-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhandler_x2.py
207 lines (179 loc) · 8.71 KB
/
handler_x2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import pandas as pd
from clean_x2 import clean_x2
pc_aliases = {
"2320": "3435", "v7482": "v7582", "810g2": "810", "2338": "2339",
"346058u": "3460", "4291": "4290", "4287": "4290", "0622": "0627"}
cpu_model_aliases = {
"hp": {"2410m": "2540m", "2620m": "2640m"},
"acer": {},
"lenovo": {},
"asus": {},
"dell": {}
}
model_family_2_pcname = {
"4010u aspire": "e1572"
}
pc_single = ["v7582", "15f009wm", "3093", "ux31a", "v3772", "v3572", "m731r", "e3111",
"v3111", "15p030nr", "e5771", "e1731", "3437 ", "2170p", "e1532", "e1522",
"e1571", "e5571", "15d053cl", "v5573", "3448", "8460p", "8570p",
"2570p", "2760p", "0596", "547578", "547150", "547375"]
pc_core = ["e1572", "e1771", "810", "8560p", "3438"]
pc_model_capacity = ["2325", "3460"]
pc_capacity = ["9470m", "3444", "2339"]
solved_spec = []
unsolved_spec = []
instance_list = set()
def handle_x2(dataset: pd.DataFrame):
""" Call clean_x2.py;
Give an identification for each record according to their cleaned field values
and match records based on their identification
:param dataset: X2.csv
:return:
A DataFrame of matched pairs which contains following columns:
{left_instance_id: the left instance of a matched pair
left_instance_id: the right instance of a matched pair}
"""
dataset = clean_x2(dataset)
for index, row in dataset.iterrows():
instance_id = row['instance_id']
brand = row['brand']
cpu_core = row['cpu_core']
cpu_model = row['cpu_model']
cpu_frequency = row['cpu_frequency']
display_size = row['display_size']
pc_name = row['pc_name']
capacity = row['ram_capacity']
family = row['family']
title = row['title']
pc = {}
if (cpu_model + ' ' + family) in model_family_2_pcname.keys():
pc_name = model_family_2_pcname[(cpu_model + ' ' + family)]
if pc_name in pc_aliases.keys():
pc_name = pc_aliases[pc_name]
if brand in cpu_model_aliases.keys():
if cpu_model in cpu_model_aliases[brand].keys():
cpu_model = cpu_model_aliases[brand][cpu_model]
instance_list.add(instance_id)
pc['id'] = instance_id
pc['title'] = title
pc['brand'] = brand
pc['pc_name'] = pc_name
pc['cpu_model'] = cpu_model
pc['capacity'] = capacity
pc['cpu_core'] = cpu_core
pc['family'] = family
pc['cpu_frequency'] = cpu_frequency
pc['display_size'] = display_size
if pc_name != '0' and cpu_model != '0' and capacity != '0' and cpu_core != '0':
pc['identification'] = brand + ' ' + pc_name + \
' ' + cpu_model + ' ' + capacity + ' ' + cpu_core
solved_spec.append(pc)
else:
unsolved_spec.append(pc)
for u in unsolved_spec.copy():
for s in solved_spec.copy():
if u['brand'] != '0' and u['pc_name'] != '0' and u['capacity'] != '0' and u['cpu_model'] != '0':
if u['brand'] == s['brand'] and u['pc_name'] == s['pc_name'] and u['capacity'] == s['capacity'] and \
u['cpu_model'] == s['cpu_model']:
if u['family'] == '0' or s['family'] == '0' or u['family'] == s['family']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['pc_name'] != '0' and u['cpu_core'] != '0' and u['cpu_model'] != '0':
if u['brand'] == s['brand'] and u['pc_name'] == s['pc_name'] and u['cpu_model'] == s['cpu_model'] and \
u['cpu_core'] == s['cpu_core']:
if u['family'] == '0' or s['family'] == '0' or u['family'] == s['family']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['cpu_core'] != '0' and u['pc_name'] != '0':
if u['brand'] == s['brand'] and u['pc_name'] == s['pc_name'] and u['cpu_core'] == s['cpu_core'] and \
u['capacity'] == s['capacity']:
if u['family'] == '0' or s['family'] == '0' or u['family'] == s['family']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['cpu_core'] != '0' and u['cpu_model'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and u['cpu_core'] == s['cpu_core'] and \
u['cpu_model'] == s['cpu_model']:
if u['family'] == '0' or s['family'] == '0' or u['family'] == s['family']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['cpu_model'] != '0' and u['pc_name'] != '0':
if u['brand'] == s['brand'] and u['pc_name'] == s['pc_name'] and u['cpu_model'] == s['cpu_model']:
if u['family'] == '0' or s['family'] == '0' or u['family'] == s['family']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['cpu_model'] != '0' and u['display_size'] != '0' and \
u['cpu_frequency'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and \
u['cpu_model'] == s['cpu_model'] and u['display_size'] == s['display_size'] and \
u['cpu_frequency'] == s['cpu_frequency']:
if u['family'] == '0' or s['family'] == '0' or u['family'] == s['family']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
elif u['brand'] != '0' and u['capacity'] != '0' and u['pc_name'] != '0' and u['display_size'] != '0' and \
u['cpu_frequency'] != '0':
if u['brand'] == s['brand'] and u['capacity'] == s['capacity'] and u['pc_name'] == s['pc_name'] and \
u['display_size'] == s['display_size'] and u['cpu_frequency'] == s['cpu_frequency']:
if u['family'] == '0' or s['family'] == '0' or u['family'] == s['family']:
u['identification'] = s['identification']
solved_spec.append(u)
unsolved_spec.remove(u)
break
for i in unsolved_spec:
if i in solved_spec:
continue
for j in unsolved_spec:
if j in solved_spec:
continue
if i['id'] == j['id']:
continue
if i['brand'] == j['brand'] and i['capacity'] == j['capacity'] and \
i['cpu_core'] == j['cpu_core'] and i['cpu_model'] == j['cpu_model'] and \
i['pc_name'] == j['pc_name']:
i['identification'] = i['brand'] + i['capacity'] + \
i['cpu_core'] + i['cpu_model'] + i['pc_name']
j['identification'] = i['identification']
if i not in solved_spec:
solved_spec.append(i)
if j not in solved_spec:
solved_spec.append(j)
clusters = dict()
for s in solved_spec:
if s['identification'] in clusters.keys():
clusters[s['identification']].append(s['id'])
else:
clusters.update({s['identification']: [s['id']]})
for u in unsolved_spec:
if u['title'] in clusters.keys():
clusters[u['title']].append(u['id'])
else:
clusters.update({u['title']: [u['id']]})
couples = set()
for c in clusters.keys():
if len(clusters[c]) > 1:
for i in clusters[c]:
for j in clusters[c]:
if i < j:
couples.add((i, j, 1))
if i > j:
couples.add((j, i, 1))
output = couples
output = pd.DataFrame(
output,
columns=[
'left_instance_id',
'right_instance_id',
'label'])
output.drop(columns=['label'], inplace=True)
return output