title | tags | categories | keywords | description | cover | abbrlink | date | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
设计模式-05.03-行为型-状态&迭代器 |
|
|
状态模式,迭代器模式 |
看文章 |
877f4ef2 |
2021-08-02 08:51:58 -0700 |
- 从今天起,我们开始学习状态模式。在实际的软件开发中,状态模式并不是很常用,但是在能够用到的场景里,它可以发挥很大的作用。从这一点上来看,它有点像我们之前讲到的组合模式。
- 状态模式一般用来实现状态机,而状态机常用在游戏、工作流引擎等系统开发中。不过,状态机的实现方式有多种,除了状态模式,比较常用的还有分支逻辑法和查表法。今天,我们就详细讲讲这几种实现方式,并且对比一下它们的优劣和应用场景。
- 有限状态机,英文翻译是 Finite State Machine,缩写为 FSM,简称为状态机。状态机有 3 个组成部分:状态(State)、事件(Event)、动作(Action)。其中,事件也称为转移条件(Transition Condition)。事件触发状态的转移及动作的执行。不过,动作不是必须的,也可能只转移状态,不执行任何动作。
- 对于刚刚给出的状态机的定义,我结合一个具体的例子,来进一步解释一下。
- “超级马里奥”游戏不知道你玩过没有?在游戏中,马里奥可以变身为多种形态,比如小马里奥(Small Mario)、超级马里奥(Super Mario)、火焰马里奥(Fire Mario)、斗篷马里奥(Cape Mario)等等。在不同的游戏情节下,各个形态会互相转化,并相应的增减积分。比如,初始形态是小马里奥,吃了蘑菇之后就会变成超级马里奥,并且增加 100 积分。
- 实际上,马里奥形态的转变就是一个状态机。其中,马里奥的不同形态就是状态机中的“状态”,游戏情节(比如吃了蘑菇)就是状态机中的“事件”,加减积分就是状态机中的“动作”。比如,吃蘑菇这个事件,会触发状态的转移:从小马里奥转移到超级马里奥,以及触发动作的执行(增加 100 积分)。
- 为了方便接下来的讲解,我对游戏背景做了简化,只保留了部分状态和事件。简化之后的状态转移如下图所示:
- 我们如何编程来实现上面的状态机呢?换句话说,如何将上面的状态转移图翻译成代码呢?
- 我写了一个骨架代码,如下所示。其中,obtainMushRoom()、obtainCape()、obtainFireFlower()、meetMonster() 这几个函数,能够根据当前的状态和事件,更新状态和增减积分。不过,具体的代码实现我暂时并没有给出。你可以把它当做面试题,试着补全一下,然后再来看讲解,这样你的收获会更大。
public enum State {
SMALL(0),
SUPER(1),
FIRE(2),
CAPE(3);
private int value;
private State(int value) {
this.value = value;
}
public int getValue() {
return this.value;
}
}
public class MarioStateMachine {
private int score;
private State currentState;
public MarioStateMachine() {
this.score = 0;
this.currentState = State.SMALL;
}
public void obtainMushRoom() {
// TODO
}
public void obtainCape() {
// TODO
}
public void obtainFireFlower() {
// TODO
}
public void meetMonster() {
// TODO
}
public int getScore() {
return this.score;
}
public State getCurrentState() {
return this.currentState;
}
}
public class ApplicationDemo {
public static void main(String[] args) {
MarioStateMachine mario = new MarioStateMachine();
mario.obtainMushRoom();
int score = mario.getScore();
State state = mario.getCurrentState();
System.out.println("mario score: " + score + "; state: " + state);
}
}
- 对于如何实现状态机,我总结了三种方式。其中,最简单直接的实现方式是,参照状态转移图,将每一个状态转移,原模原样地直译成代码。这样编写的代码会包含大量的 if-else 或 switch-case 分支判断逻辑,甚至是嵌套的分支判断逻辑,所以,我把这种方法暂且命名为分支逻辑法。
- 按照这个实现思路,我将上面的骨架代码补全一下。补全之后的代码如下所示:
public class MarioStateMachine {
private int score;
private State currentState;
public MarioStateMachine() {
this.score = 0;
this.currentState = State.SMALL;
}
public void obtainMushRoom() {
if (currentState.equals(State.SMALL)) {
this.currentState = State.SUPER;
this.score += 100;
}
}
public void obtainCape() {
if (currentState.equals(State.SMALL) || currentState.equals(State.SUPER)) {
this.currentState = State.CAPE;
this.score += 200;
}
}
public void obtainFireFlower() {
if (currentState.equals(State.SMALL) || currentState.equals(State.SUPER)) {
this.currentState = State.FIRE;
this.score += 300;
}
}
public void meetMonster() {
if (currentState.equals(State.SUPER)) {
this.currentState = State.SMALL;
this.score -= 100;
return;
}
if (currentState.equals(State.CAPE)) {
this.currentState = State.SMALL;
this.score -= 200;
return;
}
if (currentState.equals(State.FIRE)) {
this.currentState = State.SMALL;
this.score -= 300;
return;
}
}
public int getScore() {
return this.score;
}
public State getCurrentState() {
return this.currentState;
}
}
对于简单的状态机来说,分支逻辑这种实现方式是可以接受的。但是,对于复杂的状态机来说,这种实现方式极易漏写或者错写某个状态转移。除此之外,代码中充斥着大量的 if-else 或者 switch-case 分支判断逻辑,可读性和可维护性都很差。如果哪天修改了状态机中的某个状态转移,我们要在冗长的分支逻辑中找到对应的代码进行修改,很容易改错,引入 bug。
