-
Notifications
You must be signed in to change notification settings - Fork 2
/
gan_cifar10.py
294 lines (236 loc) · 11.2 KB
/
gan_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os, sys
sys.path.append(os.getcwd())
import argparse
import time
import tflib as lib
import numpy as np
import torch
import torchvision
from torch import nn
from torch import autograd
from torch import optim
import tflib.save_images
import tflib.mnist
import tflib.cifar10
import tflib.plot
import tflib.inception_score
from model.cifar10 import Discriminator, Generator, Discriminator_with_group_norm, Discriminator_with_ResNet, Generator_with_ResNet, Discriminator_with_layer_norm
# Download CIFAR-10 (Python version) at
# https://www.cs.toronto.edu/~kriz/cifar.html and fill in the path to the
# extracted files here!
SAVE_PATH = './tmp/cifar10_resnet_group_16_16_8_8_4_4/'
DATA_DIR = '../data/cifar-10-batches-py/'
parser = argparse.ArgumentParser(description='Hyper-parameter of WGAN for CIFAR-10')
parser.add_argument('--MODE', type=str, default='wgan-gp', help='Valid options are dcgan, wgan, or wgan-gp')
parser.add_argument('--DIM', type=int, default=128, help = 'dimension of the fully-connected layer at front')
parser.add_argument('--LAMBDA', type=int, default=5, help = 'Gradient penalty lambda hyperparameter')
parser.add_argument('--BATCH_SIZE', type=int, default=64, help = 'Batch size')
parser.add_argument('--CRITIC_ITERS', type=int, default=5, help = 'How many critic iterations per generator iteration')
parser.add_argument('--ITERS', type=int, default=300000, help = 'How many generator iterations to train for')
parser.add_argument('--OUTPUT_DIM', type = int, default = 3072, help = 'Number of pixels in CIFAR10 (3*32*32)')
parser.add_argument('--IS_CAL_ROUND', type = int, default = 1000, help = 'calculate the Inception score per IS_CAL_ROUND of epoch')
parser.add_argument('--IMAGE_SAVE_ROUND', type = int, default = 1000, help = 'save the generated images per IS_CAL_ROUND of epoch')
parser.add_argument('--BATCH_SIZE_IS', type = int, default = 64, help = 'BATCH_SIZE for inception score calculation')
parser.add_argument('--GROUP_NUM', type = int, default = 16, help = 'Number of groups in group Normalization')
parser.add_argument('--RESNET',type = bool, default = True, help = 'Whether use ResNet Discriminator and Generator')
parser.add_argument('--NORMALIZATION', type = str, default = 'none', choices = ['layernorm', 'none', 'groupnorm'],help = 'Type of Normalization')
parser.add_argument('--SAVE_PATH', type = str, default = './tmp/cifar10/')
parser.add_argument('--group_num_by_layer', type = str, default = '111111')
group_num_by_layer = [[16, 16], [8,8], [4,4]]
args = parser.parse_args()
group_num_by_layer_str = args.group_num_by_layer
group_num_by_layer[0][0] = int(group_num_by_layer_str[0])
group_num_by_layer[0][1] = int(group_num_by_layer_str[1])
group_num_by_layer[1][0] = int(group_num_by_layer_str[2])
group_num_by_layer[1][1] = int(group_num_by_layer_str[3])
group_num_by_layer[2][0] = int(group_num_by_layer_str[4])
group_num_by_layer[2][1] = int(group_num_by_layer_str[5])
SAVE_PATH = args.SAVE_PATH
MODE = args.MODE # Valid options are dcgan, wgan, or wgan-gp
DIM = args.DIM # This overfits substantially; you're probably better off with 64
LAMBDA = args.LAMBDA # Gradient penalty lambda hyperparameter
CRITIC_ITERS = args.CRITIC_ITERS # How many critic iterations per generator iteration
BATCH_SIZE = args.BATCH_SIZE # Batch size
ITERS = args.ITERS # How many generator iterations to train for
OUTPUT_DIM = args.OUTPUT_DIM # Number of pixels in CIFAR10 (3*32*32)
IS_CAL_ROUND = args.IS_CAL_ROUND
BATCH_SIZE_IS = args.BATCH_SIZE_IS
IMAGE_SAVE_ROUND = args.IMAGE_SAVE_ROUND
GROUP_NUM = args.GROUP_NUM
NORMALIZATION = args.NORMALIZATION
RESNET = args.RESNET
if len(DATA_DIR) == 0:
raise Exception('Please specify path to data directory in gan_cifar.py!')
