forked from facebookincubator/velox
-
Notifications
You must be signed in to change notification settings - Fork 1
/
OpaqueType.cpp
334 lines (295 loc) · 12.9 KB
/
OpaqueType.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "velox/common/memory/Memory.h"
#include "velox/expression/VectorFunction.h"
#include "velox/functions/Udf.h"
#include "velox/type/Type.h"
#include "velox/vector/BaseVector.h"
using namespace facebook::velox;
VectorPtr evaluate(
const std::string& functionName,
const std::string& argName1,
const std::string& argName2,
core::ExecCtx& execCtx,
RowVectorPtr rowVector);
/// This file exemplifies how OPAQUE types are used in vectors, simple and
/// vectorized functions, and the expression eval engine.
///
/// First, two functions that operate over opaque types and implement the same
/// logic are defined and registered, one simple and one vectorized. Then, we
/// show how opaque objects can be wrapped in Velox vectors, and how they can be
/// pushed through the expression evaluation engine until they are available to
/// the user-defined function code.
// We first define two classes to be carried by the opaque type container.
// In real scenarios, these classes are usually used to hold large state buffers
// (like ML models), so we disable the copy constructor, just in case:
struct UserDefinedMap {
// Let's also count the number of instances, just to ensure no inadvertent
// copies of this potentially large object will be made.
UserDefinedMap() {
++UserDefinedMap::numInstances;
}
// No copies.
UserDefinedMap(UserDefinedMap const&) = delete;
UserDefinedMap& operator=(UserDefinedMap const&) = delete;
// In this toy example, this class holds a map between integers and strings.
std::string toString(size_t idx) const {
auto it = map_.find(idx);
if (it != map_.end()) {
return it->second;
}
return "";
}
// This could be the map that holds the large state.
std::unordered_map<size_t, std::string> map_{
{0, "zero"},
{1, "one"},
{2, "two"},
{3, "three"},
{4, "four"},
};
static size_t numInstances;
};
size_t UserDefinedMap::numInstances{0};
// Our second opaqued class will be just an std::pair. Make sure it's printable.
using UserDefinedOutput = std::pair<size_t, std::string>;
inline std::ostream& operator<<(
std::ostream& out,
const UserDefinedOutput& opaque) {
return out << "[" << opaque.first << ": " << opaque.second << "]";
}
// Now we define a simple function that takes a UserDefinedMap (via opaque
// type), and returns a UserDefinedOutput type.
//
// This function takes two parameters, a UserDefinedMap (via opaque type),
// which contains the large map defined above, and a bigint. The function looks
// up the bigint inside UserDefinedMap to find a corresponding string, and
// returns an UserDefinedOutput, which holds a pair containing the idx and
// the string. It doesn't implement any interesting logic, but exemplifies how
// to take an opaque object in, and return another.
//
// Check `velox/docs/develop/scalar-functions.rst` for more documentation on how
// to build scalar functions.
template <typename T>
struct MapResolverSimpleFunction {
VELOX_DEFINE_FUNCTION_TYPES(T);
FOLLY_ALWAYS_INLINE bool call(
arg_type<std::shared_ptr<UserDefinedOutput>>& out,
const arg_type<std::shared_ptr<UserDefinedMap>>& state,
const int64_t& idx) {
out = std::make_shared<UserDefinedOutput>(idx, state->toString(idx));
return true;
}
};
// Next, we implement the same logic using the vectorized function framework.
class MapResolverVectorFunction : public exec::VectorFunction {
public:
// Note that when using the vectorized function framework, you will need to
// explicitly cast your opaque type vector into the expected opaqued type.
void apply(
const SelectivityVector& rows,
std::vector<VectorPtr>& args,
const TypePtr& outputType,
exec::EvalCtx& context,
VectorPtr& result) const override {
// We cannot make any assumptions about the encoding of the input vectors.
// In order to access their data as FlatVectors, we need to decode them
// first:
exec::DecodedArgs decodedArgs(rows, args, context);
DecodedVector* opaqueVector = decodedArgs.at(0);
DecodedVector* bigintVector = decodedArgs.at(1);
// Capture the raw decoded pointers. We capture them here explicitly
// (instead of simply calling opaqueVector->valueAt() for each row)
// because valueAt() will end up copying the shared_ptrs, and that's a
// little expensive.
const std::shared_ptr<UserDefinedMap>* opaqueRawVector =
opaqueVector->data<std::shared_ptr<UserDefinedMap>>();
// Ensure we have an output vector where we can write the output opaqued
// values.
context.ensureWritable(rows, outputType, result);
auto* output = result->as<KindToFlatVector<TypeKind::OPAQUE>::type>();
// `applyToSelected()` will execute the lambda below on each row enabled in
// the input selectivity vector (rows). We don't need to check for null
// since the evaluation engine will already exclude null values from the
// selectivity vector, considering this function has default null behavior.
rows.applyToSelected([&](vector_size_t row) {
// Fetch the row values from both columns. Note that in the second case
// we need to explicitly resolve the index indirection because we captured
// the raw pointer to avoid the shared_ptr copies (in the first case,
// valueAt() takes care of it).
int64_t bigintInput = bigintVector->valueAt<int64_t>(row);
UserDefinedMap* userDefinedMap =
opaqueRawVector[opaqueVector->index(row)].get();
// Allocate a new UserDefinedOutput and save a shared_ptr to it in the
// output vector.
output->set(
row,
std::make_shared<UserDefinedOutput>(
bigintInput, userDefinedMap->toString(bigintInput)));
});
}
// Define the valid function signatures. We currently don't support type
// matching in the opaqued type (UserDefinedMap or UserDefinedOutput) when
// using the vectorized function framework.
static std::vector<std::shared_ptr<exec::FunctionSignature>> signatures() {
return {exec::FunctionSignatureBuilder()
.returnType("opaque")
.argumentType("opaque")
.argumentType("bigint")
.build()};
}
};
// Declaring the vectorized function.
VELOX_DECLARE_VECTOR_FUNCTION(
udf_map_resolver_vector,
MapResolverVectorFunction::signatures(),
std::make_unique<MapResolverVectorFunction>());
int main(int argc, char** argv) {
// Registering both simple and vectorized functions.
registerFunction<
MapResolverSimpleFunction,
std::shared_ptr<UserDefinedOutput>,
std::shared_ptr<UserDefinedMap>,
int64_t>({"map_resolver_simple"});
VELOX_REGISTER_VECTOR_FUNCTION(
udf_map_resolver_vector, "map_resolver_vector");
memory::MemoryManager::initialize({});
// Create memory pool and other query-related structures.
auto queryCtx = core::QueryCtx::create();
auto pool = memory::memoryManager()->addLeafPool();
core::ExecCtx execCtx{pool.get(), queryCtx.get()};
// Next, we need to generate an input batch of data (rowVector). We create a
// small batch of `vectorSize` rows, and three columns:
//
// 1. A FlatVector of Opaque<UserDefinedMap>. Since we don't want to hold
// multiple copies of UserDefinedMap in memory (remember this can be large),
// we add one shared_ptr to the single object per row.
//
// 2. A ConstantVector of Opaque<UserDefinedMap>. This is similar to #1, but
// this is smarter and encodes the opaque type as a constant (since it's
// essentially a repetition of the same value).
//
// 3. A regular FlatVector<BIGINT> with monotonically increasing numbers
// starting in zero.
const size_t vectorSize = 5;
using FlatVectorOpaque = KindToFlatVector<TypeKind::OPAQUE>::type;
auto inputRowType = ROW({
{"flat_opaque", OPAQUE<UserDefinedMap>()},
{"constant_opaque", OPAQUE<UserDefinedMap>()},
{"bigint", BIGINT()},
});
// Create vector #1:
auto vector1 =
BaseVector::create(inputRowType->childAt(0), vectorSize, execCtx.pool());
auto opaqueVector = vector1->as<FlatVectorOpaque>();
// Create the single instance of UserDefinedMap, and add multiple shared_ptr
// to it in the flatVector.
auto opaqueObj = std::make_shared<UserDefinedMap>();
for (size_t i = 0; i < opaqueVector->size(); i++) {
opaqueVector->set(i, opaqueObj);
}
// Create vector #2. Just a constant to the shared_ptr we created above.
auto vector2 = BaseVector::createConstant(
OPAQUE<UserDefinedMap>(),
variant::opaque(opaqueObj),
vectorSize,
execCtx.pool());
// Create vector #3. The monotinically increasing flatVector<bigint>.
auto vector3 = BaseVector::create<FlatVector<int64_t>>(
BIGINT(), vectorSize, execCtx.pool());
auto rawValues = vector3->mutableRawValues();
std::iota(rawValues, rawValues + vectorSize, 0); // 0, 1, 2, 3, ...
