-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist-classify1.py
31 lines (25 loc) · 1.66 KB
/
mnist-classify1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#coding=utf-8
import caffe
import numpy as np
root='/home/xuwenying/caffe/caffe-master/examples/' #根目录
deploy=root + 'mnist/deploy.prototxt' #deploy文件
caffe_model=root + 'mnist/lenet_iter_9380.caffemodel' #训练好的 caffemodel
img=root+'mnist/test1/00066.png' #随机找的一张待测图片
labels_filename = root + 'mnist/test/labels.txt' #类别名称文件,将数字标签转换回类别名称
net = caffe.Net(deploy,caffe_model,caffe.TEST) #加载model和network
#图片预处理设置
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) #设定图片的shape格式(1,3,28,28)
transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(28,28,3)变为(3,28,28)
#transformer.set_mean('data', np.load(mean_file).mean(1).mean(1)) #减去均值,前面训练模型时没有减均值,这儿就不用
transformer.set_raw_scale('data', 255) # 缩放到【0,255】之间
transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR
im=caffe.io.load_image(img) #加载图片
net.blobs['data'].data[...] = transformer.preprocess('data',im) #执行上面设置的图片预处理操作,并将图片载入到blob中
#执行测试
out = net.forward()
labels = np.loadtxt(labels_filename, str, delimiter='\t') #读取类别名称文件
prob= net.blobs['Softmax1'].data[0].flatten() #取出最后一层(Softmax)属于某个类别的概率值,并打印
print prob
order=prob.argsort()[-1] #将概率值排序,取出最大值所在的序号
print order
print 'the class is:',labels[order] #将该序号转换成对应的类别名称,并打印