From 50ee454c52848194884bac263aba7387947e9d83 Mon Sep 17 00:00:00 2001 From: mehmet umut caglar Date: Fri, 17 Mar 2017 12:23:01 -0500 Subject: [PATCH] some updates and fixes --- .DS_Store | Bin 8196 -> 8196 bytes DESCRIPTION | 2 +- R/categorize.R | 4 +- R/doublesigmoidalFitFunctions.R | 2 +- Readme.md | 2 +- inst/doc/Introduction.html | 4 +- inst/doc/double_sigmoidal_vignette.R | 98 + inst/doc/double_sigmoidal_vignette.Rmd | 241 + inst/doc/double_sigmoidal_vignette.html | 321 + inst/doc/linear_vignette.R | 27 +- inst/doc/linear_vignette.Rmd | 41 +- inst/doc/linear_vignette.html | 40 +- inst/doc/sigmoidal_vignette.R | 34 +- inst/doc/sigmoidal_vignette.Rmd | 97 +- inst/doc/sigmoidal_vignette.html | 85 +- man/categorize.Rd | 3 +- man/categorize_nosignal.Rd | 2 +- .../candidate functions with explanations.m | 394 - .../candidate functions with explanations.nb | 10401 ---------------- mathematica/new candidate functions.nb | 3524 ------ mathematica/presentation.m | 350 - mathematica/simple toy model.nb | 229 - vignettes/double_sigmoidal_vignette.Rmd | 65 +- vignettes/linear_vignette.Rmd | 29 +- vignettes/sigmoidal_vignette.Rmd | 43 +- 25 files changed, 901 insertions(+), 15137 deletions(-) create mode 100644 inst/doc/double_sigmoidal_vignette.R create mode 100644 inst/doc/double_sigmoidal_vignette.Rmd create mode 100644 inst/doc/double_sigmoidal_vignette.html delete mode 100644 mathematica/candidate functions with explanations.m delete mode 100644 mathematica/candidate functions with explanations.nb delete mode 100644 mathematica/new candidate functions.nb delete mode 100644 mathematica/presentation.m delete mode 100644 mathematica/simple toy model.nb diff --git a/.DS_Store b/.DS_Store index f14e9e8c91a1f1f82966683f5598a3711895e997..f8e712a005b8fc82d0ffcc2f33a95ebf1aa5d87d 100644 GIT binary patch delta 40 wcmZp1XmOa}UDU^hRb;$|L!c&5#k!sl2f7M$D6F7b_J^J!5Vrilfo0U8PpumAu6 delta 227 zcmZp1XmOa}OBU^hRb+GZYsc&2)8hFpe3h7yJhhEymklOdTQF(=(HI5|JJfB^)! z3b=qI4wbq2E-ophCCLm77kQN~fz{(wnS!Cx0lW1D8OYWz0GW!z(9JPIcUd;GOMGM5 JtS`dO3;+T{GZp{< diff --git a/DESCRIPTION b/DESCRIPTION index bb1e10a..c48344e 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: sicegar Type: Package Title: Analysis of Single-Cell Viral Growth Curves -Version: 0.1 +Version: 0.1.0.0000 Date: 2015-12-17 Authors@R: c( person("M. Umut", "Caglar", role = c("aut", "cre"), email = "umut.caglar@gmail.com"), person("Claus O.", "Wilke", role = c("aut"), email = diff --git a/R/categorize.R b/R/categorize.R index afbbdfb..a2f0054 100644 --- a/R/categorize.R +++ b/R/categorize.R @@ -186,7 +186,7 @@ categorize<- parameterVectorDoubleSigmoidal, threshold_line_slope_parameter=0.01, threshold_intensity_interval=0.1, - threshold_minimum_for_intensity_maximum=0.4, + threshold_minimum_for_intensity_maximum=0.3, threshold_difference_AIC=0, threshold_lysis_finalAsymptoteIntensity=0.75, threshold_AIC=-10) @@ -376,7 +376,7 @@ categorize_nosignal<- function(parameterVectorLinear, threshold_line_slope_parameter=0.01, threshold_intensity_interval=0.1, - threshold_minimum_for_intensity_maximum=0.4) + threshold_minimum_for_intensity_maximum=0.3) { #************************************************ # First Part Define NA diff --git a/R/doublesigmoidalFitFunctions.R b/R/doublesigmoidalFitFunctions.R index 600f8e0..9a2209e 100644 --- a/R/doublesigmoidalFitFunctions.R +++ b/R/doublesigmoidalFitFunctions.R @@ -475,7 +475,7 @@ f_mid2_doublesigmoidal <- function(parameterDf){ B2=parameterDf$slope2_Estimate , L=parameterDf$midPointDistance_Estimate); - mid2x <- stats::uniroot(f0mid, interval=c(argumentt,max_x*(3)), + mid2x <- stats::uniroot(f0mid, interval=c(argumentt,max_x*(2)), tol=0.0001, B1=parameterDf$slope1_Estimate, M1=parameterDf$midPoint1_Estimate, diff --git a/Readme.md b/Readme.md index e8c7564..425cd14 100644 --- a/Readme.md +++ b/Readme.md @@ -2,4 +2,4 @@ Package for single-cell virology. -We need some more description here, small change v2. +the package aims to quantify time intensity data by using sigmoidal and double sigmoidal curves. It fits straight lines, sigmoidal and double sigmoidal curves on to time vs intensity data. The all the fits together used to make decision between sigmoidal, double sigmoidal, no signal or ambiguous. No signal means the intensity do not reach to a high enough point or do not change at all. Sigmoidal means intensity start from a small number than climb to a maximum. Double sigmoidal means intensity start from a small number, climb to a maximum then starts to decay. After the decision between those four options, algorithm gives sigmoidal (or double sigmoidal) associated parameter values that quantifies the time intensity curve. diff --git a/inst/doc/Introduction.html b/inst/doc/Introduction.html index 12f8cb4..5aa500c 100644 --- a/inst/doc/Introduction.html +++ b/inst/doc/Introduction.html @@ -12,7 +12,7 @@ - + Vignette Title @@ -70,7 +70,7 @@

