forked from DataXujing/TensorRT-DETR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference_detr_onnx.py
144 lines (109 loc) · 4.23 KB
/
inference_detr_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ~~~Medcare AI Lab~~~
import cv2
from PIL import Image
import numpy as np
import os
import time
# onnxruntime requires python 3.5 or above
try:
import onnxruntime
except ImportError:
onnxruntime = None
import torch
from torch import nn
import torchvision.transforms as T
torch.set_grad_enabled(False)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("[INFO] 当前使用{}做推断".format(device))
# 图像数据处理
transform = T.Compose([
T.Resize((800,800)), # PIL.Image.BILINEAR
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 将xywh转xyxy
def box_cxcywh_to_xyxy(x):
x = torch.from_numpy(x)
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
# 将0-1映射到图像
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b.cpu().numpy()
b = b * np.array([img_w, img_h, img_w, img_h], dtype=np.float32)
return b
# plot box by opencv
def plot_result(pil_img, prob, boxes,save_name=None,imshow=False, imwrite=False):
LABEL = ["NA","Class A","Class B","Class C","Class D","Class E","Class F",
"Class G","Class H","Class I","Class J","Class K","Class L","Class M",
"Class N","Class O","Class P","Class Q","Class R","Class S","Class T"]
opencvImage = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
if len(prob) == 0:
print("[INFO] NO box detect !!! ")
if imwrite:
if not os.path.exists("./result/pred_no"):
os.makedirs("./result/pred_no")
cv2.imwrite(os.path.join("./result/pred_no",save_name),opencvImage)
return
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes):
cl = p.argmax()
if not cl in [6,7]:
continue;
label_text = '{}: {}%'.format(LABEL[cl],round(p[cl]*100,2))
cv2.rectangle(opencvImage, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (255, 255, 0), 2)
cv2.putText(opencvImage, label_text,(int(xmin)+10, int(ymin)+30), cv2.FONT_HERSHEY_SIMPLEX, 1,
(255, 255, 0), 2)
if imshow:
cv2.imshow('detect', opencvImage)
cv2.waitKey(0)
if imwrite:
if not os.path.exists("./result/pred"):
os.makedirs('./result/pred')
cv2.imwrite('./result/pred/{}'.format(save_name), opencvImage)
def detect_onnx(ort_session,im,prob_threshold=0.7):
# compute onnxruntime output prediction
# 前处理
img = transform(im).unsqueeze(0).cpu().numpy()
ort_inputs = {"inputs":img}
start = time.time()
scores,boxs = ort_session.run(None, ort_inputs)
# 后处理 + 也可以加NMS
probas = torch.from_numpy(np.array(scores)).softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > prob_threshold
end = time.time()
probas = probas.cpu().detach().numpy()
keep = keep.cpu().detach().numpy()
# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(boxs[0, keep], im.size)
print(f"onnxruntime Time: {end-start}s")
return probas[keep] ,bboxes_scaled
if __name__ == "__main__":
onnx_path = "./detr_dynamic_sim.onnx"
ort_session = onnxruntime.InferenceSession(onnx_path)
files = os.listdir("./test")
for file in files:
img_path = os.path.join("./test",file)
im = Image.open(img_path)
scores, boxes = detect_onnx(ort_session,im)
print(scores)
print(boxes)
# plot_result(im, scores, boxes,save_name=file,imshow=False, imwrite=True)
# print("[INFO] {} time: {} done!!!".format(file,None))