-
Notifications
You must be signed in to change notification settings - Fork 314
/
srgan_model.py
142 lines (120 loc) · 5.17 KB
/
srgan_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import importlib
import torch
from collections import OrderedDict
from copy import deepcopy
from basicsr.models.archs import define_network
from basicsr.models.sr_model import SRModel
loss_module = importlib.import_module('basicsr.models.losses')
class SRGANModel(SRModel):
"""SRGAN model for single image super-resolution."""
def init_training_settings(self):
train_opt = self.opt['train']
# define network net_d
self.net_d = define_network(deepcopy(self.opt['network_d']))
self.net_d = self.model_to_device(self.net_d)
self.print_network(self.net_d)
# load pretrained models
load_path = self.opt['path'].get('pretrain_network_d', None)
if load_path is not None:
self.load_network(self.net_d, load_path,
self.opt['path'].get('strict_load_d', True))
self.net_g.train()
self.net_d.train()
# define losses
if train_opt.get('pixel_opt'):
pixel_type = train_opt['pixel_opt'].pop('type')
cri_pix_cls = getattr(loss_module, pixel_type)
self.cri_pix = cri_pix_cls(**train_opt['pixel_opt']).to(
self.device)
else:
self.cri_pix = None
if train_opt.get('perceptual_opt'):
percep_type = train_opt['perceptual_opt'].pop('type')
cri_perceptual_cls = getattr(loss_module, percep_type)
self.cri_perceptual = cri_perceptual_cls(
**train_opt['perceptual_opt']).to(self.device)
else:
self.cri_perceptual = None
if train_opt.get('gan_opt'):
gan_type = train_opt['gan_opt'].pop('type')
cri_gan_cls = getattr(loss_module, gan_type)
self.cri_gan = cri_gan_cls(**train_opt['gan_opt']).to(self.device)
self.net_d_iters = train_opt.get('net_d_iters', 1)
self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def setup_optimizers(self):
train_opt = self.opt['train']
# optimizer g
optim_type = train_opt['optim_g'].pop('type')
if optim_type == 'Adam':
self.optimizer_g = torch.optim.Adam(self.net_g.parameters(),
**train_opt['optim_g'])
else:
raise NotImplementedError(
f'optimizer {optim_type} is not supperted yet.')
self.optimizers.append(self.optimizer_g)
# optimizer d
optim_type = train_opt['optim_d'].pop('type')
if optim_type == 'Adam':
self.optimizer_d = torch.optim.Adam(self.net_d.parameters(),
**train_opt['optim_d'])
else:
raise NotImplementedError(
f'optimizer {optim_type} is not supperted yet.')
self.optimizers.append(self.optimizer_d)
def optimize_parameters(self, current_iter):
# optimize net_g
for p in self.net_d.parameters():
p.requires_grad = False
self.optimizer_g.zero_grad()
self.output = self.net_g(self.lq)
l_g_total = 0
loss_dict = OrderedDict()
if (current_iter % self.net_d_iters == 0
and current_iter > self.net_d_init_iters):
# pixel loss
if self.cri_pix:
l_g_pix = self.cri_pix(self.output, self.gt)
l_g_total += l_g_pix
loss_dict['l_g_pix'] = l_g_pix
# perceptual loss
if self.cri_perceptual:
l_g_percep, l_g_style = self.cri_perceptual(
self.output, self.gt)
if l_g_percep is not None:
l_g_total += l_g_percep
loss_dict['l_g_percep'] = l_g_percep
if l_g_style is not None:
l_g_total += l_g_style
loss_dict['l_g_style'] = l_g_style
# gan loss
fake_g_pred = self.net_d(self.output)
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
l_g_total += l_g_gan
loss_dict['l_g_gan'] = l_g_gan
l_g_total.backward()
self.optimizer_g.step()
# optimize net_d
for p in self.net_d.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
# real
real_d_pred = self.net_d(self.gt)
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
loss_dict['l_d_real'] = l_d_real
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
l_d_real.backward()
# fake
fake_d_pred = self.net_d(self.output.detach())
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
loss_dict['l_d_fake'] = l_d_fake
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
l_d_fake.backward()
self.optimizer_d.step()
self.log_dict = self.reduce_loss_dict(loss_dict)
def save(self, epoch, current_iter):
self.save_network(self.net_g, 'net_g', current_iter)
self.save_network(self.net_d, 'net_d', current_iter)
self.save_training_state(epoch, current_iter)