Vignette Title

Vignette Author

-

2017-03-10

+

2017-03-15

diff --git a/inst/doc/double_sigmoidal_vignette.R b/inst/doc/double_sigmoidal_vignette.R new file mode 100644 index 0000000..36323d0 --- /dev/null +++ b/inst/doc/double_sigmoidal_vignette.R @@ -0,0 +1,98 @@ +## ----setup, include=FALSE------------------------------------------------ +knitr::opts_chunk$set(echo = TRUE) + +## ----install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE---- + +###***************************** +# INITIAL COMMANDS TO RESET THE SYSTEM +rm(list = ls()) +if (is.integer(dev.list())){dev.off()} +cat("\014") +seedNo=14159 +set.seed(seedNo) +###***************************** + +###***************************** +require("sicegar") +require("dplyr") +require("ggplot2") +###***************************** + +## ----generate data------------------------------------------------------- +time=seq(3,24,0.5) + +#simulate intensity data and add noise +noise_parameter=0.1 +intensity_noise=stats::runif(n = length(time),min = 0,max = 1)*noise_parameter +intensity=doublesigmoidalFitFormula(time, + finalAsymptoteIntensity=.3, + maximum=4, + slope1=1, + midPoint1=7, + slope2=1, + midPointDistance=8) +intensity=intensity+intensity_noise + +dataInput=data.frame(intensity=intensity,time=time) + +## ----time normalization, eval=FALSE-------------------------------------- +# timeRatio=max(timeData); timeData=timeData/timeRatio + +## ----intensity normalization, eval=FALSE--------------------------------- +# intensityMin = min(dataInput$intensity) +# intensityMax = max(dataInput$intensity) +# intensityRatio = intensityMax - intensityMin +# +# intensityData=dataInput$intensity-intensityMin +# intensityData=intensityData/intensityRatio + +## ----normalize_data------------------------------------------------------ +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") + +## ----normalized_data_output---------------------------------------------- +head(normalizedInput$timeIntensityData) # the normalized time and intensity data +print(normalizedInput$dataScalingParameters) # the normalization parameters that is needed to go back to original scale +print(normalizedInput$dataInputName) # a useful feature to track the sample in all the process + +## ----plot raw and normal data, echo=FALSE, fig.height=4, fig.width=8----- +dataInput %>% dplyr::mutate(process="raw")->dataInput2 +normalizedInput$timeIntensityData %>% + dplyr::mutate(process="normalized")->timeIntensityData2 +dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined +combined$process <- factor(combined$process, levels = c("raw","normalized")) + +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() + +## ----doublesigmoidalfit_data--------------------------------------------- +parameterVector<-sicegar::doublesigmoidalFitFunction(normalizedInput,tryCounter=2) + +# Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. + +# If tryCounter==1 it took the start position given by sicegar::fitFunction +# If tryCounter!=1 it generates a random start position from given interval + +## ----parameter vector---------------------------------------------------- +print(t(parameterVector)) + +## ----plot raw data and fit, fig.height=4, fig.width=8-------------------- +intensityTheoretical= + sicegar::doublesigmoidalFitFormula( + time, + finalAsymptoteIntensity=parameterVector$finalAsymptoteIntensity_Estimate, + maximum=parameterVector$maximum_Estimate, + slope1=parameterVector$slope1_Estimate, + midPoint1=parameterVector$midPoint1_Estimate, + slope2=parameterVector$slope2_Estimate, + midPointDistance=parameterVector$midPointDistance_Estimate) + +comparisonData=cbind(dataInput,intensityTheoretical) + +require(ggplot2) +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) + diff --git a/inst/doc/double_sigmoidal_vignette.Rmd b/inst/doc/double_sigmoidal_vignette.Rmd new file mode 100644 index 0000000..b885070 --- /dev/null +++ b/inst/doc/double_sigmoidal_vignette.Rmd @@ -0,0 +1,241 @@ +--- +title: (3/3) Double Sigmoidal model +author: "Umut Caglar" +date: "`r Sys.Date()`" +output: rmarkdown::html_vignette +vignette: > + %\VignetteIndexEntry{Vignette Title} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) +``` + +# The Double Sigmoidal Fit Function +This is a document invetigates details of double sigmoidal model + + +```{r install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE} + +###***************************** +# INITIAL