forked from experiencor/keras-yolo3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
251 lines (213 loc) · 9.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#! /usr/bin/env python
import argparse
import os
import numpy as np
import json
from voc import parse_voc_annotation
from yolo import create_yolov3_model, dummy_loss
from generator import BatchGenerator
from utils.utils import normalize, evaluate
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.optimizers import Adam
from utils.multi_gpu_model import multi_gpu_model
import tensorflow as tf
from keras.models import load_model
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
def create_training_instances(
train_annot_folder,
train_image_folder,
train_cache,
valid_annot_folder,
valid_image_folder,
valid_cache,
labels,
):
# parse annotations of the training set
train_ints, train_labels = parse_voc_annotation(train_annot_folder, train_image_folder, train_cache, labels)
# parse annotations of the validation set, if any, otherwise split the training set
if os.path.exists(valid_annot_folder):
valid_ints, valid_labels = parse_voc_annotation(valid_annot_folder, valid_image_folder, valid_cache, labels)
else:
print("valid_annot_folder not exists. Spliting the trainining set.")
train_valid_split = int(0.8*len(train_ints))
np.random.shuffle(train_ints)
valid_ints = train_ints[train_valid_split:]
train_ints = train_ints[:train_valid_split]
# compare the seen labels with the given labels in config.json
if len(labels) > 0:
overlap_labels = set(labels).intersection(set(train_labels.keys()))
print('Seen labels: \t\t' + str(train_labels))
print('Given labels: \t\t' + str(labels))
print('Overlap labels: \t' + str(list(overlap_labels)))
# return None, None, None if some given label is not in the dataset
if len(overlap_labels) < len(labels):
print('Some labels have no annotations! Please revise the list of labels in the config.json.')
return None, None, None
else:
print('No labels are provided. Train on all seen labels.')
print(train_labels)
labels = train_labels.keys()
return train_ints, valid_ints, sorted(labels)
def create_callbacks(saved_weights_name):
early_stop = EarlyStopping(
monitor='val_loss',
min_delta=0.001,
patience=3,
mode='min',
verbose=1
)
checkpoint = ModelCheckpoint(
saved_weights_name,
monitor='val_loss',
verbose=1,
save_best_only=True,
mode='min',
period=1
)
return [early_stop, checkpoint]
def create_model(nb_class, anchors, max_box_per_image, max_grid, batch_size, warmup_batches, ignore_thresh, multi_gpu, saved_weights_name):
if multi_gpu > 1:
with tf.device('/cpu:0'):
template_model, infer_model = create_yolov3_model(
nb_class = nb_class,
anchors = anchors,
max_box_per_image = max_box_per_image,
max_grid = max_grid,
batch_size = batch_size//multi_gpu,
warmup_batches = warmup_batches,
ignore_thresh = ignore_thresh
)
else:
template_model, infer_model = create_yolov3_model(
nb_class = nb_class,
anchors = anchors,
max_box_per_image = max_box_per_image,
max_grid = max_grid,
batch_size = batch_size//multi_gpu,
warmup_batches = warmup_batches,
ignore_thresh = ignore_thresh
)
# load the pretrained weight if exists, otherwise load the backend weight only
if os.path.exists(saved_weights_name):
print("\nLoading pretrained weights.\n")
template_model.load_weights(saved_weights_name)
else:
template_model.load_weights("backend.h5", by_name=True)
if multi_gpu > 1:
train_model = multi_gpu_model(template_model, gpus=multi_gpu)
else:
train_model = template_model
return train_model, infer_model
def _main_(args):
config_path = args.conf
with open(config_path) as config_buffer:
config = json.loads(config_buffer.read())
###############################
# Parse the annotations
###############################
train_ints, valid_ints, labels = create_training_instances(
config['train']['train_annot_folder'],
config['train']['train_image_folder'],
config['train']['cache_name'],
config['valid']['valid_annot_folder'],
config['valid']['valid_image_folder'],
config['valid']['cache_name'],
