Skip to content

Latest commit

 

History

History
479 lines (409 loc) · 15.5 KB

README.md

File metadata and controls

479 lines (409 loc) · 15.5 KB

node-red-contrib-edgetpu-inference 1.0.2

This package contains Node-RED nodes which taking advantage of Shenzhou TPU to infer using AI models. There are also nodes for GUI presentation of result and system performance in this package.

Install

Run the following npm command in your Node-RED user directory (typically ~/.node-red):

npm install --prefix=~/.node-red node-red-contrib-edgetpu-inference

Category

  • Inference Node

    Find the inference node in category "EdgeTPU Inference" as follow:

  • Result Node and Performance Node

    Find the inference node in category "EdgeTPU Inference" as follow:

Usage

  • Inference Node

    > "Image Classification" node:

    Run image classification models with specified TPUs

    > “Object Detection” node:

    Run object detection models with specified TPUs

    - Node Properties:

    Below is the explanation of the properties:

    1. Input Type: The source input format, including the paths of image file, URL link, video file and camera device

    2. TPU Type: Support M.2 edge TPU type at current

    3. TPU ID: Specify the index of edge TPU

    4. Model Path: The path for model file

    5. Label Path: The path for label file of model

    6. Image Classification API parameter:

      o threshold : The score threshold for results. All returned results have a score greater-than-or-equal-to this value

      o top_k : The maximum number of results

    1. Object Detection API parameter:

      o threshold : The score threshold for results. All returned results have a score greater-than-or-equal-to this value.

    Note: The API parameter can reference the following link

    1. Control

      o Output Image : Output base64 image

      o Video Loop : Play video looply

      o Parse Particular Label: Send image contents when get the particular label. If don't get the particular label, the node don't send the image contents.

      o Speed Up: Reduce the base64 covert time by adjust the input frame resolution

      - Downscale(%): scale down the resolution 
      - Before/After inf: scale down the input frame before/after inference by edgetpu
      

    - Input and Output data Formats:

    1. Input data format to inference node:

    When the infernce using a edgetpu model is performed, you need to pass the corresponding msg.payload to the inference node. The msg.payload would be a string of path about image or frame sources.

    Source Type Payload format Example
    Image Strings ""/home/asus/Desktop/test.jpg"
    URL Streaming server Strings "http://127.0.0.1:8080/?action=stream"
    Video Strings “/home/asus/Desktop/test.mp4”
    Local Camera Strings "0"
    Stop Inference node Strings "STOP" or "stop"
    Pause Inference node Strings "PAUSE" or "pause"

    An example of input to inference node for url streaming server:

    {
        payload: “http://127.0.0.1:8080/?action=stream”
    }
    

    You also need to select the “input type” item to URL on inference node:

    1.1 Input data format to inference node:

    2. Output data format from inference node::
    2.1 SZ Image Classification node output json format:
    Output Format Description
    className Strings Class Name category
    score Integer The confidence of the inference result
    inf_fps Integer The FPS about TPU inference for a frame
    starttime Integer Inference node start time(Millionseconds)
    image Strings Base64 format strings (Output Image item is selected and then the image would be transferred)
    model Strings The filename of model that inference node used
    tpu Strings The TPU used by inference node

    Reference the Results on Node-red debug message:

    2.2 SZ Object Detection node output json format:
    Output Format Description
    bbox array The coordinate about x1, y1, x2 and y2 return from the edgetpu object detection api.
    className Strings Class Name category
    score Integer The confidence of the inference result
    inf_fps Integer The FPS about TPU inference for a frame
    starttime Integer Inference node start time(Millionseconds)
    image Strings Base64 format strings (Output Image item is selected and then the image would be transferred)
    model Strings The filename of model that inference node used
    tpu Strings The TPU used by inference node

    Reference the Results on Node-red debug message:

  • Result node

    Show the output results from Inference Node:

    - Node Properties:

