-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathmat73_to_pickle.py
216 lines (189 loc) · 7.99 KB
/
mat73_to_pickle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""This function transforms Matlab7.3 HDF5 '.mat' files into a Python
dictionary of arrays and strings (and some leftover).
Copyright 2012, Emanuele Olivetti
BSD License, 3 clauses.
"""
import numpy as np
import h5py
dtypes = {}
def string(seq):
"""Convert a sequence of integers into a single string.
"""
return ''.join([chr(a) for a in seq])
def add_dtype_name(f, name):
"""Keep track of all dtypes and names in the HDF5 file using it.
"""
global dtypes
dtype = f.dtype
if dtypes.has_key(dtype.name):
dtypes[dtype.name].add(name)
else:
dtypes[dtype.name] = set([name])
return
def recursive_dict(f, root=None, name='root'):
"""This function recursively navigates the HDF5 structure from
node 'f' and tries to unpack the data structure by guessing their
content from dtype, shape etc.. It returns a dictionary of
strings, arrays and some leftovers. 'root' is the root node of the
HDF5 structure, i.e. what h5py.File() returns.
Note that this function works well on the Matlab7.3 datasets on
which it was tested, but in general it might be wrong and it might
crash. The motivation is that it has to guess the content of
substructures so it might fail. One source of headache seems to be
Matlab7.3 format that represents strings as array of 'uint16' so
not using the string datatype. For this reason it is not possible
to discriminate strings from arrays of integers without using
heuristics.
"""
if root is None: root = f
if hasattr(f, 'keys'):
a = dict(f)
if u'#refs#' in a.keys(): # we don't want to keep this
del(a[u'#refs#'])
for k in a.keys():
# print k
a[k] = recursive_dict(f[k], root, name=name+'->'+k)
return a
elif hasattr(f, 'shape'):
if f.dtype.name not in ['object', 'uint16']: # this is a numpy array
# Check shape to assess whether it can fit in memory
# or not. If not recast to a smaller dtype!
add_dtype_name(f, name)
dtype = f.dtype
if (np.prod(f.shape)*f.dtype.itemsize) > 2e9:
print "WARNING: The array", name, "requires > 2Gb"
if f.dtype.char=='d':
print "\t Recasting", dtype, "to float32"
dtype = np.float32
else:
raise MemoryError
return np.array(f, dtype=dtype).squeeze()
elif f.dtype.name in ['uint16']: # this may be a string for Matlab
add_dtype_name(f, name)
try:
return string(f)
except ValueError: # it wasn't...
print "WARNING:", name, ":"
print "\t", f
print "\t CONVERSION TO STRING FAILED, USING ARRAY!"
tmp = np.array(f).squeeze()
print "\t", tmp
return tmp
pass
elif f.dtype.name=='object': # this is a 2D array of HDF5 object references or just objects
add_dtype_name(f, name)
container = []
for i in range(f.shape[0]):
for j in range(f.shape[1]):
if str(f[i][j])=='<HDF5 object reference>': # reference follow it:
container.append(recursive_dict(root[f[i][j]], root, name=name))
else:
container.append(np.array(f[i][j]).squeeze())
try:
return np.array(container).squeeze()
except ValueError:
print "WARNING:", name, ":"
print "\t", container
print "\t CANNOT CONVERT INTO NON-OBJECT ARRAY"
return np.array(container, dtype=np.object).squeeze()
else:
raise NotImplemented
else:
raise NotImplemented
return
class Node(object):
"""This class creates nested objects that represent the HDF5
structure of the Matlab v7.3 '.mat' file so that, for example, the
structure can be easily navigated through TAB-completion in
ipython.
Note that 'f' and 'root' are not saved in the object as member
attributes. This is done on purpose because I experienced some
difficulties when pickling the Node object containing 'f' and
'root', i.e. HDF5 objects. Moreover the final object is cleaner
and contains the minimum necessary things.
TODO:
- add nice __repr__()
- add reference to parent object in order to be able to
reconstruct the position of a Node in the HDF5 hierarchy, which
is useful for debugging and catching issues in conversions.
"""
def __init__(self, f=None, name=None, root=None):
recursive = False
if name is None and root is None: recursive = True
if name is None: name = 'root'
if root is None: root = f
self.__name = name
if recursive:
print "Recursively parsing", f
self.__recursive(f, root)
def __recursive(self, f, root):
if hasattr(f, 'keys'):
for k in f.keys():
if k == u'#refs#': continue # skip reference store
# print k
child = Node(name=k)
tmp = child.__recursive(f[k], root)
if tmp is None: tmp = child
self.__setattr__(k, tmp)
return None
elif hasattr(f, 'shape'):
if f.dtype.name not in ['object', 'uint16']: # this is a numpy array
# print "ARRAY!"
dtype = f.dtype
if (np.prod(f.shape)*f.dtype.itemsize) > 2e9:
print "WARNING: The array", self.__name, "requires > 2Gb"
if f.dtype.char=='d':
print "\t Recasting", dtype, "to float32"
dtype = np.float32
else:
raise MemoryError
return np.array(f, dtype=dtype).squeeze()
elif f.dtype.name in ['uint16']: # this may be a string for Matlab
# print "STRING!"
try:
return string(f)
except ValueError: # it wasn't...
print "WARNING:", self.__name, ":"
print "\t", f
print "\t CONVERSION TO STRING FAILED, USING ARRAY!"
tmp = np.array(f).squeeze()
print "\t", tmp
return tmp
pass
elif f.dtype.name=='object': # this is a 2D array of HDF5 object references or just objects
# print "OBJECT!"
container = []
# we assume all matlab arrays are 2D arrays...
for i in range(f.shape[0]):
for j in range(f.shape[1]):
if str(f[i][j])=='<HDF5 object reference>': # it's a reference so follow it:
child = Node(name=str(f[i][j]))
tmp = child.__recursive(root[f[i][j]], root)
if tmp is None: tmp = child
container.append(tmp)
else:
container.append(np.array(f[i][j]).squeeze())
try:
return np.array(container).squeeze()
except ValueError:
print "WARNING:", self.__name, ":"
print "\t", container
print "\t CANNOT CONVERT INTO NON-OBJECT ARRAY"
return np.array(container, dtype=np.object).squeeze()
else:
raise NotImplemented
else:
raise NotImplemented
if __name__ == '__main__':
import sys
import cPickle as pickle
filename = sys.argv[-1]
print "Loading", filename
f = h5py.File(filename, mode='r')
data = recursive_dict(f)
# alternatively:
# data = Node(f)
filename = filename[:-4]+".pickle"
print "Saving", filename
pickle.dump(data, open(filename,'w'),
protocol=pickle.HIGHEST_PROTOCOL)