forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin_cost_string_conversion.py
129 lines (102 loc) · 3.96 KB
/
min_cost_string_conversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Algorithm for calculating the most cost-efficient sequence for converting one string
into another.
The only allowed operations are
--- Cost to copy a character is copy_cost
--- Cost to replace a character is replace_cost
--- Cost to delete a character is delete_cost
--- Cost to insert a character is insert_cost
"""
def compute_transform_tables(
source_string: str,
destination_string: str,
copy_cost: int,
replace_cost: int,
delete_cost: int,
insert_cost: int,
) -> tuple[list[list[int]], list[list[str]]]:
source_seq = list(source_string)
destination_seq = list(destination_string)
len_source_seq = len(source_seq)
len_destination_seq = len(destination_seq)
costs = [
[0 for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1)
]
ops = [
["0" for _ in range(len_destination_seq + 1)] for _ in range(len_source_seq + 1)
]
for i in range(1, len_source_seq + 1):
costs[i][0] = i * delete_cost
ops[i][0] = f"D{source_seq[i - 1]:c}"
for i in range(1, len_destination_seq + 1):
costs[0][i] = i * insert_cost
ops[0][i] = f"I{destination_seq[i - 1]:c}"
for i in range(1, len_source_seq + 1):
for j in range(1, len_destination_seq + 1):
if source_seq[i - 1] == destination_seq[j - 1]:
costs[i][j] = costs[i - 1][j - 1] + copy_cost
ops[i][j] = f"C{source_seq[i - 1]:c}"
else:
costs[i][j] = costs[i - 1][j - 1] + replace_cost
ops[i][j] = f"R{source_seq[i - 1]:c}" + str(destination_seq[j - 1])
if costs[i - 1][j] + delete_cost < costs[i][j]:
costs[i][j] = costs[i - 1][j] + delete_cost
ops[i][j] = f"D{source_seq[i - 1]:c}"
if costs[i][j - 1] + insert_cost < costs[i][j]:
costs[i][j] = costs[i][j - 1] + insert_cost
ops[i][j] = f"I{destination_seq[j - 1]:c}"
return costs, ops
def assemble_transformation(ops: list[list[str]], i: int, j: int) -> list[str]:
if i == 0 and j == 0:
return []
else:
if ops[i][j][0] == "C" or ops[i][j][0] == "R":
seq = assemble_transformation(ops, i - 1, j - 1)
seq.append(ops[i][j])
return seq
elif ops[i][j][0] == "D":
seq = assemble_transformation(ops, i - 1, j)
seq.append(ops[i][j])
return seq
else:
seq = assemble_transformation(ops, i, j - 1)
seq.append(ops[i][j])
return seq
if __name__ == "__main__":
_, operations = compute_transform_tables("Python", "Algorithms", -1, 1, 2, 2)
m = len(operations)
n = len(operations[0])
sequence = assemble_transformation(operations, m - 1, n - 1)
string = list("Python")
i = 0
cost = 0
with open("min_cost.txt", "w") as file:
for op in sequence:
print("".join(string))
if op[0] == "C":
file.write("%-16s" % "Copy %c" % op[1])
file.write("\t\t\t" + "".join(string))
file.write("\r\n")
cost -= 1
elif op[0] == "R":
string[i] = op[2]
file.write("%-16s" % ("Replace %c" % op[1] + " with " + str(op[2])))
file.write("\t\t" + "".join(string))
file.write("\r\n")
cost += 1
elif op[0] == "D":
string.pop(i)
file.write("%-16s" % "Delete %c" % op[1])
file.write("\t\t\t" + "".join(string))
file.write("\r\n")
cost += 2
else:
string.insert(i, op[1])
file.write("%-16s" % "Insert %c" % op[1])
file.write("\t\t\t" + "".join(string))
file.write("\r\n")
cost += 2
i += 1
print("".join(string))
print("Cost: ", cost)
file.write("\r\nMinimum cost: " + str(cost))