- 实际上,上面这种实现方法有点类似 hard code,对于复杂的状态机来说不适用,而状态机的第二种实现方式查表法,就更加合适了。接下来,我们就一块儿来看下,如何利用查表法来补全骨架代码。
- 实际上,除了用状态转移图来表示之外,状态机还可以用二维表来表示,如下所示。在这个二维表中,第一维表示当前状态,第二维表示事件,值表示当前状态经过事件之后,转移到的新状态及其执行的动作。
- 相对于分支逻辑的实现方式,查表法的代码实现更加清晰,可读性和可维护性更好。当修改状态机时,我们只需要修改 transitionTable 和 actionTable 两个二维数组即可。实际上,如果我们把这两个二维数组存储在配置文件中,当需要修改状态机时,我们甚至可以不修改任何代码,只需要修改配置文件就可以了。具体的代码如下所示:
public enum Event {
GOT_MUSHROOM(0),
GOT_CAPE(1),
GOT_FIRE(2),
MET_MONSTER(3);
private int value;
private Event(int value) {
this.value = value;
}
public int getValue() {
return this.value;
}
}
public class MarioStateMachine {
private int score;
private State currentState;
private static final State[][] transitionTable = {
{SUPER, CAPE, FIRE, SMALL},
{SUPER, CAPE, FIRE, SMALL},
{CAPE, CAPE, CAPE, SMALL},
{FIRE, FIRE, FIRE, SMALL}
};
private static final int[][] actionTable = {
{+100, +200, +300, +0},
{+0, +200, +300, -100},
{+0, +0, +0, -200},
{+0, +0, +0, -300}
};
public MarioStateMachine() {
this.score = 0;
this.currentState = State.SMALL;
}
public void obtainMushRoom() {
executeEvent(Event.GOT_MUSHROOM);
}
public void obtainCape() {
executeEvent(Event.GOT_CAPE);
}
public void obtainFireFlower() {
executeEvent(Event.GOT_FIRE);
}
public void meetMonster() {
executeEvent(Event.MET_MONSTER);
}
private void executeEvent(Event event) {
int stateValue = currentState.getValue();
int eventValue = event.getValue();
this.currentState = transitionTable[stateValue][eventValue];
this.score = actionTable[stateValue][eventValue];
}
public int getScore() {
return this.score;
}
public State getCurrentState() {
return this.currentState;
}
}
- 在查表法的代码实现中,事件触发的动作只是简单的积分加减,所以,我们用一个 int 类型的二维数组 actionTable 就能表示,二维数组中的值表示积分的加减值。但是,如果要执行的动作并非这么简单,而是一系列复杂的逻辑操作(比如加减积分、写数据库,还有可能发送消息通知等等),我们就没法用如此简单的二维数组来表示了。这也就是说,查表法的实现方式有一定局限性。
- 虽然分支逻辑的实现方式不存在这个问题,但它又存在前面讲到的其他问题,比如分支判断逻辑较多,导致代码可读性和可维护性不好等。实际上,针对分支逻辑法存在的问题,我们可以使用状态模式来解决。
- 状态模式通过将事件触发的状态转移和动作执行,拆分到不同的状态类中,来避免分支判断逻辑。我们还是结合代码来理解这句话。
- 利用状态模式,我们来补全 MarioStateMachine 类,补全后的代码如下所示。
- 其中,IMario 是状态的接口,定义了所有的事件。SmallMario、SuperMario、CapeMario、FireMario 是 IMario 接口的实现类,分别对应状态机中的 4 个状态。原来所有的状态转移和动作执行的代码逻辑,都集中在 MarioStateMachine 类中,现在,这些代码逻辑被分散到了这 4 个状态类中。
public interface IMario { // 所有状态类的接口
State getName();
// 以下是定义的事件
void obtainMushRoom();
void obtainCape();
void obtainFireFlower();
void meetMonster();
}
public class SmallMario implements IMario {
private MarioStateMachine stateMachine;
public SmallMario(MarioStateMachine stateMachine) {
this.stateMachine = stateMachine;
}
@Override
public State getName() {
return State.SMALL;
}
@Override
public void obtainMushRoom() {
stateMachine.setCurrentState(new SuperMario(stateMachine));
stateMachine.setScore(stateMachine.getScore() + 100);
}
@Override
public void obtainCape() {
stateMachine.setCurrentState(new CapeMario(stateMachine));
stateMachine.setScore(stateMachine.getScore() + 200);
}
@Override
public void obtainFireFlower() {
stateMachine.setCurrentState(new FireMario(stateMachine));
stateMachine.setScore(stateMachine.getScore() + 300);
}
@Override
public void meetMonster() {
// do nothing...
}
}
public class SuperMario implements IMario {
private MarioStateMachine stateMachine;
public SuperMario(MarioStateMachine stateMachine) {
this.stateMachine = stateMachine;
}
@Override
public State getName() {
return State.SUPER;
}
@Override
public void obtainMushRoom() {
// do nothing...
}
@Override
public void obtainCape() {
stateMachine.setCurrentState(new CapeMario(stateMachine));
stateMachine.setScore(stateMachine.getScore() + 200);
}
@Override
public void obtainFireFlower() {
stateMachine.setCurrentState(new FireMario(stateMachine));
stateMachine.setScore(stateMachine.getScore() + 300);
}
@Override
public void meetMonster() {
stateMachine.setCurrentState(new SmallMario(stateMachine));
stateMachine.setScore(stateMachine.getScore() - 100);
}
}
// 省略CapeMario、FireMario类...
public class MarioStateMachine {
private int score;
private IMario currentState; // 不再使用枚举来表示状态
public MarioStateMachine() {
this.score = 0;
this.currentState = new SmallMario(this);
}
public void obtainMushRoom() {
this.currentState.obtainMushRoom();
}
public void obtainCape() {
this.currentState.obtainCape();
}
public void obtainFireFlower() {
this.currentState.obtainFireFlower();
}
public void meetMonster() {
this.currentState.meetMonster();
}
public int getScore() {
return this.score;
}
public State getCurrentState() {
return this.currentState.getName();
}
public void setScore(int score) {
this.score = score;
}
public void setCurrentState(IMario currentState) {
this.currentState = currentState;
}
}
- 上面的代码实现不难看懂,我只强调其中的一点,即 MarioStateMachine 和各个状态类之间是双向依赖关系。MarioStateMachine 依赖各个状态类是理所当然的,但是,反过来,各个状态类为什么要依赖 MarioStateMachine 呢?这是因为,各个状态类需要更新 MarioStateMachine 中的两个变量,score 和 currentState。
- 实际上,上面的代码还可以继续优化,我们可以将状态类设计成单例,毕竟状态类中不包含任何成员变量。但是,当将状态类设计成单例之后,我们就无法通过构造函数来传递 MarioStateMachine 了,而状态类又要依赖 MarioStateMachine,那该如何解决这个问题呢?
- 单例模式的讲解中,我们提到过几种解决方法,你可以回过头去再查看一下。在这里,我们可以通过函数参数将 MarioStateMachine 传递进状态类。根据这个设计思路,我们对上面的代码进行重构。重构之后的代码如下所示:
public interface IMario {
State getName();
void obtainMushRoom(MarioStateMachine stateMachine);
void obtainCape(MarioStateMachine stateMachine);
void obtainFireFlower(MarioStateMachine stateMachine);
void meetMonster(MarioStateMachine stateMachine);
}
public class SmallMario implements IMario {
private static final SmallMario instance = new SmallMario();
private SmallMario() {}
public static SmallMario getInstance() {
return instance;
}
@Override
public State getName() {
return State.SMALL;
}
@Override
public void obtainMushRoom(MarioStateMachine stateMachine) {
stateMachine.setCurrentState(SuperMario.getInstance());
stateMachine.setScore(stateMachine.getScore() + 100);
}
@Override
public void obtainCape(MarioStateMachine stateMachine) {
stateMachine.setCurrentState(CapeMario.getInstance());
stateMachine.setScore(stateMachine.getScore() + 200);
}
@Override
public void obtainFireFlower(MarioStateMachine stateMachine) {
stateMachine.setCurrentState(FireMario.getInstance());
stateMachine.setScore(stateMachine.getScore() + 300);
}
@Override
public void meetMonster(MarioStateMachine stateMachine) {
// do nothing...
}
}
// 省略SuperMario、CapeMario、FireMario类...
public class MarioStateMachine {
private int score;
private IMario currentState;
public MarioStateMachine() {
this.score = 0;
this.currentState = SmallMario.getInstance();
}
public void obtainMushRoom() {
this.currentState.obtainMushRoom(this);
}
public void obtainCape() {
this.currentState.obtainCape(this);
}
public void obtainFireFlower() {
this.currentState.obtainFireFlower(this);