COMMANDS TO RESET THE SYSTEM +rm(list = ls()) +if (is.integer(dev.list())){dev.off()} +cat("\014") +seedNo=14159 +set.seed(seedNo) +###***************************** + +###***************************** +require("sicegar") +require("dplyr") +require("ggplot2") +###***************************** +``` + +## Data generation +To simulate the results, we will go backwards and firstly generate some data to analize. To add some randomness to the input data I will use some noise. The input of all package must be in the form of a data frame with at least 2 columns time and intensity. + +`sicegar::doublesigmoidalFitFormula` generate a set of intensity values based on finalAsymptoteIntensity, maximum, slope1, midPoint1,slope2, midPointDistance values supplied. So here we are generating a set of points that are on two sigmoidals glued side by side from the maximum of the combined function. + +note that slope1, slope2 and finalAsymptoteIntensity are not exactly the exacly slope1 slope2 and final asymtote intensity of the final function. they are parameters related with them. + +```{r generate data} +time=seq(3,24,0.5) + +#simulate intensity data and add noise +noise_parameter=0.1 +intensity_noise=stats::runif(n = length(time),min = 0,max = 1)*noise_parameter +intensity=doublesigmoidalFitFormula(time, + finalAsymptoteIntensity=.3, + maximum=4, + slope1=1, + midPoint1=7, + slope2=1, + midPointDistance=8) +intensity=intensity+intensity_noise + +dataInput=data.frame(intensity=intensity,time=time) +``` + +## Data normalization + +This is the first step. Data should be normalized before any fit. I.e time and intensity should be in between 0-1 interval. + +There is a nuance + +* Time is normalized with respect to maximum value the time parameter takes. +```{r time normalization, eval=FALSE} +timeRatio=max(timeData); timeData=timeData/timeRatio +``` + +* Intensity is normalized with respect to intensity interval +```{r intensity normalization, eval=FALSE} +intensityMin = min(dataInput$intensity) +intensityMax = max(dataInput$intensity) +intensityRatio = intensityMax - intensityMin + +intensityData=dataInput$intensity-intensityMin +intensityData=intensityData/intensityRatio +``` + +The normalization code is + +```{r normalize_data} +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") +``` + + +Components of the normalization output + +```{r normalized_data_output} +head(normalizedInput$timeIntensityData) # the normalized time and intensity data +print(normalizedInput$dataScalingParameters) # the normalization parameters that is needed to go back to original scale +print(normalizedInput$dataInputName) # a useful feature to track the sample in all the process +``` + + +## The figures of raw and normalized datasets + +```{r plot raw and normal data, echo=FALSE, fig.height=4, fig.width=8} +dataInput %>% dplyr::mutate(process="raw")->dataInput2 +normalizedInput$timeIntensityData %>% + dplyr::mutate(process="normalized")->timeIntensityData2 +dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined +combined$process <- factor(combined$process, levels = c("raw","normalized")) + +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() +``` + +## Double-Sigmoidal fit of the data + +Now it is time to calculate the parameters by using `sicegar::doublesigmoidalFitFunction()` + +```{r doublesigmoidalfit_data} +parameterVector<-sicegar::doublesigmoidalFitFunction(normalizedInput,tryCounter=2) + +# Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. + +# If tryCounter==1 it took the start position given by sicegar::fitFunction +# If tryCounter!=1 it generates a random start position from given interval +``` + +the function outputs a vector that gives information about multiple parameters + +```{r parameter vector} +print(t(parameterVector)) +``` + +Here is the brief explanations of the parameters that are given by `sicegar::doublesigmoidalFitFunction` (In different order then than the output vector of the doublesigmoidalFitFunction) + +These are the parameters of the normalization step + +* `dataScalingParameters.timeRatio`: Maximum of raw time data +* `dataScalingParameters.intensityMin`: Minimum of raw intensity data +* `dataScalingParameters.intensityMax`: Maximum of raw intensity data +* `dataScalingParameters.intensityRatio`: Maximum - Minimum of intensity data + +They are the meta summary of the result parameters + +* `isThisaFit` +* `model` +* `numericalParameters`: __"FALSE"__ in this case + +Likelihood maximization algorithm starts from a random initiation (if tryCounter!