-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhandler_x4.py
281 lines (246 loc) · 11.7 KB
/
handler_x4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import pandas as pd
from clean_x4 import clean_x4
solved_spec = []
unsolved_spec = []
instance_list = set()
model_2_type = {"3502450": "rainbow", "3502460": "rainbow", "3502470": "rainbow", "3502480": "rainbow",
"3502490": "rainbow", "3502491": "rainbow",
"3503460": "basic", "3503470": "basic", "3503480": "basic", "3503490": "basic",
"3533470": "speed", "3533480": "speed", "3533490": "speed", "3533491": "speed", "3533492": "speed",
"3534460": "premium", "3534470": "premium", "3534480": "premium", "3534490": "premium",
"3534491": "premium",
"3521451": "alu", "3521452": "alu", "3521462": "alu", "3521471": "alu",
"3521472": "alu", "3521481": "alu", "3521482": "alu", "3521480": "alu", "3521491": "alu",
"3521492": "alu",
"3511460": "business", "3511470": "business", "3511480": "business", "3511490": "business",
"3500450": "micro", "3500460": "micro", "3500470": "micro", "3500480": "micro",
"3523460": "mobile", "3523470": "mobile", "3523480": "mobile",
"3524460": "mini", "3524470": "mini", "3524480": "mini",
"3531470": "ultra", "3531480": "ultra", "3531490": "ultra", "3531491": "ultra", "3531492": "ultra",
"3531493": "ultra",
"3532460": "slim", "3532470": "slim", "3532480": "slim", "3532490": "slim", "3532491": "slim",
"3537490": "highspeed", "3537491": "highspeed", "3537492": "highspeed",
"3535580": "imobile", "3535590": "imobile",
"3536470": "cmobile", "3536480": "cmobile", "3536490": "cmobile",
"3538480": "flash", "3538490": "flash", "3538491": "flash"}
sony_capacity_single = ["1tb", "256gb"]
sony_capacity_memtype_type = ["32gb", "4gb"]
def handle_x4(dataset: pd.DataFrame):
""" Call clean_x4.py;
Give an identification for each record according to their cleaned field values
and match records based on their identification
:param dataset: X4.csv
:return:
A DataFrame of matched pairs which contains following columns:
{left_instance_id: the left instance of a matched pair
left_instance_id: the right instance of a matched pair}
"""
dataset = clean_x4(dataset)
for index, row in dataset.iterrows():
instance_id = row['instance_id']
brand = row['brand']
capacity = row['capacity']
mem_type = row['mem_type']
type = row['type']
model = row['model']
item_code = row['item_code']
title = row['title']
pc = {}
if type == '0' and brand == "intenso" and model in model_2_type.keys():
type = model_2_type[model]
pc['id'] = instance_id
pc['title'] = title
pc['brand'] = brand
pc['capacity'] = capacity
pc['mem_type'] = mem_type
pc['type'] = type
pc['model'] = model
pc['item_code'] = item_code
if capacity in ('256gb', '512gb', '1tb', '2tb') and brand not in (
'samsung', 'sandisk'):
pc['identification'] = brand + capacity
solved_spec.append(pc)
instance_list.add(instance_id)
continue
if brand == 'lexar':
if capacity != '0' and type != '0' and mem_type != '0':
pc['identification'] = brand + capacity + mem_type + type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'sony':
if (mem_type in ('ssd', 'microsd')
or capacity == '1tb') and capacity != '0':
pc['identification'] = brand + capacity + mem_type
solved_spec.append(pc)
elif mem_type != '0' and capacity != '0' and type != '0':
pc['identification'] = brand + capacity + mem_type + type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'sandisk':
if capacity != '0' and mem_type != '0':
pc['identification'] = brand + capacity + mem_type + model
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'pny':
if capacity != '0' and mem_type != '0':
pc['identification'] = brand + capacity + mem_type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'intenso':
if capacity != '0' and type != '0':
pc['identification'] = brand + capacity + type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'kingston':
if mem_type != '0' and capacity != '0':
pc['identification'] = brand + capacity + mem_type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'samsung':
if mem_type in ('microsd', 'ssd', 'sd',
'usb') and capacity != '0' and model != '0':
pc['identification'] = brand + capacity + mem_type + model
solved_spec.append(pc)