}
public void meetMonster() {
this.currentState.meetMonster(this);
}
public int getScore() {
return this.score;
}
public State getCurrentState() {
return this.currentState.getName();
}
public void setScore(int score) {
this.score = score;
}
public void setCurrentState(IMario currentState) {
this.currentState = currentState;
}
}
实际上,像游戏这种比较复杂的状态机,包含的状态比较多,我优先推荐使用查表法,而状态模式会引入非常多的状态类,会导致代码比较难维护。相反,像电商下单、外卖下单这种类型的状态机,它们的状态并不多,状态转移也比较简单,但事件触发执行的动作包含的业务逻辑可能会比较复杂,所以,更加推荐使用状态模式来实现。
- 今天,我们学习另外一种行为型设计模式,迭代器模式。它用来遍历集合对象。不过,很多编程语言都将迭代器作为一个基础的类库,直接提供出来了。在平时开发中,特别是业务开发,我们直接使用即可,很少会自己去实现一个迭代器。不过,知其然知其所以然,弄懂原理能帮助我们更好的使用这些工具类,所以,我觉得还是有必要学习一下这个模式。
- 我们知道,大部分编程语言都提供了多种遍历集合的方式,比如 for 循环、foreach 循环、迭代器等。所以,今天我们除了讲解迭代器的原理和实现之外,还会重点讲一下,相对于其他遍历方式,利用迭代器来遍历集合的优势。
- 迭代器模式(Iterator Design Pattern),也叫作游标模式(Cursor Design Pattern)。
- 在开篇中我们讲到,它用来遍历集合对象。这里说的“集合对象”也可以叫“容器”“聚合对象”,实际上就是包含一组对象的对象,比如数组、链表、树、图、跳表。迭代器模式将集合对象的遍历操作从集合类中拆分出来,放到迭代器类中,让两者的职责更加单一。
- 迭代器是用来遍历容器的,所以,一个完整的迭代器模式一般会涉及容器和容器迭代器部分两部分内容。为了达到基于接口而非实现编程的目的,容器又包含容器接口、容器实现类,迭代器又包含迭代器接口、迭代器实现类。对于迭代器模式,我画了一张简单的类图,你可以看一看,先有个大致的印象。
- 接下来,我们通过一个例子来具体讲,如何实现一个迭代器。
- 开篇中我们有提到,大部分编程语言都提供了遍历容器的迭代器类,我们在平时开发中,直接拿来用即可,几乎不大可能从零编写一个迭代器。不过,这里为了讲解迭代器的实现原理,我们假设某个新的编程语言的基础类库中,还没有提供线性容器对应的迭代器,需要我们从零开始开发。现在,我们一块来看具体该如何去做。
- 我们知道,线性数据结构包括数组和链表,在大部分编程语言中都有对应的类来封装这两种数据结构,在开发中直接拿来用就可以了。假设在这种新的编程语言中,这两个数据结构分别对应 ArrayList 和 LinkedList 两个类。除此之外,我们从两个类中抽象出公共的接口,定义为 List 接口,以方便开发者基于接口而非实现编程,编写的代码能在两种数据存储结构之间灵活切换。
- 现在,我们针对 ArrayList 和 LinkedList 两个线性容器,设计实现对应的迭代器。按照之前给出的迭代器模式的类图,我们定义一个迭代器接口 Iterator,以及针对两种容器的具体的迭代器实现类 ArrayIterator 和 ListIterator。
- 我们先来看下 Iterator 接口的定义。具体的代码如下所示:
// 接口定义方式一
public interface Iterator<E> {
boolean hasNext();
void next();
E currentItem();
}
// 接口定义方式二
public interface Iterator<E> {
boolean hasNext();
E next();
}
- Iterator 接口有两种定义方式。
- 在第一种定义中,next() 函数用来将游标后移一位元素,currentItem() 函数用来返回当前游标指向的元素。在第二种定义中,返回当前元素与后移一位这两个操作,要放到同一个函数 next() 中完成。
- 第一种定义方式更加灵活一些,比如我们可以多次调用 currentItem() 查询当前元素,而不移动游标。所以,在接下来的实现中,我们选择第一种接口定义方式。
- 现在,我们再来看下 ArrayIterator 的代码实现,具体如下所示。代码实现非常简单,不需要太多解释。你可以结合着我给出的 demo,自己理解一下。
public class ArrayIterator<E> implements Iterator<E> {
private int cursor;
private ArrayList<E> arrayList;
public ArrayIterator(ArrayList<E> arrayList) {
this.cursor = 0;
this.arrayList = arrayList;
}
@Override
public boolean hasNext() {
return cursor != arrayList.size(); // 注意这里,cursor在指向最后一个元素的时候,hasNext()仍旧返回true。
}
@Override
public void next() {
cursor++;
}
@Override
public E currentItem() {
if (cursor >= arrayList.size()) {
throw new NoSuchElementException();
}
return arrayList.get(cursor);
}
}
public class Demo {
public static void main(String[] args) {
ArrayList<String> names = new ArrayList<>();
names.add("lql");
names.add("dl");
names.add("tql");
Iterator<String> iterator = new ArrayIterator(names);
while (iterator.hasNext()) {
System.out.println(iterator.currentItem());
iterator.next();
}
}
}
- 在上面的代码实现中,我们需要将待遍历的容器对象,通过构造函数传递给迭代器类。实际上,为了封装迭代器的创建细节,我们可以在容器中定义一个 iterator() 方法,来创建对应的迭代器。为了能实现基于接口而非实现编程,我们还需要将这个方法定义在 List 接口中。具体的代码实现和使用示例如下所示:
import java.util.Iterator;
public interface List<E> {
Iterator iterator();
// ...省略其他接口函数...
}
public class ArrayList<E> implements List<E> {
// ...