=1) point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm. + +* `startVector.maximum`: maximum value of initiation point +* `startVector.slope1`: slope1 value of initiation point +* `startVector.midPoint1`: midPoint1 value of initiation point +* `startVector.slope2`: slope2 value of initiation point +* `startVector.midPointDistance`: midPointDistance value of initiation point +* `startVector.finalAsymptoteIntensity`: finalAsymptoteIntensity value of initiation point. + +For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter + +They are the parameters associated with parameter “maximum” + +* `maximum_N_Estimate`: Here N stand for the intersection in the normalized scale +* `maximum_Std_Error` +* `maximum_t_value` +* `maximum_Pr_t` + +They are the parameters associated with parameter “slope1” + +* `slope1_N_Estimate`: Here N stand for the intersection in the normalized scale +* `slope1_Std_Error` +* `slope1_t_value` +* `slope1_Pr_t` + +They are the parameters associated with parameter “midPoint1” + +* `midPoint1_N_Estimate`: Here N stand for the intersection in the normalized scale +* `midPoint1_Std_Error` +* `midPoint1_t_value` +* `midPoint1_Pr_t` + +They are the parameters associated with parameter “slope2” + +* `slope2_N_Estimate`: Here N stand for the intersection in the normalized scale +* `slope2_Std_Error` +* `slope2_t_value` +* `slope2_Pr_t` + + +They are the parameters associated with parameter “midPointDistance” + +* `midPointDistance_N_Estimate`: Here N stand for the intersection in the normalized scale +* `midPointDistance_Std_Error` +* `midPointDistance_t_value` +* `midPointDistance_Pr_t` + +They are the parameters associated with parameter “finalAsymptoteIntensity” + +* `finalAsymptoteIntensity_N_Estimate`: Here N stand for the intersection in the normalized scale +* `finalAsymptoteIntensity_Std_Error` +* `finalAsymptoteIntensity_t_value` +* `finalAsymptoteIntensity_Pr_t` + +They are the parameters associated with the quality of the fit. + +* `residual_Sum_of_Squares`: Small value indicate better fit +* `log_likelihood`: Higher value indicate a better fit +* `AIC_value`: Smaller value indicate a better fit +* `BIC_value`: Smaller value indicate a better fit + +They are the fitted values after converting everything from normalized to un-normalized scale. (Without numeric correction) + +* `maximum_Estimate`: Maximum intensity estimate for the raw data +* `slope1_Estimate`: __Slope1 parameter__ estimate for the raw data +* `midPoint1_Estimate`: Mid-point 1 estimate (time the intensity reaches 1/2 of maximum) for the raw data. _Needs numerical correction_ +* `slope2_Estimate`: __Slope2 parameter__ estimate for the raw data +* `midPointDistance_Estimate`: Distance between mid- point 1 and mid-point 2. Where mid-point 2 is the time that intensity decreases to the value in between final asymptote intensity and maximum value. _Needs numerical correction_ +* `finalAsymptoteIntensity_Estimate`: This is the __ratio__ between asymptote intensity and maximum value of the function. + +## Check the results to see if the results are meaningfull + +By using the `maximum_Estimate`, `slope_Estimate`, `midPoint_Estimate` parameters of the sigmoidalfit and the time sequence that we already created we can calculate the intensity values by the help of `sicegar::sigmoidalFitFormula()`. We can draw the best sigmoidal fit on top of our initial data. + +```{r plot raw data and fit, fig.height=4, fig.width=8} +intensityTheoretical= + sicegar::doublesigmoidalFitFormula( + time, + finalAsymptoteIntensity=parameterVector$finalAsymptoteIntensity_Estimate, + maximum=parameterVector$maximum_Estimate, + slope1=parameterVector$slope1_Estimate, + midPoint1=parameterVector$midPoint1_Estimate, + slope2=parameterVector$slope2_Estimate, + midPointDistance=parameterVector$midPointDistance_Estimate) + +comparisonData=cbind(dataInput,intensityTheoretical) + +require(ggplot2) +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) +``` diff --git a/inst/doc/double_sigmoidal_vignette.html b/inst/doc/double_sigmoidal_vignette.html new file mode 100644 index 0000000..2cd09e5 --- /dev/null +++ b/inst/doc/double_sigmoidal_vignette.html @@ -0,0 +1,321 @@ + + + + + + + + + + + + + + + + +(3/3) Double Sigmoidal model + + + + + + + + + + + + + + + + + +

