-
Notifications
You must be signed in to change notification settings - Fork 0
/
Gated_STGCN.py
247 lines (211 loc) · 8.93 KB
/
Gated_STGCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 25 15:12:27 2021
@author: yang an
"""
import os
import shutil
from time import time
from datetime import datetime
import argparse
import numpy as np
import torch
import torch.nn as nn
# import configparser
# import matplotlib.pyplot as plt
# import torch.nn.functional as F
# from torch.autograd import Variable
from torch.utils.data import DataLoader, TensorDataset
import torch.optim as optim
from lib.utils import compute_val_loss, evaluate, predict
from lib.data_preparation import read_and_generate_dataset
from lib.utils import scaled_Laplacian, cheb_polynomial, get_adjacency_matrix
from model import Gated_STGCN as model
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda:0', help='')
# parser.add_argument('--max_epoch', type=int, default=40, help='Epoch to run [default: 250]')
parser.add_argument('--max_epoch', type=int, default=40, help='Epoch to run [default: 250]')
# parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 32]')
parser.add_argument('--batch_size', type=int, default=16, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.0005, help='Initial learning rate [default: 0.0005]')
parser.add_argument('--momentum', type=float, default=0.99, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--length', type=int, default=60, help='Size of temporal : 12')
parser.add_argument("--force", type=str, default=True,
help="remove params dir", required=False)
parser.add_argument("--data_name", type=str, default=4,
help="the number of data documents [4/8]", required=False)
parser.add_argument('--num_point', type=int, default=307,
help='road Point Number [370/397] ', required=False)
parser.add_argument('--decay', type=float, default=0.92, help='decay rate of learning rate')
FLAGS = parser.parse_args()
decay = FLAGS.decay
f = FLAGS.data_name
adj_filename = 'data/PEMS0%s/distance.csv' % f
graph_signal_matrix_filename = 'data/PEMS0%s/pems0%s.npz' % (f, f)
Length = FLAGS.length
batch_size = FLAGS.batch_size
num_nodes = FLAGS.num_point
epochs = FLAGS.max_epoch
learning_rate = FLAGS.learning_rate
optimizer = FLAGS.optimizer
points_per_hour = 12
num_for_predict = 12
num_of_weeks = 2
num_of_days = 1
num_of_hours = 2
num_of_vertices = FLAGS.num_point
num_of_features = 3
merge = False
model_name = 'Gated_STGCN_%s' % f
params_dir = 'result/exp/Gated_STGCN'
prediction_path = 'result/prediction/Gated_STGCN_0%s' % f
wdecay = 0.000
device = torch.device(FLAGS.device)
# read laplace matrix
adj = get_adjacency_matrix(adj_filename, num_nodes)
adjs = scaled_Laplacian(adj)
supports = (torch.tensor(adjs)).type(torch.float32).to(device)
print('Model is %s' % (model_name))
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
if params_dir != "None":
params_path = os.path.join(params_dir, model_name)
else:
params_path = 'params/%s_%s/' % (model_name, timestamp)
# check parameters file
if os.path.exists(params_path) and not FLAGS.force:
raise SystemExit("Params folder exists! Select a new params path please!")
else:
if os.path.exists(params_path):
shutil.rmtree(params_path)
os.makedirs(params_path)
print('Create params directory %s' % (params_path))
if __name__ == "__main__":
# read all data from graph signal matrix file
print("Reading data...")
