-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path03_MLP_spiral2D.py
117 lines (93 loc) · 3.68 KB
/
03_MLP_spiral2D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
'''
A MLP algorithm example using TensorFlow library.
This example is using generate random distribution
(http://cs231n.github.io/neural-networks-case-study/)
Code references:
https://github.com/shouvikmani/Tensorflow-Deep-Learning-Tutorial/blob/master/tutorial.ipynb
https://github.com/aymericdamien/TensorFlow-Examples/
http://cs231n.github.io/neural-networks-case-study/
The source code modified modified by S.W. Oh.
'''
from __future__ import print_function
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
# import Dense (fully-connected) layer
from util.layer import Dense
###### Generate 2D spiral random data and Plot ###################################
N = 200 # number of points per class
D = 2 # dimensionality
K = 4 # number of classes
X_train = np.zeros((N*K,D)) # data matrix (each row = single example)
y_train = np.zeros((N*K,K)) # class labels
yc = np.zeros(N*K, dtype='uint8')
for j in range(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4.8,(j+1)*4.8,N) + np.random.randn(N)*0.2 # theta
X_train[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y_train[ix,j] = 1
yc[ix] = j
# lets visualize the data:
plt.scatter(X_train[:, 0], X_train[:, 1], c=yc, s=40, cmap=plt.cm.Spectral)
plt.show()
# Random shuffle
perm = np.random.permutation(len(y_train))
X_train = X_train[perm,:]
y_train = y_train[perm,:]
yc = yc[perm]
# Parameters
learning_rate = 0.01
training_epochs = 500
batch_size = 10
display_step = 1
###### Build graph ######################################################
# Place holders
x = tf.placeholder(tf.float32, [None, 2]) # 2 dimensional input
y = tf.placeholder(tf.float32, [None, 4]) # 4 classes
# Construct MLP with two hidden layer
h = Dense(x, [2,64], 'ih')
h = tf.nn.relu(h)
h = Dense(h, [64,64], 'hh')
h = tf.nn.relu(h)
logit = Dense(h, [64,4], 'hl')
pred = tf.nn.softmax(logit) # Softmax
# Directly compute loss from logit (to ensure stability and avoid overflow)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=y))
# Define optimizer and train_op
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
###### Start Training ###################################################
# Open a Session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(len(y_train)/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs = X_train[i:i+batch_size,:]
batch_ys = y_train[i:i+batch_size,:]
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([train_op, cost], feed_dict={x: batch_xs, y: batch_ys})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
# Visualize Dicision boundary
h = 0.02
x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1
y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = sess.run(pred, feed_dict={x: np.c_[xx.ravel(), yy.ravel()]})
Z = np.argmax(Z, axis=1)
Z = Z.reshape(xx.shape)
fig = plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8)
plt.scatter(X_train[:, 0], X_train[:, 1], c=yc, s=40, cmap=plt.cm.Spectral)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show()