(3/3) Double Sigmoidal model

+

Umut Caglar

+

2017-03-15

+ + + +
+

The Double Sigmoidal Fit Function

+

This is a document invetigates details of double sigmoidal model

+
+

Data generation

+

To simulate the results, we will go backwards and firstly generate some data to analize. To add some randomness to the input data I will use some noise. The input of all package must be in the form of a data frame with at least 2 columns time and intensity.

+

sicegar::doublesigmoidalFitFormula generate a set of intensity values based on finalAsymptoteIntensity, maximum, slope1, midPoint1,slope2, midPointDistance values supplied. So here we are generating a set of points that are on two sigmoidals glued side by side from the maximum of the combined function.

+

note that slope1, slope2 and finalAsymptoteIntensity are not exactly the exacly slope1 slope2 and final asymtote intensity of the final function. they are parameters related with them.

+
time=seq(3,24,0.5)
+
+#simulate intensity data and add noise
+noise_parameter=0.1
+intensity_noise=stats::runif(n = length(time),min = 0,max = 1)*noise_parameter
+intensity=doublesigmoidalFitFormula(time,
+                                    finalAsymptoteIntensity=.3,
+                                    maximum=4,
+                                    slope1=1,
+                                    midPoint1=7,
+                                    slope2=1,
+                                    midPointDistance=8)
+intensity=intensity+intensity_noise
+
+dataInput=data.frame(intensity=intensity,time=time)
+
+
+

Data normalization

+

This is the first step. Data should be normalized before any fit. I.e time and intensity should be in between 0-1 interval.

+

There is a nuance

+
    +
  • Time is normalized with respect to maximum value the time parameter takes.
  • +
+
timeRatio=max(timeData); timeData=timeData/timeRatio
+
    +
  • Intensity is normalized with respect to intensity interval
  • +
+
intensityMin = min(dataInput$intensity)
+intensityMax = max(dataInput$intensity)
+intensityRatio = intensityMax - intensityMin
+
+intensityData=dataInput$intensity-intensityMin
+intensityData=intensityData/intensityRatio
+

The normalization code is

+
normalizedInput = sicegar::normalizeData(dataInput = dataInput, 
+                                         dataInputName = "Sample001")
+

Components of the normalization output

+
head(normalizedInput$timeIntensityData) # the normalized time and intensity data
+
##        time   intensity
+## 1 0.1250000 0.000000000
+## 2 0.1458333 0.005575769
+## 3 0.1666667 0.014948772
+## 4 0.1875000 0.049302656
+## 5 0.2083333 0.092288619
+## 6 0.2291667 0.163302439
+
print(normalizedInput$dataScalingParameters) # the normalization parameters that is needed to go back to original scale
+
##      timeRatio   intensityMin   intensityMax intensityRatio 
+##     24.0000000      0.1455394      4.0735994      3.9280600
+
print(normalizedInput$dataInputName) # a useful feature to track the sample in all the process
+
## [1] "Sample001"
+
+
+

The figures of raw and normalized datasets

+

+
+
+

Double-Sigmoidal fit of the data

+

Now it is time to calculate the parameters by using sicegar::doublesigmoidalFitFunction()

+
parameterVector<-sicegar::doublesigmoidalFitFunction(normalizedInput,tryCounter=2)
+
+# Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. 
+
+# If tryCounter==1 it took the  start position given by sicegar::fitFunction
+# If tryCounter!=1 it generates a random start position from given interval
+

the function outputs a vector that gives information about multiple parameters

+
print(t(parameterVector))
+
##                                      [,1]             
+## finalAsymptoteIntensity_N_Estimate   "0"              
+## finalAsymptoteIntensity_Std_Error    "112.4602"       
+## finalAsymptoteIntensity_t_value      "0"              
+## finalAsymptoteIntensity_Pr_t         "1"              
+## maximum_N_Estimate                   "0.5579852"      
+## maximum_Std_Error                    "0.09694097"     
+## maximum_t_value                      "5.755928"       
+## maximum_Pr_t                         "1.344264e-06"   
+## slope1_N_Estimate                    "1.304416"       
+## slope1_Std_Error                     "229.1623"       
+## slope1_t_value                       "0.005692108"    
+## slope1_Pr_t                          "0.995489"       
+## midPoint1_N_Estimate                 "0.5323434"      
+## midPoint1_Std_Error                  "642.7553"       
+## midPoint1_t_value                    "0.0008282209"   
+## midPoint1_Pr_t                       "0.9993436"      
+## slope2_N_Estimate                    "2.928598"       
+## slope2_Std_Error                     "487.1463"       
+## slope2_t_value                       "0.006011743"    
+## slope2_Pr_t                          "0.9952356"      
+## midPointDistance_N_Estimate          "0.625"          
+## midPointDistance_Std_Error           "762.6677"       
+## midPointDistance_t_value             "0.0008194919"   
+## midPointDistance_Pr_t                "0.9993505"      
+## residual_Sum_of_Squares              "4.087576"       
+## log_likelihood                       "-10.41952"      
+## AIC_value                            "34.83905"       
+## BIC_value                            "47.16745"       
+## isThisaFit                           "TRUE"           
+## startVector.finalAsymptoteIntensity  "0.5251236"      
+## startVector.maximum                  "0.9545571"      
+## startVector.slope1                   "117.0177"       
+## startVector.midPoint1                "0.5727166"      
+## startVector.slope2                   "62.71368"       
+## startVector.midPointDistance         "0.4960475"      
+## dataScalingParameters.timeRatio      "24"             
+## dataScalingParameters.intensityMin   "0.1455394"      
+## dataScalingParameters.intensityMax   "4.073599"       
+## dataScalingParameters.intensityRatio "3.92806"        
+## model                                "doublesigmoidal"
+## numericalParameters                  "FALSE"          
+## finalAsymptoteIntensity_Estimate     "0"              
+## maximum_Estimate                     "2.337339"       
+## slope1_Estimate                      "0.05435069"     
+## midPoint1_Estimate                   "12.77624"       
+## slope2_Estimate                      "0.1220249"      
+## midPointDistance_Estimate            "15"
+