# Input: train / valid / test : length x 3 x NUM_POINT x 12
all_data = read_and_generate_dataset(graph_signal_matrix_filename,
num_of_weeks,
num_of_days,
num_of_hours,
num_for_predict,
points_per_hour,
merge)
# test set ground truth
true_value = all_data['test']['target']
print(true_value.shape)
# training set data loader
train_loader = DataLoader(
TensorDataset(
torch.Tensor(all_data['train']['week']),
torch.Tensor(all_data['train']['day']),
torch.Tensor(all_data['train']['recent']),
torch.Tensor(all_data['train']['target'])
),
batch_size=batch_size,
shuffle=True
)
# validation set data loader
val_loader = DataLoader(
TensorDataset(
torch.Tensor(all_data['val']['week']),
torch.Tensor(all_data['val']['day']),
torch.Tensor(all_data['val']['recent']),
torch.Tensor(all_data['val']['target'])
),
batch_size=batch_size,
shuffle=False
)
# testing set data loader
test_loader = DataLoader(
TensorDataset(
torch.Tensor(all_data['test']['week']),
torch.Tensor(all_data['test']['day']),
torch.Tensor(all_data['test']['recent']),
torch.Tensor(all_data['test']['target'])
),
batch_size=batch_size,
shuffle=False
)
# save Z-score mean and std
stats_data = {}
for type_ in ['week', 'day', 'recent']:
stats = all_data['stats'][type_]
stats_data[type_ + '_mean'] = stats['mean']
stats_data[type_ + '_std'] = stats['std']
np.savez_compressed(
os.path.join(params_path, 'stats_data'),
**stats_data
)
# loss function MSE
loss_function = nn.MSELoss()
# get model's structure
net = model(c_in=num_of_features, c_out=64,
num_nodes=num_nodes, week=24,
day=12, recent=24,
K=3, Kt=3)
net.to(device) # to cuda
optimizer = optim.Adam(net.parameters(), lr=learning_rate, weight_decay=wdecay)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, decay)
# scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [20,30], gamma=0.7, last_epoch=-1)
# calculate origin loss in epoch 0
compute_val_loss(net, val_loader, loss_function, supports, device, epoch=0)
# compute testing set MAE, RMSE, MAPE before training
evaluate(net, test_loader, true_value, supports, device, epoch=0)
clip = 5
his_loss = []
train_time = []
for epoch in range(1, epochs + 1):
train_l = []
start_time_train = time()
for train_w, train_d, train_r, train_t in train_loader:
train_w = train_w.to(device)
train_d = train_d.to(device)
train_r = train_r.to(device)
train_t = train_t.to(device)
net.train() # train pattern
optimizer.zero_grad() # grad to 0
output, _, A = net(train_w, train_d, train_r, supports)
loss = loss_function(output, train_t)
# backward p
loss.backward()
# torch.nn.utils.clip_grad_norm_(net.parameters(), clip)
# update parameter
optimizer.step()
training_loss = loss.item()
train_l.append(training_loss)
scheduler.step()
end_time_train = time()
train_l = np.mean(train_l)
print('epoch step: %s, training loss: %.2f, time: %.2fs'
% (epoch, train_l, end_time_train - start_time_train))
train_time.append(end_time_train - start_time_train)
# compute validation loss
valid_loss = compute_val_loss(net, val_loader, loss_function, supports, device, epoch)
his_loss.append(valid_loss)
# evaluate the model on testing set
evaluate(net, test_loader, true_value, supports, device, epoch)
params_filename = os.path.join(params_path,
'%s_epoch_%s_%s.params' % (model_name,
epoch, str(round(valid_loss, 2))))
torch.save(net.state_dict(), params_filename)
print('save parameters to file: %s' % (params_filename))
print("Training finished")
print("Training time/epoch: %.2f secs/epoch" % np.mean(train_time))
bestid = np.argmin(his_loss)
print("The valid loss on best model is epoch%s_%s" % (str(bestid + 1), str(round(his_loss[bestid], 4))))
best_params_filename = os.path.join(params_path,
'%s_epoch_%s_%s.params' % (model_name,
str(bestid + 1), str(round(his_loss[bestid], 2))))
net.load_state_dict(torch.load(best_params_filename))
start_time_test = time()
prediction, spatial_at, parameter_adj = predict(net, test_loader, supports, device)
end_time_test = time()
evaluate(net, test_loader, true_value, supports, device, epoch)
test_time = np.mean(end_time_test - start_time_test)
print("Test time: %.2f" % test_time)
np.savez_compressed(
os.path.normpath(prediction_path),
prediction=prediction,
ground_truth=all_data['test']['target']
)