if os.path.exists(SAVE_PATH) == False:
os.mkdir(SAVE_PATH)
if os.path.exists(os.path.join(SAVE_PATH, 'samples/')) == False:
os.mkdir(os.path.join(SAVE_PATH, 'samples/'))
if(RESNET == True):
netG = Generator_with_ResNet(128)
else:
netG = Generator(DIM)
if(RESNET == True):
netD = Discriminator_with_ResNet(128, group_num_by_layer)
elif NORMALIZATION == 'groupnorm':
netD = Discriminator_with_group_norm(DIM, GROUP_NUM)
elif NORMALIZATION == 'layernorm':
netD = Discriminator_with_layer_norm(DIM, GROUP_NUM)
elif NORMALIZATION == 'none':
netD = Discriminator(DIM)
print(netG)
print(netD)
use_cuda = torch.cuda.is_available()
if use_cuda:
gpu = 0
if use_cuda:
netD = netD.cuda(gpu)
netG = netG.cuda(gpu)
one = torch.FloatTensor([1])
mone = one * -1
if use_cuda:
one = one.cuda(gpu)
mone = mone.cuda(gpu)
optimizerD = optim.Adam(netD.parameters(), lr=1e-4, betas=(0.5, 0.9))
optimizerG = optim.Adam(netG.parameters(), lr=1e-4, betas=(0.5, 0.9))
def calc_gradient_penalty(netD, real_data, fake_data):
# print "real_data: ", real_data.size(), fake_data.size()
alpha = torch.rand(BATCH_SIZE, 1)
alpha = alpha.expand(BATCH_SIZE, int(real_data.nelement()/BATCH_SIZE)).contiguous().view(BATCH_SIZE, 3, 32, 32)
alpha = alpha.cuda(gpu) if use_cuda else alpha
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if use_cuda:
interpolates = interpolates.cuda(gpu)
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(gpu) if use_cuda else torch.ones(
disc_interpolates.size()),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty
# For generating samples
def generate_image(frame, netG):
fixed_noise_128 = torch.randn(128, 128)
if use_cuda:
fixed_noise_128 = fixed_noise_128.cuda(gpu)
noisev = autograd.Variable(fixed_noise_128, volatile=True)
samples = netG(noisev)
samples = samples.view(-1, 3, 32, 32)
samples = samples.mul(0.5).add(0.5)
samples = samples.cpu().data.numpy()
lib.save_images.save_images(samples, SAVE_PATH + 'samples/' + str(frame) +'.jpg')
# For calculating inception score
def get_inception_score(G, ):
all_samples = []
for i in range(10):
samples_100 = torch.randn(100, 128)
if use_cuda:
samples_100 = samples_100.cuda(gpu)
samples_100 = autograd.Variable(samples_100, volatile=True)
all_samples.append(G(samples_100).cpu().data.numpy())
all_samples = np.concatenate(all_samples, axis=0)
all_samples = np.multiply(np.add(np.multiply(all_samples, 0.5), 0.5), 255).astype('int32')
all_samples = all_samples.reshape((-1, 3, 32, 32))
return lib.inception_score.inception_score(list(all_samples),cuda=use_cuda, batch_size = BATCH_SIZE_IS, resize = True, splits = 2)
# Dataset iterator
train_gen, dev_gen = lib.cifar10.load(BATCH_SIZE, data_dir=DATA_DIR)
def inf_train_gen():
while True:
for images in train_gen():
# yield images.astype('float32').reshape(BATCH_SIZE, 3, 32, 32).transpose(0, 2, 3, 1)
yield images
gen = inf_train_gen()
preprocess = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
for iteration in range(ITERS):
start_time = time.time()
############################
# (1) Update D network
###########################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