    1. Group: Select which group on dashboard and show the widgets
    2. Size:sets the basic geometry of the grid layout in pixels
    3. Label:Show the topic on the dashboard
    4. ip: The localhost or ip address that is provided the device to connect.
    5. Name:Config and show the name on the node

    - Output

    Reference the following image about the node outputs:

    1. Default mapping to Group
    2. Label mapping to the Label config of properties
    3. The colors of bounding-box are classified with the object recognition:
      • The colors is mapped by the order of the object detection
      • Green is the first recognized object
      • Gray is the sixth recognized object or after the sixth object
    4. The right filed (Total): show the quantity of classification object

  • Performance node

    Show the following system information:

    1. The temperature of edge TPUs
    2. CPU usage
    3. RAM usage

    - Node Properties:

    1. Group: Select which group on dashboard and show the widgets
    2. Size: Sets the basic geometry of the grid layout in pixels
    3. ip: The localhost or ip address that is provided the remote device to connect to.
    4. Name: Config and show the name on the node

    - Output

    1. Default1 mapping to Group
    2. The following informaion:CPU usage, RAM usage and TPU temperature
    3. When the mouse cursor rests on the tpu bar, the model name in use will be shown

    - Exmaple flow

    Get an "inject node" and then connect to performance node:

    Set the "Repeat" filed of "inject node" to "interval" every 1 second and then the performance node will update the result per second


