-
Notifications
You must be signed in to change notification settings - Fork 0
/
hdbscanClus.py
51 lines (40 loc) · 1.38 KB
/
hdbscanClus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argos.io as io
import argos.plot as tplot
import matplotlib.pyplot as plt
import numpy as np
import hdbscan
from sklearn import metrics
traj_list = io.load("1_traj_seg.dt")
traj_list = traj_list[:1000]
min_samples = 1
min_cluster_size = 2
D = io.load_distance_matrix("distance1.npz")
dbscan = hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, min_samples=min_samples, metric="precomputed", memory="hdbscan_cache")
dbscan.fit(D)
# Postprocessing
no_of_labels = np.max(dbscan.labels_) + 1
print("Total number of clusters : %s" % no_of_labels)
clusters = [[] for i in range(no_of_labels)]
outliers = []
no = len(traj_list)
for i in range(no):
label = dbscan.labels_[i]
if label == -1:
outliers.append(traj_list[i])
else:
clusters[label].append(traj_list[i])
no_of_noise = len(outliers)
print("Number of noise points %s" % no_of_noise)
print("Noise Percentage : %.3f" % (no_of_noise / no))
silhoutte_score = metrics.silhouette_score(D, dbscan.labels_)
print("Silhoutte Coefficient : %.3f" % silhoutte_score)
# Plotting Clustered Trajectories
color_list = plt.rcParams['axes.prop_cycle'].by_key()['color']
for i in range(no_of_labels):
for traj in clusters[i]:
next_color = color_list[0 % len(color_list)]
tplot.plot_traj(traj, next_color, alpha=1)
#tplot.plot_traj(traj)
for traj in outliers:
tplot.plot_traj(traj, "r")
tplot.plot_map()