Skip to content

Latest commit

 

History

History
622 lines (493 loc) · 16 KB

0062.不同路径.md

File metadata and controls

622 lines (493 loc) · 16 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

62.不同路径

力扣题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

  • 输入:m = 3, n = 7
  • 输出:28

示例 2:

  • 输入:m = 2, n = 3
  • 输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 3:

  • 输入:m = 7, n = 3
  • 输出:28

示例 4:

  • 输入:m = 3, n = 3
  • 输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

算法公开课

《代码随想录》算法视频公开课动态规划中如何初始化很重要!| LeetCode:62.不同路径,相信结合视频再看本篇题解,更有助于大家对本题的理解

思路

深搜

这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:

62.不同路径

此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:
    int dfs(int i, int j, int m, int n) {
        if (i > m || j > n) return 0; // 越界了
        if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
        return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
    }
public:
    int uniquePaths(int m, int n) {
        return dfs(1, 1, m, n);
    }
};

大家如果提交了代码就会发现超时了!

来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

62.不同路径1

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int j = 0; j < n; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> dp(n);
        for (int i = 0; i < n; i++) dp[i] = 1;
        for (int j = 1; j < m; j++) {
            for (int i = 1; i < n; i++) {
                dp[i] += dp[i - 1];
            }
        }
        return dp[n - 1];
    }
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(n)

数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

那么答案,如图所示:

62.不同路径2

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

例如如下代码是不行的。

class Solution {
public:
    int uniquePaths(int m, int n) {
        int numerator = 1, denominator = 1;
        int count = m - 1;
        int t = m + n - 2;
        while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出
        for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母
        return numerator / denominator;
    }
};

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:
    int uniquePaths(int m, int n) {
        long long numerator = 1; // 分子
        int denominator = m - 1; // 分母
        int count = m - 1;
        int t = m + n - 2;
        while (count--) {
            numerator *= (t--);
            while (denominator != 0 && numerator % denominator == 0) {
                numerator /= denominator;
                denominator--;
            }
        }
        return numerator;
    }
};
  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

计算组合问题的代码还是有难度的,特别是处理溢出的情况!

总结

本文分别给出了深搜,动规,数论三种方法。

深搜当然是超时了,顺便分析了一下使用深搜的时间复杂度,就可以看出为什么超时了。

然后在给出动规的方法,依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,初始化和遍历顺序其实也很重要!

其他语言版本

Java

  /**
     * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类
     * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1]
     * 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可
     * 4. 遍历顺序 一行一行遍历
     * 5. 推导结果 。。。。。。。。
     *
     * @param m
     * @param n
     * @return
     */
    public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        //初始化
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {
            dp[0][i] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }

状态压缩

class Solution {
    public int uniquePaths(int m, int n) {
        // 在二维dp数组中,当前值的计算只依赖正上方和正左方,因此可以压缩成一维数组。
        int[] dp = new int[n];
        // 初始化,第一行只能从正左方跳过来,所以只有一条路径。
        Arrays.fill(dp, 1);
        for (int i = 1; i < m; i ++) {
            // 第一列也只有一条路,不用迭代,所以从第二列开始
            for (int j = 1; j < n; j ++) {
                dp[j] += dp[j - 1]; // dp[j] = dp[j] (正上方)+ dp[j - 1] (正左方)
            }
        }
        return dp[n - 1];
    }
}

Python

递归

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        if m == 1 or n == 1:
            return 1
        return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n - 1)

动态规划(版本一)

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 创建一个二维列表用于存储唯一路径数
        dp = [[0] * n for _ in range(m)]
        
        # 设置第一行和第一列的基本情况
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        
        # 计算每个单元格的唯一路径数
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        
        # 返回右下角单元格的唯一路径数
        return dp[m - 1][n - 1]

动态规划(版本二)

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 创建一个一维列表用于存储每列的唯一路径数
        dp = [1] * n
        
        # 计算每个单元格的唯一路径数
        for j in range(1, m):
            for i in range(1, n):
                dp[i] += dp[i - 1]
        
        # 返回右下角单元格的唯一路径数
        return dp[n - 1]

数论

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        numerator = 1  # 分子
        denominator = m - 1  # 分母
        count = m - 1  # 计数器,表示剩余需要计算的乘积项个数
        t = m + n - 2  # 初始乘积项
        while count > 0:
            numerator *= t  # 计算乘积项的分子部分
            t -= 1  # 递减乘积项
            while denominator != 0 and numerator % denominator == 0:
                numerator //= denominator  # 约简分子
                denominator -= 1  # 递减分母
            count -= 1  # 计数器减1,继续下一项的计算
        return numerator  # 返回最终的唯一路径数

Go

动态规划

func uniquePaths(m int, n int) int {
	dp := make([][]int, m)
	for i := range dp {
		dp[i] = make([]int, n)
		dp[i][0] = 1
	}
	for j := 0; j < n; j++ {
		dp[0][j] = 1
	}
	for i := 1; i < m; i++ {
		for j := 1; j < n; j++ {
			dp[i][j] = dp[i-1][j] + dp[i][j-1]
		}
	}
	return dp[m-1][n-1]
}

