forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame_of_life.py
131 lines (107 loc) · 3.09 KB
/
game_of_life.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Conway's Game Of Life, Author Anurag Kumar(mailto:[email protected])
Requirements:
- numpy
- random
- time
- matplotlib
Python:
- 3.5
Usage:
- $python3 game_o_life <canvas_size:int>
Game-Of-Life Rules:
1.
Any live cell with fewer than two live neighbours
dies, as if caused by under-population.
2.
Any live cell with two or three live neighbours lives
on to the next generation.
3.
Any live cell with more than three live neighbours
dies, as if by over-population.
4.
Any dead cell with exactly three live neighbours be-
comes a live cell, as if by reproduction.
"""
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
usage_doc = "Usage of script: script_nama <size_of_canvas:int>"
choice = [0] * 100 + [1] * 10
random.shuffle(choice)
def create_canvas(size: int) -> list[list[bool]]:
canvas = [[False for i in range(size)] for j in range(size)]
return canvas
def seed(canvas: list[list[bool]]) -> None:
for i, row in enumerate(canvas):
for j, _ in enumerate(row):
canvas[i][j] = bool(random.getrandbits(1))
def run(canvas: list[list[bool]]) -> list[list[bool]]:
"""This function runs the rules of game through all points, and changes their
status accordingly.(in the same canvas)
@Args:
--
canvas : canvas of population to run the rules on.
@returns:
--
None
"""
current_canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(current_canvas.shape[0]))
for r, row in enumerate(current_canvas):
for c, pt in enumerate(row):
next_gen_canvas[r][c] = __judge_point(
pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2]
)
current_canvas = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
return_canvas: list[list[bool]] = current_canvas.tolist()
return return_canvas
def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
dead = 0
alive = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
state = pt
if pt:
if alive < 2:
state = False
elif alive == 2 or alive == 3:
state = True
elif alive > 3:
state = False
else:
if alive == 3:
state = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
canvas_size = int(sys.argv[1])
# main working structure of this module.
c = create_canvas(canvas_size)
seed(c)
fig, ax = plt.subplots()
fig.show()
cmap = ListedColormap(["w", "k"])
try:
while True:
c = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass