forked from Aurora11111/TextRecognitionDataGenerator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetLmdb.py
113 lines (96 loc) · 3.28 KB
/
getLmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -*- coding: utf-8 -*-
import os
import lmdb # install lmdb by "pip install lmdb"
import cv2
import numpy as np
import glob
def checkImageIsValid(imageBin):
if imageBin is None:
return False
imageBuf = np.fromstring(imageBin, dtype=np.uint8)
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
if img is None:
return False
imgH, imgW = img.shape[0], img.shape[1]
if imgH * imgW == 0:
return False
return True
def writeCache(env, cache):
with env.begin(write=True) as txn:
for k, v in cache.iteritems():
txn.put(k, v)
def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):
"""
Create LMDB dataset for CRNN training.
ARGS:
outputPath : LMDB output path
imagePathList : list of image path
labelList : list of corresponding groundtruth texts
lexiconList : (optional) list of lexicon lists
checkValid : if true, check the validity of every image
"""
assert (len(imagePathList) == len(labelList))
nSamples = len(imagePathList)
print('...................')
# map_size=1099511627776 定义最大空间是1TB
env = lmdb.open(outputPath, map_size=1099511627776)
cache = {}
cnt = 1
for i in range(nSamples):
imagePath = imagePathList[i]
label = labelList[i]
if not os.path.exists(imagePath):
print('%s does not exist' % imagePath)
continue
with open(imagePath, 'r') as f:
imageBin = f.read()
if checkValid:
if not checkImageIsValid(imageBin):
print('%s is not a valid image' % imagePath)
continue
imageKey = 'image-%09d' % cnt
labelKey = 'label-%09d' % cnt
cache[imageKey] = imageBin
cache[labelKey] = label
##########
if lexiconList:
lexiconKey = 'lexicon-%09d' % cnt
cache[lexiconKey] = ' '.join(lexiconList[i])
if cnt % 1000 == 0:
writeCache(env, cache)
cache = {}
print('Written %d / %d' % (cnt, nSamples))
cnt += 1
nSamples = cnt - 1
cache['num-samples'] = str(nSamples)
writeCache(env, cache)
print('Created dataset with %d samples' % nSamples)
def read_text(path):
with open(path) as f:
text = f.read()
text = text.strip()
return text
if __name__ == '__main__':
outputPath = '/run/media/rice/DATA/lmdb'
imgdata = open("/run/media/rice/DATA/labellist1.txt")
imagePathList = []
imgLabelLists = []
i = 0
# # for filename in glob.glob(os.path.join('/run/media/rice/DATA/number/data/', '*.jpg')):
# # print filename
# # imagePathList.append(filename)
# print len(imagePathList)
for line in list(imgdata):
print line
if i< 1251067:
label = line.split()[1]
image = line.split()[0]
imgLabelLists.append(label)
imagePathList.append('/run/media/rice/DATA/datasets2/' + image+".jpg")
else:
break
i += 1
#imgLabelLists = sorted(imgLabelLists, key=lambda x: len(x[0]))
print len(imagePathList)
print len(imgLabelLists)
createDataset(outputPath, imagePathList, imgLabelLists, lexiconList=None, checkValid=True)