数论方法

func uniquePaths(m int, n int) int {
    numerator := 1
    denominator := m - 1
    count := m - 1
    t := m + n - 2
    for count > 0 {
        numerator *= t
        t--
        for denominator != 0 && numerator % denominator == 0 {
            numerator /= denominator
            denominator--
        }
        count--
    }
    return numerator
}

Javascript

var uniquePaths = function(m, n) {
    const dp = Array(m).fill().map(item => Array(n))

    for (let i = 0; i < m; ++i) {
        dp[i][0] = 1
    }

    for (let i = 0; i < n; ++i) {
        dp[0][i] = 1
    }

    for (let i = 1; i < m; ++i) {
        for (let j = 1; j < n; ++j) {
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        }
    }
    return dp[m - 1][n - 1]
};

版本二:直接将dp数值值初始化为1

/**
 * @param {number} m
 * @param {number} n
 * @return {number}
 */
var uniquePaths = function(m, n) {
    let dp = new Array(m).fill(1).map(() => new Array(n).fill(1));
    // dp[i][j] 表示到达(i,j) 点的路径数
    for (let i=1; i<m; i++) {
        for (let j=1; j< n;j++) {
            dp[i][j]=dp[i-1][j]+dp[i][j-1];
        }
    }
    return dp[m-1][n-1];

};

TypeScript

function uniquePaths(m: number, n: number): number {
    /**
        dp[i][j]: 到达(i, j)的路径数
        dp[0][*]: 1;
        dp[*][0]: 1;
        ...
        dp[i][j]: dp[i - 1][j] + dp[i][j - 1];
     */
    const dp: number[][] = new Array(m).fill(0).map(_ => []);
    for (let i = 0; i < m; i++) {
        dp[i][0] = 1;
    }
    for (let i = 0; i < n; i++) {
        dp[0][i] = 1;
    }
    for (let i = 1; i < m; i++) {
        for (let j = 1; j < n; j++) {
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }
    return dp[m - 1][n - 1];
};

Rust

impl Solution {
    pub fn unique_paths(m: i32, n: i32) -> i32 {
        let (m, n) = (m as usize, n as usize);
        let mut dp = vec![vec![1; n]; m];
        for i in 1..m {
            for j in 1..n {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        dp[m - 1][n - 1]
    }
}

C

//初始化dp数组
int **initDP(int m, int n) {
    //动态开辟dp数组
    int **dp = (int**)malloc(sizeof(int *) * m);
    int i, j;
    for(i = 0; i < m; ++i) {
        dp[i] = (int *)malloc(sizeof(int) * n);
    }

    //从0,0到i,0只有一种走法,所以dp[i][0]都是1,同理dp[0][j]也是1
    for(i = 0; i < m; ++i)
        dp[i][0] = 1;
    for(j = 0; j < n; ++j)
        dp[0][j] = 1;
    return dp;
}

int uniquePaths(int m, int n){
    //dp数组,dp[i][j]代表从dp[0][0]到dp[i][j]有几种走法
    int **dp = initDP(m, n);

    int i, j;
    //到达dp[i][j]只能从dp[i-1][j]和dp[i][j-1]出发
    //dp[i][j] = dp[i-1][j] + dp[i][j-1]
    for(i = 1; i < m; ++i) {
        for(j = 1; j < n; ++j) {
            dp[i][j] = dp[i-1][j] + dp[i][j-1];
        }
    }
    int result = dp[m-1][n-1];
    free(dp);
    return result;
}

滚动数组解法:

int uniquePaths(int m, int n){
    int i, j;

    // 初始化dp数组
    int *dp = (int*)malloc(sizeof(int) * n);
    for (i = 0; i < n; ++i)
        dp[i] = 1;

    for (j = 1; j < m; ++j) {
        for (i = 1; i < n; ++i) {
            // dp[i]为二维数组解法中dp[i-1][j]。dp[i-1]为二维数组解法中dp[i][j-1]
            dp[i] += dp[i - 1];
        }
    }
    return dp[n - 1];
}

Scala

object Solution {
  def uniquePaths(m: Int, n: Int): Int = {
    var dp = Array.ofDim[Int](m, n)
    for (i <- 0 until m) dp(i)(0) = 1
    for (j <- 1 until n) dp(0)(j) = 1
    for (i <- 1 until m; j <- 1 until n) {
      dp(i)(j) = dp(i - 1)(j) + dp(i)(j - 1)
    }
    dp(m - 1)(n - 1)
  }
}

c#

// 二维数组
public class Solution
{
    public int UniquePaths(int m, int n)
    {
        int[,] dp = new int[m, n];
        for (int i = 0; i < m; i++) dp[i, 0] = 1;
        for (int j = 0; j < n; j++) dp[0, j] = 1;
        for (int i = 1; i < m; i++)
        {
            for (int j = 1; j < n; j++)
            {
                dp[i, j] = dp[i - 1, j] + dp[i, j - 1];
            }
        }
        return dp[m - 1, n - 1];
    }
}
// 一维数组
public class Solution
{
    public int UniquePaths(int m, int n)
    {
        int[] dp = new int[n];
        for (int i = 0; i < n; i++)
            dp[i] = 1;
        for (int i = 1; i < m; i++)
            for (int j = 1; j < n; j++)
                dp[j] += dp[j - 1];
        return dp[n - 1];
    }
}