public Iterator iterator() {
return new ArrayIterator(this);
}
// ...省略其他代码
}
public class Demo {
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("lql");
names.add("dl");
names.add("tql");
Iterator<String> iterator = names.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.currentItem());
iterator.next();
}
}
}
- 对于 LinkedIterator,它的代码结构跟 ArrayIterator 完全相同,我这里就不给出具体的代码实现了,你可以参照 ArrayIterator 自己去写一下。
- 结合刚刚的例子,我们来总结一下迭代器的设计思路。总结下来就三句话:迭代器中需要定义 hasNext()、currentItem()、next() 三个最基本的方法。待遍历的容器对象通过依赖注入传递到迭代器类中。容器通过 iterator() 方法来创建迭代器。
- 这里我画了一张类图,如下所示。实际上就是对上面那张类图的细化,你可以结合着一块看。
- 迭代器的原理和代码实现讲完了。接下来,我们来一块看一下,使用迭代器遍历集合的优势。
- 一般来讲,遍历集合数据有三种方法:for 循环、foreach 循环、iterator 迭代器。对于这三种方式,我拿 Java 语言来举例说明一下。具体的代码如下所示:
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("lql");
names.add("dl");
names.add("tql");
// 第一种遍历方式:for循环
for (int i = 0; i < names.size(); i++) {
System.out.print(names.get(i) + ",");
}
// 第二种遍历方式:foreach循环
for (String name : names) {
System.out.print(name + ",");
}
// 第三种遍历方式:迭代器遍历
Iterator<String> iterator = names.iterator();
while (iterator.hasNext()) {
System.out.print(iterator.next() + ","); // Java中的迭代器接口是第二种定义方式,next()既移动游标又返回数据
}
}
-
实际上,foreach 循环只是一个语法糖而已,底层是基于迭代器来实现的。也就是说,上面代码中的第二种遍历方式(foreach 循环代码)的底层实现,就是第三种遍历方式(迭代器遍历代码)。这两种遍历方式可以看作同一种遍历方式,也就是迭代器遍历方式。
-
从上面的代码来看,for 循环遍历方式比起迭代器遍历方式,代码看起来更加简洁。那我们为什么还要用迭代器来遍历容器呢?为什么还要给容器设计对应的迭代器呢?原因有以下三个。
-
首先,对于类似数组和链表这样的数据结构,遍历方式比较简单,直接使用 for 循环来遍历就足够了。但是,对于复杂的数据结构(比如树、图)来说,有各种复杂的遍历方式。比如,树有前中后序、按层遍历,图有深度优先、广度优先遍历等等。如果由客户端代码来实现这些遍历算法,势必增加开发成本,而且容易写错。如果将这部分遍历的逻辑写到容器类中,也会导致容器类代码的复杂性。
-
前面也多次提到,应对复杂性的方法就是拆分。我们可以将遍历操作拆分到迭代器类中。比如,针对图的遍历,我们就可以定义 DFSIterator、BFSIterator 两个迭代器类,让它们分别来实现深度优先遍历和广度优先遍历。
-
其次,将游标指向的当前位置等信息,存储在迭代器类中,每个迭代器独享游标信息。这样,我们就可以创建多个不同的迭代器,同时对同一个容器进行遍历而互不影响。
-
最后,容器和迭代器都提供了抽象的接口,方便我们在开发的时候,基于接口而非具体的实现编程。当需要切换新的遍历算法的时候,比如,从前往后遍历链表切换成从后往前遍历链表,客户端代码只需要将迭代器类从 LinkedIterator 切换为 ReversedLinkedIterator 即可,其他代码都不需要修改。除此之外,添加新的遍历算法,我们只需要扩展新的迭代器类,也更符合开闭原则。
-
我们通过给 ArrayList、LinkedList 容器实现迭代器,学习了迭代器模式的原理、实现和设计意图。迭代器模式主要作用是解耦容器代码和遍历代码,这也印证了我们前面多次讲过的应用设计模式的主要目的是解耦。
-
上面讲解的内容都比较基础,现在,我们来深挖一下,如果在使用迭代器遍历集合的同时增加、删除集合中的元素,会发生什么情况?应该如何应对?如何在遍历的同时安全地删除集合元素?
- 在通过迭代器来遍历集合元素的同时,增加或者删除集合中的元素,有可能会导致某个元素被重复遍历或遍历不到。不过,并不是所有情况下都会遍历出错,有的时候也可以正常遍历,所以,这种行为称为结果不可预期行为或者未决行为,也就是说,运行结果到底是对还是错,要视情况而定。
- 怎么理解呢?我们通过一个例子来解释一下。我们还是延续上一节实现的 ArrayList 迭代器的例子。为了方便你查看,我把相关的代码都重新拷贝到这里了。
public interface Iterator<E> {
boolean hasNext();
void next();
E currentItem();
}
public class ArrayIterator<E> implements Iterator<E> {
private int cursor;
private ArrayList<E> arrayList;
public ArrayIterator(ArrayList<E> arrayList) {
this.cursor = 0;
this.arrayList = arrayList;
}
@Override
public boolean hasNext() {
return cursor < arrayList.size();
}
@Override
public void next() {
cursor++;
}
@Override
public E currentItem() {
if (cursor >= arrayList.size()) {
throw new NoSuchElementException();
}
return arrayList.get(cursor);
}
}
public interface List<E> {
Iterator iterator();
}
public class ArrayList<E> implements List<E> {
// ...
public Iterator iterator() {
return new ArrayIterator(this);
}
// ...
}
public class Demo {
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("a");
names.add("b");
names.add("c");
names.add("d");
Iterator<String> iterator = names.iterator();
iterator.next();
names.remove("a");
}
}
- 我们知道,ArrayList 底层对应的是数组这种数据结构,在执行完第 55 行代码的时候,数组中存储的是 a、b、c、d 四个元素,迭代器的游标 cursor 指向元素 a。当执行完第 56 行代码的时候,游标指向元素 b,到这里都没有问题。
- 为了保持数组存储数据的连续性,数组的删除操作会涉及元素的搬移。当执行到第 57 行代码的时候,我们从数组中将元素 a 删除掉,b、c、d 三个元素会依次往前搬移一位,这就会导致游标本来指向元素 b,现在变成了指向元素 c。原本在执行完第 56 行代码之后,我们还可以遍历到 b、c、d 三个元素,但在执行完第 57 行代码之后,我们只能遍历到 c、d 两个元素,b 遍历不到了。
- 对于上面的描述,我画了一张图,你可以对照着理解。
- 不过,如果第 57 行代码删除的不是游标前面的元素(元素 a)以及游标所在位置的元素(元素 b),而是游标后面的元素(元素 c 和 d),这样就不会存在任何问题了,不会存在某个元素遍历不到的情况了。
- 所以,我们前面说,在遍历的过程中删除集合元素,结果是不可预期的,有时候没问题(删除元素 c 或 d),有时候就有问题(删除元素 a 或 b),这个要视情况而定(到底删除的是哪个位置的元素),就是这个意思。
- 在遍历的过程中删除集合元素,有可能会导致某个元素遍历不到,那在遍历的过程中添加集合元素,会发生什么情况呢?还是结合刚刚那个例子来讲解,我们将上面的代码稍微改造一下,把删除元素改为添加元素。具体的代码如下所示:
public class Demo {
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("a");
names.add("b");
names.add("c");
names.add("d");
Iterator<String> iterator = names.iterator();
iterator.next();
names.add(0, "x");
}
}
- 在执行完第 10 行代码之后,数组中包含 a、b、c、d 四个元素,游标指向 b 这个元素,已经跳过了元素 a。在执行完第 11 行代码之后,我们将 x 插入到下标为 0 的位置,a、b、c、d 四个元素依次往后移动一位。这个时候,游标又重新指向了元素 a。元素 a 被游标重复指向两次,也就是说,元素 a 存在被重复遍历的情况。
- 跟删除情况类似,如果我们在游标的后面添加元素,就不会存在任何问题。所以,在遍历的同时添加集合元素也是一种不可预期行为。
- 同样,对于上面的添加元素的情况,我们也画了一张图,如下所示,你可以对照着理解。
- 当通过迭代器来遍历集合的时候,增加、删除集合元素会导致不可预期的遍历结果。实际上,“不可预期”比直接出错更加可怕,有的时候运行正确,有的时候运行错误,一些隐藏很深、很难 debug 的 bug 就是这么产生的。那我们如何才能避免出现这种不可预期的运行结果呢?
