-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSequenceAlignment.java
104 lines (89 loc) · 3.18 KB
/
SequenceAlignment.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/*
* Code by:@yinengy
* Time: 11/4/2018
*
* Correspond to the algorithm state on page 282,
* all /* comments are from the book.
*/
public class SequenceAlignment {
public static int[][] alpha; // α(x,y) for the penalty of a mismatch
public static int delta; // δ for the penalty of a gap
public static int[][] A; // Opt(m, n)
/**
* compute the error for optimal alignment
*/
public static int Alignment(String X, String Y) {
// some preparation
X = X.toLowerCase();
Y = Y.toLowerCase();
int m = X.length();
int n = Y.length();
/* Array A[0 . . . m,0 . . . n] */
A = new int[m + 1][n + 1];
/* Initialize A[i, 0]= iδ for each i */
for (int i = 0; i <= m; i++) {
A[i][0] = i * delta;
}
/* Initialize A[0, j]= jδ for each j */
for (int j = 0; j <= n; j++) {
A[0][j] = j * delta;
}
/* For j = 1, . . . , n */
for (int j = 1; j <= n; j++) { // O(n)
/* For i = 1, . . . , m */
for (int i = 1; i <= m; i++) { // O(m)
/* Use the recurrence (6.16) to compute A[i, j] */
int a_ij = alpha[X.charAt(i - 1) - 'a'][Y.charAt(j - 1) - 'a'];
A[i][j] = Math.min(Math.min(a_ij + A[i - 1][j - 1], delta + A[i - 1][j]), delta + A[i][j - 1]);
} /* Endfor */
} /* Endfor */
/* Return A[m, n] */
return A[m][n]; // totally O(mn)
}
/**
* print out the result of alignment by the table we get from Alignment(X,Y)
* input m and n is the current position f X and Y
*/
public static void FindSolution(int m, int n, String X, String Y) {
// base case
if (n == 0 && m == 0) {
return;
} else if (n == 0) {
System.out.println(X.charAt(m - 1) + " " + "|");
FindSolution(m - 1, n, X, Y);
return;
} else if (m == 0) {
System.out.println("|" + " " + Y.charAt(n - 1));
FindSolution(m, n-1, X, Y);
return;
}
// use recurrence (6.16) to find solution
int a_ij = alpha[X.charAt(m - 1) - 'a'][Y.charAt(n - 1) - 'a'];
if (A[m][n] == a_ij + A[m - 1][n - 1]) {
System.out.println(X.charAt(m - 1) + " " + Y.charAt(n - 1));
FindSolution(m - 1, n - 1, X, Y);
} else if (A[m][n] == delta + A[m - 1][n]) {
System.out.println(X.charAt(m - 1) + " " + "|");
FindSolution(m - 1, n, X, Y);
} else if (A[m][n] == delta + A[m][n - 1]) {
System.out.println("|" + " " + Y.charAt(n - 1));
FindSolution(m, n-1, X, Y);
}
}
public static void main(String[] args) {
alpha = new int[26][26];
for (int i = 0; i < 26; i++) {
for (int j = 0; j < 26; j++) {
if (i != j) {
alpha[i][j] = 1;
}
}
}
delta = 4;
String X = "ocurrance";
String Y = "occurrence";
Alignment(X, Y);
System.out.println("Inverse order:");
FindSolution(X.length(), Y.length(), X.toLowerCase(),Y.toLowerCase());
}
}