config['model']['labels']
)
###############################
# Create the generators
###############################
train_generator = BatchGenerator(
instances = train_ints,
anchors = config['model']['anchors'],
labels = labels,
downsample = 32, # ratio between network input's size and network output's size, 32 for YOLOv3
max_box_per_image = config['model']['max_box_per_image'],
batch_size = config['train']['batch_size'],
min_net_size = config['model']['min_input_size'],
max_net_size = config['model']['max_input_size'],
shuffle = True,
jitter = 0.3,
norm = normalize
)
valid_generator = BatchGenerator(
instances = valid_ints,
anchors = config['model']['anchors'],
labels = labels,
downsample = 32, # ratio between network input's size and network output's size, 32 for YOLOv3
max_box_per_image = config['model']['max_box_per_image'],
batch_size = config['train']['batch_size'],
min_net_size = config['model']['min_input_size'],
max_net_size = config['model']['max_input_size'],
shuffle = True,
jitter = 0.0,
norm = normalize
)
###############################
# Create the model
###############################
if os.path.exists(config['train']['saved_weights_name']):
warmup_batches = 0 # no need warmup if the pretrained weight exists
else:
warmup_batches = config['train']['warmup_epochs'] * (config['train']['train_times']*len(train_generator) + \
config['valid']['valid_times']*len(valid_generator))
os.environ['CUDA_VISIBLE_DEVICES'] = config['train']['gpus']
multi_gpu = len(config['train']['gpus'].split(','))
train_model, infer_model = create_model(
nb_class = len(labels),
anchors = config['model']['anchors'],
max_box_per_image = config['model']['max_box_per_image'],
max_grid = [config['model']['max_input_size'], config['model']['max_input_size']],
batch_size = config['train']['batch_size'],
warmup_batches = warmup_batches,
ignore_thresh = config['train']['ignore_thresh'],
multi_gpu = multi_gpu,
saved_weights_name = config['train']['saved_weights_name']
)
###############################
# Kick off the training
###############################
optimizer = Adam(lr=config['train']['learning_rate'], beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
train_model.compile(loss=dummy_loss, optimizer=optimizer)
callbacks = create_callbacks(config['train']['saved_weights_name'])
train_model.fit_generator(
generator = train_generator,
steps_per_epoch = len(train_generator) * config['train']['train_times'],
epochs = config['train']['nb_epochs'] + config['train']['warmup_epochs'],
verbose = 2 if config['train']['debug'] else 1,
validation_data = valid_generator,
validation_steps = len(valid_generator) * config['valid']['valid_times'],
callbacks = callbacks,
workers = 4,
max_queue_size = 8
)
# load the best weight before early stop
train_model.load_weights(config['train']['saved_weights_name'])
if multi_gpu > 1:
# fix the saved model structure when multi_gpu > 1
train_model.get_layer("model_1").save(config['train']['saved_weights_name'])
# load the best weight to the infer_model
infer_model.load_weights(config['train']['saved_weights_name'])
# save the weight with the model structure of infer_model
infer_model.save(config['train']['saved_weights_name'])
# make a GPU version of infer_model for evaluation
if multi_gpu > 1:
infer_model = load_model(config['train']['saved_weights_name'])
###############################
# Run the evaluation
###############################
# compute mAP for all the classes
average_precisions = evaluate(infer_model, valid_generator)
# print the score
for label, average_precision in average_precisions.items():
print(labels[label] + ': {:.4f}'.format(average_precision))
print('mAP: {:.4f}'.format(sum(average_precisions.values()) / len(average_precisions)))
if __name__ == '__main__':
argparser = argparse.ArgumentParser(
description='Train and evaluate YOLO_v3 model on any dataset')
argparser.add_argument(
'-c',
'--conf',
help='path to configuration file')
args = argparser.parse_args()
_main_(args)