- 有两种比较干脆利索的解决方案:一种是遍历的时候不允许增删元素,另一种是增删元素之后让遍历报错。
- 实际上,第一种解决方案比较难实现,我们要确定遍历开始和结束的时间点。遍历开始的时间节点我们很容易获得。我们可以把创建迭代器的时间点作为遍历开始的时间点。但是,遍历结束的时间点该如何来确定呢?
- 你可能会说,遍历到最后一个元素的时候就算结束呗。但是,在实际的软件开发中,每次使用迭代器来遍历元素,并不一定非要把所有元素都遍历一遍。如下所示,我们找到一个值为 b 的元素就提前结束了遍历。
public class Demo {
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("a");
names.add("b");
names.add("c");
names.add("d");
Iterator<String> iterator = names.iterator();
while (iterator.hasNext()) {
String name = iterator.currentItem();
if (name.equals("b")) {
break;
}
}
}
}
- 你可能还会说,那我们可以在迭代器类中定义一个新的接口 finishIteration(),主动告知容器迭代器使用完了,你可以增删元素了,示例代码如下所示。但是,这就要求程序员在使用完迭代器之后要主动调用这个函数,也增加了开发成本,还很容易漏掉。
public class Demo {
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("a");
names.add("b");
names.add("c");
names.add("d");
Iterator<String> iterator = names.iterator();
while (iterator.hasNext()) {
String name = iterator.currentItem();
if (name.equals("b")) {
iterator.finishIteration(); // 主动告知容器这个迭代器用完了
break;
}
}
}
}
- 实际上,第二种解决方法更加合理。Java 语言就是采用的这种解决方案,增删元素之后,让遍历报错。接下来,我们具体来看一下如何实现。
- 怎么确定在遍历时候,集合有没有增删元素呢?我们在 ArrayList 中定义一个成员变量 modCount,记录集合被修改的次数,集合每调用一次增加或删除元素的函数,就会给 modCount 加 1。当通过调用集合上的 iterator() 函数来创建迭代器的时候,我们把 modCount 值传递给迭代器的 expectedModCount 成员变量,之后每次调用迭代器上的 hasNext()、next()、currentItem() 函数,我们都会检查集合上的 modCount 是否等于 expectedModCount,也就是看,在创建完迭代器之后,modCount 是否改变过。
- 如果两个值不相同,那就说明集合存储的元素已经改变了,要么增加了元素,要么删除了元素,之前创建的迭代器已经不能正确运行了,再继续使用就会产生不可预期的结果,所以我们选择 fail-fast 解决方式,抛出运行时异常,结束掉程序,让程序员尽快修复这个因为不正确使用迭代器而产生的 bug。
- 上面的描述翻译成代码就是下面这样子。你可以结合着代码一起理解我刚才的讲解。
public class ArrayIterator implements Iterator {
private int cursor;
private ArrayList arrayList;
private int expectedModCount;
public ArrayIterator(ArrayList arrayList) {
this.cursor = 0;
this.arrayList = arrayList;
this.expectedModCount = arrayList.modCount;
}
@Override
public boolean hasNext() {
checkForComodification();
return cursor < arrayList.size();
}
@Override
public void next() {
checkForComodification();
cursor++;
}
@Override
public Object currentItem() {
checkForComodification();
return arrayList.get(cursor);
}
private void checkForComodification() {
if (arrayList.modCount != expectedModCount) throw new ConcurrentModificationException();
}
}
// 代码示例
public class Demo {
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("a");
names.add("b");
names.add("c");
names.add("d");
Iterator<String> iterator = names.iterator();
iterator.next();
names.remove("a");
iterator.next(); // 抛出ConcurrentModificationException异常
}
}
- 像 Java 语言,迭代器类中除了前面提到的几个最基本的方法之外,还定义了一个 remove() 方法,能够在遍历集合的同时,安全地删除集合中的元素。不过,需要说明的是,它并没有提供添加元素的方法。毕竟迭代器的主要作用是遍历,添加元素放到迭代器里本身就不合适。
- 我个人觉得,Java 迭代器中提供的 remove() 方法还是比较鸡肋的,作用有限。它只能删除游标指向的前一个元素,而且一个 next() 函数之后,只能跟着最多一个 remove() 操作,多次调用 remove() 操作会报错。我还是通过一个例子来解释一下。
public class Demo {
public static void main(String[] args) {
List<String> names = new ArrayList<>();
names.add("a");
names.add("b");
names.add("c");
names.add("d");
Iterator<String> iterator = names.iterator();
iterator.next();
iterator.remove();
iterator.remove(); // 报错,抛出IllegalStateException异常
}
}
- 现在,我们一块来看下,为什么通过迭代器就能安全的删除集合中的元素呢?源码之下无秘密。我们来看下 remove() 函数是如何实现的,代码如下所示。稍微提醒一下,在 Java 实现中,迭代器类是容器类的内部类,并且 next() 函数不仅将游标后移一位,还会返回当前的元素。
