift(num)
factor[name] = temp
return factor
def delta(factor,x,num,name):
delay = factor.groupby('ts_code')[x].shift(num)
temp = factor[x]-delay
factor[name] = temp
return factor
def delta_pct(factor,x,num,name):
delay = factor.groupby('ts_code')[x].shift(num)
temp = (factor[x]-delay)/delay
factor[name] = temp
return factor
def RegAlpha(factor,x,y,num,name):
temp = copy.deepcopy(factor[['trade_date','ts_code',x,y]])
temp.sort_values(by=['ts_code','trade_date'],inplace=True)
res = PandasRollingOLS(temp[x],temp[y],num)
factor[name] = res.alpha
index = factor.groupby('ts_code').head(num-1).index
factor.loc[index,name] = np.nan
return factor
def RegBeta(factor,x,y,num,name):
temp = copy.deepcopy(factor[['trade_date','ts_code',x,y]])
temp.sort_values(by=['ts_code','trade_date'],inplace=True)
res = PandasRollingOLS(temp[x],temp[y],num)
factor[name] = res.beta
index = factor.groupby('ts_code').head(num-1).index
factor.loc[index,name] = np.nan
return factor
def RegResi(factor,x,y,num,name):
temp = copy.deepcopy(factor[['trade_date','ts_code',x,y]])
temp.sort_values(by=['ts_code','trade_date'],inplace=True)
res = PandasRollingOLS(temp[x],temp[y],num)
temp['alpha'],temp['beta'] = res.beta,res.beta
temp['resi'] = temp[y]-temp['alpha']-temp[x]*temp['beta']
factor[name] = temp['resi']
index = factor.groupby('ts_code').head(num-1).index
factor.loc[index,name] = np.nan
return factor
def compareMax(factor,x,y,name):
factor[name] = factor[[x,y]].max(axis=1)
return factor
def compareMin(factor,x,y,name):
factor[name] = factor[[x,y]].min(axis=1)
return factor
def compareIf(factor,z,x,y,name):
factor[name] = factor[x]*(factor[z]>0)+factor[y]*(factor[z]<=0)
return factor
#%%
def SecRank(factor,x,name):
temp = factor.groupby('trade_date')[x].rank(method='min',na_option='keep',ascending=True)
factor[name] = temp
return factor
def SecNorm(factor,x,name):
gb = factor.groupby('trade_date')[x]
temp = gb.apply(lambda x: (x-x.mean())/x.std())
factor[name] = temp
return factor
def SecNormMaxMin(factor,x,name):
gb = factor.groupby('trade_date')[x]
temp = gb.apply(lambda x: (x-x.min())/(x.max()-x.min()))
factor[name] = temp
return factor
def SecOne(factor,x,name):
gb = factor.groupby('trade_date')[x]
temp = gb.apply(lambda x: x/x.sum())
factor[name] = temp
return factor
def SecDeMean(factor,x,name):
gb = factor.groupby('trade_date')[x]
temp = gb.apply(lambda x: x-x.mean())
factor[name] = temp
return factor