node-red-contrib-edgetpu-inference Example Flow

[
    {
        "id": "57023ee8.030fa",
        "type": "tab",
        "label": "ASUS IoT Object Detection",
        "disabled": false,
        "info": ""
    },
    {
        "id": "e9ce2c96.042b8",
        "type": "ui_group",
        "z": "",
        "name": "EdgeTPU Demonstration",
        "tab": "2b62772c.311188",
        "order": 3,
        "disp": true,
        "width": "35",
        "collapse": false
    },
    {
        "id": "2b62772c.311188",
        "type": "ui_tab",
        "z": "",
        "name": "ASUS IoT Object Detection",
        "icon": "dashboard"
    },
    {
        "id": "7f03a96d.192848",
        "type": "ui_base",
        "theme": {
            "name": "theme-light",
            "lightTheme": {
                "default": "#0094CE",
                "baseColor": "#2e5ea8",
                "baseFont": "-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif",
                "edited": true,
                "reset": false
            },
            "darkTheme": {
                "default": "#097479",
                "baseColor": "#097479",
                "baseFont": "-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif",
                "edited": false
            },
            "customTheme": {
                "name": "Untitled Theme 1",
                "default": "#4B7930",
                "baseColor": "#4B7930",
                "baseFont": "-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif"
            },
            "themeState": {
                "base-color": {
                    "default": "#0094CE",
                    "value": "#2e5ea8",
                    "edited": true
                },
                "page-titlebar-backgroundColor": {
                    "value": "#2e5ea8",
                    "edited": false
                },
                "page-backgroundColor": {
                    "value": "#fafafa",
                    "edited": false
                },
                "page-sidebar-backgroundColor": {
                    "value": "#333333",
                    "edited": false
                },
                "group-textColor": {
                    "value": "#5384d0",
                    "edited": false
                },
                "group-borderColor": {
                    "value": "#ffffff",
                    "edited": false
                },
                "group-backgroundColor": {
                    "value": "#ffffff",
                    "edited": false
                },
                "widget-textColor": {
                    "value": "#111111",
                    "edited": false
                },
                "widget-backgroundColor": {
                    "value": "#2e5ea8",
                    "edited": false
                },
                "widget-borderColor": {
                    "value": "#ffffff",
                    "edited": false
                },
                "base-font": {
                    "value": "-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif"
                }
            },
            "angularTheme": {
                "primary": "indigo",
                "accents": "blue",
                "warn": "red",
                "background": "grey"
            }
        },
        "site": {
            "name": "Node-RED Dashboard",
            "hideToolbar": "false",
            "allowSwipe": "false",
            "lockMenu": "false",
            "allowTempTheme": "true",
            "dateFormat": "DD/MM/YYYY",
            "sizes": {
                "sx": 48,
                "sy": 48,
                "gx": 6,
                "gy": 6,
                "cx": 6,
                "cy": 6,
                "px": 0,
                "py": 0
            }
        }
    },
    {
        "id": "acaf378c.638728",
        "type": "ui_spacer",
        "name": "spacer",
        "group": "e9ce2c96.042b8",
        "order": 2,
        "width": 26,
        "height": 1
    },
    {
        "id": "f9099855.51d4f8",
        "type": "function",
        "z": "57023ee8.030fa",
        "name": "Video_AIOT",
        "func": "\nmsg.payload=\"./node_modules/node-red-contrib-edgetpu-inference/test_data/test.mp4\"\nreturn msg;",
        "outputs": 1,
        "noerr": 0,
        "initialize": "",
        "finalize": "",
        "x": 350,
        "y": 460,
        "wires": [
            [
                "fc460f53.c4ceb"
            ]
        ],
        "icon": "font-awesome/fa-file-video-o"
    },
    {
        "id": "fc460f53.c4ceb",
        "type": "SZ Object Detection",
        "z": "57023ee8.030fa",
        "name": "",
        "intype": "2",
        "tputype": "0",
        "tpunum": "0",
        "modelpath": "./node_modules/node-red-contrib-edgetpu-inference/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite",
        "labelpath": "./node_modules/node-red-contrib-edgetpu-inference/test_data/coco_labels.txt",
        "threshold": "0.5",
        "topk": "5",
        "keepratio": "0",
        "relativecoord": "0",
        "resample": "0",
        "outimage": true,
        "loop": true,
        "isparse": false,
        "parselabel": "person",
        "speedup": false,
        "dnscale": "20",
        "dstime": "0",
        "x": 560,
        "y": 460,
        "wires": [
            [
                "ed840f2.3966df"
            ]
        ]
    },
    {
        "id": "795e500c.6a7cd",
        "type": "ui_button",
        "z": "57023ee8.030fa",
        "name": "StartDemo",
        "group": "e9ce2c96.042b8",
        "order": 1,
        "width": 4,
        "height": 1,
        "passthru": false,
        "label": "StartDemo",
        "tooltip": "",
        "color": "",
        "bgcolor": "",
        "icon": "",
        "payload": "",
        "payloadType": "str",
        "topic": "",
        "x": 150,
        "y": 380,
        "wires": [
            [
                "f9099855.51d4f8",
                "67a1b001.d76b6"
            ]
        ]
    },
    {
        "id": "67a1b001.d76b6",
        "type": "trigger",
        "z": "57023ee8.030fa",
        "name": "",
        "op1": "1",
        "op2": "0",
        "op1type": "str",
        "op2type": "str",
        "duration": "-1",
        "extend": false,
        "units": "s",
        "reset": "",
        "bytopic": "all",
        "topic": "topic",
        "outputs": 1,
        "x": 350,
        "y": 320,
        "wires": [
            [
                "93e3a74.887aa58"
            ]
        ]
    },
    {
        "id": "ed840f2.3966df",
        "type": "ui_result",
        "z": "57023ee8.030fa",
        "group": "e9ce2c96.042b8",
        "name": "",
        "ip": "127.0.0.1",
        "title": "",
        "order": 3,
        "resolution": "1",
        "width": 0,
        "height": 0,
        "x": 780,
        "y": 460,
        "wires": []
    },
    {
        "id": "93e3a74.887aa58",
        "type": "ui_performance",
        "z": "57023ee8.030fa",
        "group": "e9ce2c96.042b8",
        "name": "",
        "ip": "127.0.0.1",
        "title": "",
        "order": 3,
        "width": 0,
        "height": 0,
        "x": 580,
        "y": 320,
        "wires": []
    }
]

Acknowledgements

This dashboard was inspired by

This Python3 was inspired by