public class ArrayList<E> {
transient Object[] elementData;
private int size;
public Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
Itr() {}
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size) throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0) throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
}
在上面的代码实现中,迭代器类新增了一个 lastRet 成员变量,用来记录游标指向的前一个元素。通过迭代器去删除这个元素的时候,我们可以更新迭代器中的游标和 lastRet 值,来保证不会因为删除元素而导致某个元素遍历不到。如果通过容器来删除元素,并且希望更新迭代器中的游标值来保证遍历不出错,我们就要维护这个容器都创建了哪些迭代器,每个迭代器是否还在使用等信息,代码实现就变得比较复杂了。
今天,我们再来看这样一个问题:如何实现一个支持“快照”功能的迭代器?这个问题算是对上一节内容的延伸思考,为的是帮你加深对迭代器模式的理解,也是对你分析、解决问题的一种锻炼。你可以把它当作一个面试题或者练习题,在讲解之前,先试一试自己能否顺利回答上来。
- 我们先来介绍一下问题的背景:如何实现一个支持“快照”功能的迭代器模式?
- 理解这个问题最关键的是理解“快照”两个字。所谓“快照”,指我们为容器创建迭代器的时候,相当于给容器拍了一张快照(Snapshot)。之后即便我们增删容器中的元素,快照中的元素并不会做相应的改动。而迭代器遍历的对象是快照而非容器,这样就避免了在使用迭代器遍历的过程中,增删容器中的元素,导致的不可预期的结果或者报错。
- 接下来,我举一个例子来解释一下上面这段话。具体的代码如下所示。容器 list 中初始存储了 3、8、2 三个元素。尽管在创建迭代器 iter1 之后,容器 list 删除了元素 3,只剩下 8、2 两个元素,但是,通过 iter1 遍历的对象是快照,而非容器 list 本身。所以,遍历的结果仍然是 3、8、2。同理,iter2、iter3 也是在各自的快照上遍历,输出的结果如代码中注释所示。
public static void main(String[] args) {
List<Integer> list = new ArrayList<>();
list.add(3);
list.add(8);
list.add(2);
Iterator<Integer> iter1 = list.iterator(); // snapshot: 3, 8, 2
list.remove(new Integer(2)); // list:3, 8
Iterator<Integer> iter2 = list.iterator(); // snapshot: 3, 8
list.remove(new Integer(3)); // list:8
Iterator<Integer> iter3 = list.iterator(); // snapshot: 3
// 输出结果:3 8 2
while (iter1.hasNext()) {
System.out.print(iter1.next() + " ");
}
System.out.println();
// 输出结果:3 8
while (iter2.hasNext()) {
System.out.print(iter1.next() + " ");
}
System.out.println();
// 输出结果:8
while (iter3.hasNext()) {
System.out.print(iter1.next() + " ");
}
System.out.println();
}
- 如果由你来实现上面的功能,你会如何来做呢?下面是针对这个功能需求的骨架代码,其中包含 ArrayList、SnapshotArrayIterator 两个类。对于这两个类,我只定义了必须的几个关键接口,完整的代码实现我并没有给出。你可以试着去完善一下,然后再看我下面的讲解。
public class ArrayList<E> implements List<E> {
// TODO: 成员变量、私有函数等随便你定义
@Override
public void add(E obj) {
// TODO: 由你来完善
}
@Override
public void remove(E obj) {
// TODO: 由你来完善
}
@Override
public Iterator<E> iterator() {
return new SnapshotArrayIterator(this);
}
}
public class SnapshotArrayIterator<E> implements Iterator<E> {
// TODO: 成员变量、私有函数等随便你定义
@Override
public boolean hasNext() {
// TODO: 由你来完善
}
@Override
public E next() { // 返回当前元素,并且游标后移一位
// TODO: 由你来完善
}
}
我们先来看最简单的一种解决办法。在迭代器类中定义一个成员变量 snapshot 来存储快照。每当创建迭代器的时候,都拷贝一份容器中的元素到快照中,后续的遍历操作都基于这个迭代器自己持有的快照来进行。具体的代码实现如下所示:
public class SnapshotArrayIterator<E> implements Iterator<E> {
private int cursor;
private ArrayList<E> snapshot;
public SnapshotArrayIterator(ArrayList<E> arrayList) {
this.cursor = 0;
this.snapshot = new ArrayList<>();
this.snapshot.addAll(arrayList);
}
@Override
public boolean hasNext() {
return cursor < snapshot.size();
}
@Override
public E next() {
E currentItem = snapshot.get(cursor);
cursor++;
return currentItem;
}
}
这个解决方案虽然简单,但代价也有点高。每次创建迭代器的时候,都要拷贝一份数据到快照中,会增加内存的消耗。如果一个容器同时有多个迭代器在遍历元素,就会导致数据在内存中重复存储多份。不过,庆幸的是,Java 中的拷贝属于浅拷贝,也就是说,容器中的对象并非真的拷贝了多份,而只是拷贝了对象的引用而已。那有没有什么方法,既可以支持快照,又不需要拷贝容器呢?
