forked from andyzeng/visual-pushing-grasping
-
Notifications
You must be signed in to change notification settings - Fork 0
/
logger.py
executable file
·106 lines (91 loc) · 6.3 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import time
import datetime
import os
import numpy as np
import cv2
import torch
# import h5py
class Logger():
def __init__(self, continue_logging, logging_directory):
# Create directory to save data
timestamp = time.time()
timestamp_value = datetime.datetime.fromtimestamp(timestamp)
self.continue_logging = continue_logging
if self.continue_logging:
self.base_directory = logging_directory
print('Pre-loading data logging session: %s' % (self.base_directory))
else:
self.base_directory = os.path.join(logging_directory, timestamp_value.strftime('%Y-%m-%d.%H:%M:%S'))
print('Creating data logging session: %s' % (self.base_directory))
self.info_directory = os.path.join(self.base_directory, 'info')
self.color_images_directory = os.path.join(self.base_directory, 'data', 'color-images')
self.depth_images_directory = os.path.join(self.base_directory, 'data', 'depth-images')
self.color_heightmaps_directory = os.path.join(self.base_directory, 'data', 'color-heightmaps')
self.depth_heightmaps_directory = os.path.join(self.base_directory, 'data', 'depth-heightmaps')
self.models_directory = os.path.join(self.base_directory, 'models')
self.visualizations_directory = os.path.join(self.base_directory, 'visualizations')
self.recordings_directory = os.path.join(self.base_directory, 'recordings')
self.transitions_directory = os.path.join(self.base_directory, 'transitions')
if not os.path.exists(self.info_directory):
os.makedirs(self.info_directory)
if not os.path.exists(self.color_images_directory):
os.makedirs(self.color_images_directory)
if not os.path.exists(self.depth_images_directory):
os.makedirs(self.depth_images_directory)
if not os.path.exists(self.color_heightmaps_directory):
os.makedirs(self.color_heightmaps_directory)
if not os.path.exists(self.depth_heightmaps_directory):
os.makedirs(self.depth_heightmaps_directory)
if not os.path.exists(self.models_directory):
os.makedirs(self.models_directory)
if not os.path.exists(self.visualizations_directory):
os.makedirs(self.visualizations_directory)
if not os.path.exists(self.recordings_directory):
os.makedirs(self.recordings_directory)
if not os.path.exists(self.transitions_directory):
os.makedirs(os.path.join(self.transitions_directory, 'data'))
def save_camera_info(self, intrinsics, pose, depth_scale):
np.savetxt(os.path.join(self.info_directory, 'camera-intrinsics.txt'), intrinsics, delimiter=' ')
np.savetxt(os.path.join(self.info_directory, 'camera-pose.txt'), pose, delimiter=' ')
np.savetxt(os.path.join(self.info_directory, 'camera-depth-scale.txt'), [depth_scale], delimiter=' ')
def save_heightmap_info(self, boundaries, resolution):
np.savetxt(os.path.join(self.info_directory, 'heightmap-boundaries.txt'), boundaries, delimiter=' ')
np.savetxt(os.path.join(self.info_directory, 'heightmap-resolution.txt'), [resolution], delimiter=' ')
def save_images(self, iteration, color_image, depth_image, mode):
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(self.color_images_directory, '%06d.%s.color.png' % (iteration, mode)), color_image)
depth_image = np.round(depth_image * 10000).astype(np.uint16) # Save depth in 1e-4 meters
cv2.imwrite(os.path.join(self.depth_images_directory, '%06d.%s.depth.png' % (iteration, mode)), depth_image)
def save_heightmaps(self, iteration, color_heightmap, depth_heightmap, mode):
color_heightmap = cv2.cvtColor(color_heightmap, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(self.color_heightmaps_directory, '%06d.%s.color.png' % (iteration, mode)), color_heightmap)
depth_heightmap = np.round(depth_heightmap * 100000).astype(np.uint16) # Save depth in 1e-5 meters
cv2.imwrite(os.path.join(self.depth_heightmaps_directory, '%06d.%s.depth.png' % (iteration, mode)), depth_heightmap)
def write_to_log(self, log_name, log):
np.savetxt(os.path.join(self.transitions_directory, '%s.log.txt' % log_name), log, delimiter=' ')
def save_model(self, iteration, model, name):
torch.save(model.cpu().state_dict(), os.path.join(self.models_directory, 'snapshot-%06d.%s.pth' % (iteration, name)))
def save_backup_model(self, model, name):
torch.save(model.state_dict(), os.path.join(self.models_directory, 'snapshot-backup.%s.pth' % (name)))
def save_visualizations(self, iteration, affordance_vis, name):
cv2.imwrite(os.path.join(self.visualizations_directory, '%06d.%s.png' % (iteration,name)), affordance_vis)
# def save_state_features(self, iteration, state_feat):
# h5f = h5py.File(os.path.join(self.visualizations_directory, '%06d.state.h5' % (iteration)), 'w')
# h5f.create_dataset('state', data=state_feat.cpu().data.numpy())
# h5f.close()
# Record RGB-D video while executing primitive
# recording_directory = logger.make_new_recording_directory(iteration)
# camera.start_recording(recording_directory)
# camera.stop_recording()
def make_new_recording_directory(self, iteration):
recording_directory = os.path.join(self.recordings_directory, '%06d' % (iteration))
if not os.path.exists(recording_directory):
os.makedirs(recording_directory)
return recording_directory
def save_transition(self, iteration, transition):
depth_heightmap = np.round(transition.state * 100000).astype(np.uint16) # Save depth in 1e-5 meters
cv2.imwrite(os.path.join(self.transitions_directory, 'data', '%06d.0.depth.png' % (iteration)), depth_heightmap)
next_depth_heightmap = np.round(transition.next_state * 100000).astype(np.uint16) # Save depth in 1e-5 meters
cv2.imwrite(os.path.join(self.transitions_directory, 'data', '%06d.1.depth.png' % (iteration)), next_depth_heightmap)
# np.savetxt(os.path.join(self.transitions_directory, '%06d.action.txt' % (iteration)), [1 if (transition.action == 'grasp') else 0], delimiter=' ')
# np.savetxt(os.path.join(self.transitions_directory, '%06d.reward.txt' % (iteration)), [reward_value], delimiter=' ')