for i in range(CRITIC_ITERS):
#print('CRITIC_ITERS:', i)
_data = next(gen)
netD.zero_grad()
# train with real
_data = _data.reshape(BATCH_SIZE, 3, 32, 32).transpose(0, 2, 3, 1)
real_data = torch.stack([preprocess(item) for item in _data])
if use_cuda:
real_data = real_data.cuda(gpu)
real_data_v = autograd.Variable(real_data)
# import torchvision
# filename = os.path.join("test_train_data", str(iteration) + str(i) + ".jpg")
# torchvision.utils.save_image(real_data, filename)
D_real = netD(real_data_v)
D_real = D_real.mean()
D_real.backward(mone)
# train with fake
noise = torch.randn(BATCH_SIZE, 128)
if use_cuda:
noise = noise.cuda(gpu)
noisev = autograd.Variable(noise, volatile=True) # totally freeze netG
fake = autograd.Variable(netG(noisev).data)
inputv = fake
D_fake = netD(inputv)
D_fake = D_fake.mean()
D_fake.backward(one)
# train with gradient penalty
gradient_penalty = calc_gradient_penalty(netD, real_data_v.data, fake.data)
gradient_penalty.backward()
# print "gradien_penalty: ", gradient_penalty
D_cost = D_fake - D_real + gradient_penalty
Wasserstein_D = D_real - D_fake
#print(Wasserstein_D.cpu().data.numpy())
optimizerD.step()
############################
# (2) Update G network
###########################
for p in netD.parameters():
p.requires_grad = False # to avoid computation
netG.zero_grad()
noise = torch.randn(BATCH_SIZE, 128)
if use_cuda:
noise = noise.cuda(gpu)
noisev = autograd.Variable(noise)
fake = netG(noisev)
G = netD(fake)
G = G.mean()
G.backward(mone)
G_cost = -G
optimizerG.step()
# Write logs and save samples
lib.plot.plot(SAVE_PATH + 'train disc cost', D_cost.cpu().data.numpy())
lib.plot.plot(SAVE_PATH + 'time', time.time() - start_time)
lib.plot.plot(SAVE_PATH + 'train gen cost', G_cost.cpu().data.numpy())
lib.plot.plot(SAVE_PATH + 'wasserstein distance', Wasserstein_D.cpu().data.numpy())
# Calculate inception score every 1K iters
# if False and iteration % 1000 == 999:
# inception_score = get_inception_score(netG)
# lib.plot.plot('./tmp/cifar10/inception score', inception_score[0])
# Calculate dev loss and generate samples every 100 iters
if iteration % IS_CAL_ROUND == IS_CAL_ROUND - 1:
inception_score = get_inception_score(netG)
print("Inception score for iteration " +str(iteration)+" is "+str(inception_score))
lib.plot.plot(SAVE_PATH + 'inception score', inception_score[0])
if iteration % IMAGE_SAVE_ROUND == IMAGE_SAVE_ROUND -1 :
dev_disc_costs = []
for images in dev_gen():
images = images.reshape(BATCH_SIZE, 3, 32, 32).transpose(0, 2, 3, 1)
imgs = torch.stack([preprocess(item) for item in images])
# imgs = preprocess(images)
if use_cuda:
imgs = imgs.cuda(gpu)
imgs_v = autograd.Variable(imgs, volatile=True)
D = netD(imgs_v)
_dev_disc_cost = -D.mean().cpu().data.numpy()
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot(SAVE_PATH + 'dev disc cost', np.mean(dev_disc_costs))
generate_image(iteration, netG)
# Save logs every 100 iters
if (iteration < 5) or (iteration % 100 == 99):
lib.plot.flush()
lib.plot.tick()