-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
91 lines (66 loc) · 3.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import datetime
import click
import numpy as np
from utils import load_images
from losses import wasserstein_loss, perceptual_loss
from model import generator_model, discriminator_model, generator_containing_discriminator_multiple_outputs
from keras.optimizers import Adam
BASE_DIR = 'weights/'
def save_all_weights(d, g, epoch_number, current_loss):
now = datetime.datetime.now()
save_dir = os.path.join(BASE_DIR, '{}{}'.format(now.month, now.day))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
g.save_weights(os.path.join(save_dir, 'generator_{}_{}.h5'.format(epoch_number, current_loss)), True)
d.save_weights(os.path.join(save_dir, 'discriminator_{}.h5'.format(epoch_number)), True)
def train_multiple_outputs(n_images, batch_size, epoch_num, critic_updates=5):
data = load_images('./images/train', n_images)
y_train, x_train = data['B'], data['A']
g = generator_model()
d = discriminator_model()
d_on_g = generator_containing_discriminator_multiple_outputs(g, d)
d_opt = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
d_on_g_opt = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
d.trainable = True
d.compile(optimizer=d_opt, loss=wasserstein_loss)
d.trainable = False
loss = [perceptual_loss, wasserstein_loss]
loss_weights = [100, 1]
d_on_g.compile(optimizer=d_on_g_opt, loss=loss, loss_weights=loss_weights)
d.trainable = True
output_true_batch, output_false_batch = np.ones((batch_size, 1)), np.zeros((batch_size, 1))
for epoch in range(epoch_num):
print('epoch: {}/{}'.format(epoch, epoch_num))
print('batches: {}'.format(x_train.shape[0] / batch_size))
permutated_indexes = np.random.permutation(x_train.shape[0])
d_losses = []
d_on_g_losses = []
for index in range(int(x_train.shape[0] / batch_size)):
batch_indexes = permutated_indexes[index*batch_size:(index+1)*batch_size]
image_blur_batch = x_train[batch_indexes]
image_full_batch = y_train[batch_indexes]
generated_images = g.predict(x=image_blur_batch, batch_size=batch_size)
for _ in range(critic_updates):
d_loss_real = d.train_on_batch(image_full_batch, output_true_batch)
d_loss_fake = d.train_on_batch(generated_images, output_false_batch)
d_loss = 0.5 * np.add(d_loss_fake, d_loss_real)
d_losses.append(d_loss)
print('batch {} d_loss : {}'.format(index+1, np.mean(d_losses)))
d.trainable = False
d_on_g_loss = d_on_g.train_on_batch(image_blur_batch, [image_full_batch, output_true_batch])
d_on_g_losses.append(d_on_g_loss)
print('batch {} d_on_g_loss : {}'.format(index+1, d_on_g_loss))
d.trainable = True
with open('log.txt', 'a') as f:
f.write('{} - {} - {}\n'.format(epoch, np.mean(d_losses), np.mean(d_on_g_losses)))
save_all_weights(d, g, epoch, int(np.mean(d_on_g_losses)))
@click.command()
@click.option('--n_images', default=-1, help='Number of images to load for training')
@click.option('--batch_size', default=16, help='Size of batch')
@click.option('--epoch_num', default=4, help='Number of epochs for training')
@click.option('--critic_updates', default=5, help='Number of discriminator training')
def train_command(n_images, batch_size, epoch_num, critic_updates):
return train_multiple_outputs(n_images, batch_size, epoch_num, critic_updates)
if __name__ == '__main__':
train_command()