// Wrap the three vectors above in a RowVector (the input batch).
auto rowVector = std::make_shared<RowVector>(
execCtx.pool(),
inputRowType,
BufferPtr(nullptr),
vectorSize,
std::vector<VectorPtr>{vector1, vector2, vector3});
// Now, let's go ahead and first execute the simple function.
//
// The helper `evaluate()` function basically creates and executes the
// following expression:
//
// opaque_simple(flat_opaque, bigint);
//
LOG(INFO) << "Executing simple opaque function:";
auto outputVector = std::dynamic_pointer_cast<FlatVectorOpaque>(evaluate(
"map_resolver_simple", "flat_opaque", "bigint", execCtx, rowVector));
// Print the output values so we can verify them, just for fun.
for (size_t i = 0; i < outputVector->size(); ++i) {
auto opaque =
std::static_pointer_cast<UserDefinedOutput>(outputVector->valueAt(i));
LOG(INFO) << "Found UserDefinedOutput: " << *opaque;
}
// Same thing, but now using the vectorized function ("opaque_vector").
LOG(INFO) << "Executing vectorized opaque function:";
outputVector = std::dynamic_pointer_cast<FlatVectorOpaque>(evaluate(
"map_resolver_vector", "flat_opaque", "bigint", execCtx, rowVector));
// Print it again.
for (size_t i = 0; i < outputVector->size(); ++i) {
auto opaque =
std::static_pointer_cast<UserDefinedOutput>(outputVector->valueAt(i));
LOG(INFO) << "Found UserDefinedOutput: " << *opaque;
}
// Lastly, let's execute the same vectorized function, but now over the opaque
// column encoded as constant (constant_opaque), just to ensure it returns the
// same result.
LOG(INFO) << "Executing vectorized opaque function "
"(over constant opaque col):";
outputVector = std::dynamic_pointer_cast<FlatVectorOpaque>(evaluate(
"map_resolver_vector", "constant_opaque", "bigint", execCtx, rowVector));
// Print it.
for (size_t i = 0; i < outputVector->size(); ++i) {
auto opaque =
std::static_pointer_cast<UserDefinedOutput>(outputVector->valueAt(i));
LOG(INFO) << "Found UserDefinedOutput: " << *opaque;
}
// Verify that no inadvertent copies/instances of the large class were
// created.
LOG(INFO) << "Number of instances of OpaqueState: "
<< UserDefinedMap::numInstances;
return 0;
}
// Helper function that creates a simple expression plan and executes it against
// rowVector.
//
// Don't spend too much time trying to follow this code, If you would like a
// more detailed description of this process, please check
// `velox/examples/ExpressionEval.cpp` instead.
VectorPtr evaluate(
const std::string& functionName,
const std::string& argName1,
const std::string& argName2,
core::ExecCtx& execCtx,
RowVectorPtr rowVector) {
std::vector<VectorPtr> result{nullptr};
SelectivityVector rows{rowVector->size()};
auto& rowType = rowVector->type()->as<TypeKind::ROW>();
auto fieldAccessExprNode1 = std::make_shared<core::FieldAccessTypedExpr>(
rowType.findChild(argName1), argName1);
auto fieldAccessExprNode2 = std::make_shared<core::FieldAccessTypedExpr>(
rowType.findChild(argName2), argName2);
auto exprPlan = std::make_shared<core::CallTypedExpr>(
OPAQUE<UserDefinedOutput>(),
std::vector<core::TypedExprPtr>{
fieldAccessExprNode1, fieldAccessExprNode2},
functionName);
exec::ExprSet exprSet({exprPlan}, &execCtx);
exec::EvalCtx evalCtx(&execCtx, &exprSet, rowVector.get());
exprSet.eval(rows, evalCtx, result);
return result.front();
}