- 我们再来看第二种解决方案。
- 我们可以在容器中,为每个元素保存两个时间戳,一个是添加时间戳 addTimestamp,一个是删除时间戳 delTimestamp。当元素被加入到集合中的时候,我们将 addTimestamp 设置为当前时间,将 delTimestamp 设置成最大长整型值(Long.MAX_VALUE)。当元素被删除时,我们将 delTimestamp 更新为当前时间,表示已经被删除。
- 注意,这里只是标记删除,而非真正将它从容器中删除。
- 同时,每个迭代器也保存一个迭代器创建时间戳 snapshotTimestamp,也就是迭代器对应的快照的创建时间戳。当使用迭代器来遍历容器的时候,只有满足 addTimestamp<snapshotTimestamp<delTimestamp 的元素,才是属于这个迭代器的快照。
- 如果元素的 addTimestamp>snapshotTimestamp,说明元素在创建了迭代器之后才加入的,不属于这个迭代器的快照;如果元素的 delTimestamp<snapshotTimestamp,说明元素在创建迭代器之前就被删除掉了,也不属于这个迭代器的快照。
- 这样就在不拷贝容器的情况下,在容器本身上借助时间戳实现了快照功能。具体的代码实现如下所示。注意,我们没有考虑 ArrayList 的扩容问题,感兴趣的话,你可以自己完善一下。
public class ArrayList<E> implements List<E> {
private static final int DEFAULT_CAPACITY = 10;
private int actualSize; // 不包含标记删除元素
private int totalSize; // 包含标记删除元素
private Object[] elements;
private long[] addTimestamps;
private long[] delTimestamps;
public ArrayList() {
this.elements = new Object[DEFAULT_CAPACITY];
this.addTimestamps = new long[DEFAULT_CAPACITY];
this.delTimestamps = new long[DEFAULT_CAPACITY];
this.totalSize = 0;
this.actualSize = 0;
}
@Override
public void add(E obj) {
elements[totalSize] = obj;
addTimestamps[totalSize] = System.currentTimeMillis();
delTimestamps[totalSize] = Long.MAX_VALUE;
totalSize++;
actualSize++;
}
@Override
public void remove(E obj) {
for (int i = 0; i < totalSize; ++i) {
if (elements[i].equals(obj)) {
delTimestamps[i] = System.currentTimeMillis();
actualSize--;
}
}
}
public int actualSize() {
return this.actualSize;
}
public int totalSize() {
return this.totalSize;
}
public E get(int i) {
if (i >= totalSize) {
throw new IndexOutOfBoundsException();
}
return (E) elements[i];
}
public long getAddTimestamp(int i) {
if (i >= totalSize) {
throw new IndexOutOfBoundsException();
}
return addTimestamps[i];
}
public long getDelTimestamp(int i) {
if (i >= totalSize) {
throw new IndexOutOfBoundsException();
}
return delTimestamps[i];
}
}
public class SnapshotArrayIterator<E> implements Iterator<E> {
private long snapshotTimestamp;
private int cursorInAll; // 在整个容器中的下标,而非快照中的下标
private int leftCount; // 快照中还有几个元素未被遍历
private ArrayList<E> arrayList;
public SnapshotArrayIterator(ArrayList<E> arrayList) {
this.snapshotTimestamp = System.currentTimeMillis();
this.cursorInAll = 0;
this.leftCount = arrayList.actualSize();
this.arrayList = arrayList;
justNext(); // 先跳到这个迭代器快照的第一个元素
}
@Override
public boolean hasNext() {
return this.leftCount >= 0; // 注意是>=, 而非>
}
@Override
public E next() {
E currentItem = arrayList.get(cursorInAll);
justNext();
return currentItem;
}
private void justNext() {
while (cursorInAll < arrayList.totalSize()) {
long addTimestamp = arrayList.getAddTimestamp(cursorInAll);
long delTimestamp = arrayList.getDelTimestamp(cursorInAll);
if (snapshotTimestamp > addTimestamp && snapshotTimestamp < delTimestamp) {
leftCount--;
break;
}
cursorInAll++;
}
}
}
- 实际上,上面的解决方案相当于解决了一个问题,又引入了另外一个问题。ArrayList 底层依赖数组这种数据结构,原本可以支持快速的随机访问,在 O(1) 时间复杂度内获取下标为 i 的元素,但现在,删除数据并非真正的删除,只是通过时间戳来标记删除,这就导致无法支持按照下标快速随机访问了。数组随机访问这块知识点,我就不展开讲解了。
- 现在,我们来看怎么解决这个问题:让容器既支持快照遍历,又支持随机访问?
- 解决的方法也不难,我稍微提示一下。我们可以在 ArrayList 中存储两个数组。一个支持标记删除的,用来实现快照遍历功能;一个不支持标记删除的(也就是将要删除的数据直接从数组中移除),用来支持随机访问。对应的代码我这里就不给出了,感兴趣的话你可以自己实现一下。