-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdprop.lua
executable file
·69 lines (56 loc) · 2.6 KB
/
sdprop.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
--[[
#
# ==================================================================
# == ==
# == PLEASE READ 'license.txt' BEFORE USING THIS SOURCE ==
# == ==
# ==================================================================
#
# Copyright (C) 2020 Nippon Telegraph and Telephone Corporation
# Author: Yasutoshi Ida <[email protected]>
#
A Torch7 implementation of SDProp [1].
[1] Y. Ida et al., "Adaptive Learning Rate via Covariance Matrix Based Preconditioning for Deep Neural Networks", International Joint Conference on Artificial Intelligence(IJCAI), 2017.
URL: https://www.ijcai.org/proceedings/2017/0267.pdf
ARGS:
- 'opfunc' : a function that takes a single input (X), the point of a evaluation, and returns f(X) and df/dX
- 'x' : the initial point
- 'config` : a table with configuration parameters for the optimizer
- 'config.learningRate' : initial learning rate
- 'config.gamma' : bias for online updating of diagonal covariance matrix
- 'config.epsilon' : for numerical stability
- 'state' : a table describing the state of the optimizer; after each call the state is modified
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
]]
function optim.sdprop(opfunc, x, config, state)
-- (0) get/update state
local config = config or {}
local state = state or config
local lr = config.learningRate or 0.001
local gamma = config.gamma or 0.99
local epsilon = config.epsilon or 1e-8
-- (1) evaluate f(x) and df/dx
local fx, dfdx = opfunc(x)
-- Initialization
state.t = state.t or 0
-- Exponential moving average of first order gradients
state.mu = state.mu or x.new(dfdx:size()):zero()
-- Exponential moving average of diagonal covariance matrix
state.c = state.c or x.new(dfdx:size()):zero()
-- A tmp tensor to hold the sqrt(c) + epsilon
state.denom = state.denom or x.new(dfdx:size()):zero()
state.t = state.t + 1
-- Online update of state.mu and state.c
local c_dfdx = torch.add(dfdx, -state.mu)
state.c:mul(gamma):addcmul(gamma*(1-gamma), c_dfdx, c_dfdx)
state.mu:mul(gamma):add(1-gamma, dfdx)
state.denom:copy(state.c):sqrt():add(epsilon)
local biasCorrection = 1 - gamma^state.t
local stepSize = lr * math.sqrt(biasCorrection)
-- (2) update x
x:addcdiv(-stepSize, dfdx, state.denom)
-- return x*, f(x) before optimization
return x, {fx}
end