-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
97 lines (79 loc) · 3.15 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
#import better_exceptions
from pathlib import Path
import numpy as np
import pandas as pd
import torch
import cv2
from torch.utils.data import Dataset
from imgaug import augmenters as iaa
class ImgAugTransform:
def __init__(self):
self.aug = iaa.Sequential([
iaa.OneOf([
iaa.Sometimes(0.25, iaa.AdditiveGaussianNoise(scale=0.1 * 255)),
iaa.Sometimes(0.25, iaa.GaussianBlur(sigma=(0, 3.0)))
]),
iaa.Affine(
rotate=(-20, 20), mode="edge",
scale={"x": (0.95, 1.05), "y": (0.95, 1.05)},
translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)}
),
iaa.AddToHueAndSaturation(value=(-10, 10), per_channel=True),
iaa.GammaContrast((0.3, 2)),
iaa.Fliplr(0.5),
])
def __call__(self, img):
img = np.array(img)
img = self.aug.augment_image(img)
return img
class FaceDataset(Dataset):
def __init__(self, data_dir, data_type, img_size=224, augment=False, age_stddev=1.0):
assert(data_type in ("train", "valid", "test"))
csv_path = Path(data_dir).joinpath(f"gt_avg_{data_type}.csv")
img_dir = Path(data_dir).joinpath(data_type)
self.img_size = img_size
self.augment = augment
self.age_stddev = age_stddev
if augment:
self.transform = ImgAugTransform()
else:
self.transform = lambda i: i
self.x = []
self.y = []
self.std = []
df = pd.read_csv(str(csv_path))
ignore_path = Path(__file__).resolve().parent.joinpath("ignore_list.csv")
ignore_img_names = list(pd.read_csv(str(ignore_path))["img_name"].values)
for _, row in df.iterrows():
img_name = row["file_name"]
if img_name in ignore_img_names:
continue
img_path = img_dir.joinpath(img_name + "_face.jpg")
assert(img_path.is_file())
self.x.append(str(img_path))
self.y.append(row["apparent_age_avg"])
self.std.append(row["apparent_age_std"])
def __len__(self):
return len(self.y)
def __getitem__(self, idx):
img_path = self.x[idx]
age = self.y[idx]
if self.augment:
age += np.random.randn() * self.std[idx] * self.age_stddev
img = cv2.imread(str(img_path), 1)
img = cv2.resize(img, (self.img_size, self.img_size))
img = self.transform(img).astype(np.float32)
return (torch.from_numpy(np.transpose(img, (2, 0, 1))), np.clip(round(age), 0, 100), img_path)
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--data_dir", type=str, required=True)
args = parser.parse_args()
dataset = FaceDataset(args.data_dir, "train")
print("train dataset len: {}".format(len(dataset)))
dataset = FaceDataset(args.data_dir, "valid")
print("valid dataset len: {}".format(len(dataset)))
dataset = FaceDataset(args.data_dir, "test")
print("test dataset len: {}".format(len(dataset)))
if __name__ == '__main__':
main()