elif mem_type != '0' and capacity != '0' and type != '0' and model != '0':
pc['identification'] = brand + \
capacity + mem_type + type + model
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'toshiba':
if capacity != '0' and mem_type != '0' and model != '0':
pc['identification'] = brand + capacity + model + mem_type
solved_spec.append(pc)
elif capacity != '0' and mem_type != '0' and type != '0':
pc['identification'] = brand + capacity + type + mem_type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
elif brand == 'transcend':
if capacity != '0' and mem_type != '0':
pc['identification'] = brand + capacity + mem_type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
else:
if brand != '0' and capacity != '0' and mem_type != '0':
pc['identification'] = brand + capacity + mem_type
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
instance_list.add(instance_id)
solved_classes = set()
for s in solved_spec:
if s['capacity'] != '0' and s['mem_type'] != '0':
solved_classes.add(s['brand'] + s['capacity'] + s['mem_type'])
unsolved_spec_cp = unsolved_spec.copy()
for u in unsolved_spec_cp:
if u['capacity'] != '0' and u['mem_type'] != '0' and (
u['type'] != '0' or u['model'] != '0'):
if (u['brand'] + u['capacity'] +
u['mem_type']) not in solved_classes:
u['identification'] = u['brand'] + u['capacity'] + \
u['mem_type'] + u['type'] + u['model']
solved_spec.append(u)
unsolved_spec.remove(u)
solved_classes.add(u['brand'] + u['capacity'] + u['mem_type'])
unsolved_spec_cp = unsolved_spec.copy()
for u in unsolved_spec_cp:
if u['capacity'] != '0' and u['mem_type'] != '0':
if (u['brand'] + u['capacity'] +
u['mem_type']) not in solved_classes:
u['identification'] = u['brand'] + u['capacity'] + \
u['mem_type'] + u['type'] + u['model']
solved_spec.append(u)
unsolved_spec.remove(u)
solved_classes.add(u['brand'] + u['capacity'] + u['mem_type'])
unsolved_spec_cp = unsolved_spec.copy()
for u in unsolved_spec_cp:
if u['capacity'] != '0':
if (u['brand'] + u['capacity'] +
u['mem_type']) not in solved_classes:
u['identification'] = u['brand'] + u['capacity'] + \
u['mem_type'] + u['type'] + u['model']
solved_spec.append(u)
unsolved_spec.remove(u)
solved_classes.add(u['brand'] + u['capacity'] + u['mem_type'])
unsolved_spec_cp = unsolved_spec.copy()
solved_spec_cp = solved_spec.copy()
for u in unsolved_spec_cp:
for s in solved_spec_cp:
if u['item_code'] != '0' and u['item_code'] == s['item_code']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
unsolved_spec_cp = unsolved_spec.copy()
solved_spec_cp = solved_spec.copy()
for u in unsolved_spec_cp:
if u['brand'] == 'sandisk':
continue
for s in solved_spec_cp:
if u['brand'] != '0' and u['capacity'] != '0' and u['mem_type'] != '0' and u['type'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and u['mem_type'] == s['mem_type'] and \
u['type'] == s['type']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['mem_type'] != '0' and u['model'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and u['mem_type'] == s['mem_type'] and \
u['model'] == s['model']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['type'] != '0' and u['model'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and u['type'] == s['type'] and \
u['model'] == s['model']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['mem_type'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and u['mem_type'] == s['mem_type']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['type'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and u['type'] == s['type']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
clusters = dict()
for s in solved_spec:
if s['identification'] in clusters.keys():
clusters[s['identification']].append(s['id'])
else:
clusters.update({s['identification']: [s['id']]})
for u in unsolved_spec:
if u['title'] in clusters.keys():
clusters[u['title']].append(u['id'])
else:
clusters.update({u['title']: [u['id']]})
couples = set()
for c in clusters.keys():
if len(clusters[c]) > 1:
for i in clusters[c]:
for j in clusters[c]:
if i < j:
couples.add((i, j, 1))
output = couples
output = pd.DataFrame(
output,
columns=[
'left_instance_id',
'right_instance_id',
'label'])
output.drop(columns=['label'], inplace=True)
return output