Here is the brief explanations of the parameters that are given by sicegar::doublesigmoidalFitFunction (In different order then than the output vector of the doublesigmoidalFitFunction)

+

These are the parameters of the normalization step

+
    +
  • dataScalingParameters.timeRatio: Maximum of raw time data
    +
  • +
  • dataScalingParameters.intensityMin: Minimum of raw intensity data
  • +
  • dataScalingParameters.intensityMax: Maximum of raw intensity data
  • +
  • dataScalingParameters.intensityRatio: Maximum - Minimum of intensity data
  • +
+

They are the meta summary of the result parameters

+
    +
  • isThisaFit
  • +
  • model
  • +
  • numericalParameters: “FALSE” in this case
  • +
+

Likelihood maximization algorithm starts from a random initiation (if tryCounter!=1) point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm.

+
    +
  • startVector.maximum: maximum value of initiation point
  • +
  • startVector.slope1: slope1 value of initiation point
  • +
  • startVector.midPoint1: midPoint1 value of initiation point
  • +
  • startVector.slope2: slope2 value of initiation point
  • +
  • startVector.midPointDistance: midPointDistance value of initiation point
  • +
  • startVector.finalAsymptoteIntensity: finalAsymptoteIntensity value of initiation point.
  • +
+

For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter

+

They are the parameters associated with parameter “maximum”

+
    +
  • maximum_N_Estimate: Here N stand for the intersection in the normalized scale
  • +
  • maximum_Std_Error
  • +
  • maximum_t_value
  • +
  • maximum_Pr_t
  • +
+

They are the parameters associated with parameter “slope1”

+
    +
  • slope1_N_Estimate: Here N stand for the intersection in the normalized scale
  • +
  • slope1_Std_Error
  • +
  • slope1_t_value
  • +
  • slope1_Pr_t
  • +
+

They are the parameters associated with parameter “midPoint1”

+
    +
  • midPoint1_N_Estimate: Here N stand for the intersection in the normalized scale
  • +
  • midPoint1_Std_Error
  • +
  • midPoint1_t_value
  • +
  • midPoint1_Pr_t
  • +
+

They are the parameters associated with parameter “slope2”

+
    +
  • slope2_N_Estimate: Here N stand for the intersection in the normalized scale
  • +
  • slope2_Std_Error
  • +
  • slope2_t_value
  • +
  • slope2_Pr_t
  • +
+

They are the parameters associated with parameter “midPointDistance”

+
    +
  • midPointDistance_N_Estimate: Here N stand for the intersection in the normalized scale
  • +
  • midPointDistance_Std_Error
  • +
  • midPointDistance_t_value
  • +
  • midPointDistance_Pr_t
  • +
+

They are the parameters associated with parameter “finalAsymptoteIntensity”

+
    +
  • finalAsymptoteIntensity_N_Estimate: Here N stand for the intersection in the normalized scale
    +
  • +
  • finalAsymptoteIntensity_Std_Error
  • +
  • finalAsymptoteIntensity_t_value
  • +
  • finalAsymptoteIntensity_Pr_t
  • +
+

They are the parameters associated with the quality of the fit.

+
    +
  • residual_Sum_of_Squares: Small value indicate better fit
  • +
  • log_likelihood: Higher value indicate a better fit
  • +
  • AIC_value: Smaller value indicate a better fit
  • +
  • BIC_value: Smaller value indicate a better fit
  • +
+

They are the fitted values after converting everything from normalized to un-normalized scale. (Without numeric correction)

+
    +
  • maximum_Estimate: Maximum intensity estimate for the raw data
  • +
  • slope1_Estimate: Slope1 parameter estimate for the raw data
  • +
  • midPoint1_Estimate: Mid-point 1 estimate (time the intensity reaches 1/2 of maximum) for the raw data. Needs numerical correction
  • +
  • slope2_Estimate: Slope2 parameter estimate for the raw data
  • +
  • midPointDistance_Estimate: Distance between mid- point 1 and mid-point 2. Where mid-point 2 is the time that intensity decreases to the value in between final asymptote intensity and maximum value. Needs numerical correction
  • +
  • finalAsymptoteIntensity_Estimate: This is the ratio between asymptote intensity and maximum value of the function.
  • +
+
+
+

Check the results to see if the results are meaningfull

+

By using the maximum_Estimate, slope_Estimate, midPoint_Estimate parameters of the sigmoidalfit and the time sequence that we already created we can calculate the intensity values by the help of sicegar::sigmoidalFitFormula(). We can draw the best sigmoidal fit on top of our initial data.

+
intensityTheoretical=
+  sicegar::doublesigmoidalFitFormula(
+    time,
+    finalAsymptoteIntensity=parameterVector$finalAsymptoteIntensity_Estimate,
+    maximum=parameterVector$maximum_Estimate,
+    slope1=parameterVector$slope1_Estimate,
+    midPoint1=parameterVector$midPoint1_Estimate,
+    slope2=parameterVector$slope2_Estimate,
+    midPointDistance=parameterVector$midPointDistance_Estimate)
+
+comparisonData=cbind(dataInput,intensityTheoretical)
+
+require(ggplot2)
+ggplot2::ggplot(comparisonData)+
+  ggplot2::geom_point(aes(x=time, y=intensity))+
+  ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+
+  ggplot2::expand_limits(x = 0, y = 0)
+

+
+
+ + + + + + + + diff --git a/inst/doc/linear_vignette.R b/inst/doc/linear_vignette.R index b80ddd1..e3b39ab 100644 --- a/inst/doc/linear_vignette.R +++ b/inst/doc/linear_vignette.R @@ -16,7 +16,6 @@ set.seed(seedNo) require("sicegar") require("dplyr") require("ggplot2") -require("cowplot") ###***************************** ## ----generate data------------------------------------------------------- @@ -42,8 +41,8 @@ dataInput=data.frame(intensity=intensity,time=time) # intensityData=intensityData/intensityRatio ## ----normalize_data------------------------------------------------------ -normalizedInput = normalizeData(dataInput = dataInput, - dataInputName = "Sample001") +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") ## ----normalized_data_output---------------------------------------------- head(normalizedInput$timeIntensityData) # the normalized time and intensity data @@ -57,12 +56,12 @@ normalizedInput$timeIntensityData %>% dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined combined$process <- factor(combined$process, levels = c("raw","normalized")) -ggplot(combined,aes(x=time, y=intensity))+ - facet_wrap(~process, scales = "free")+ - geom_point() +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() ## ----linefit_data-------------------------------------------------------- -parameterVector<-lineFitFunction(dataInput = normalizedInput, tryCounter = 2) +parameterVector<-sicegar::lineFitFunction(dataInput = normalizedInput, tryCounter = 2) # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::lineFitFunction is called from sicegar::fitFunction. @@ -73,13 +72,13 @@ parameterVector<-lineFitFunction(dataInput = normalizedInput, tryCounter = 2) print(t(parameterVector)) ## ----plot raw data and fit, fig.height=4, fig.width=8-------------------- -intensityTheoretical=lineFitFormula(time, - slope=parameterVector$slope_Estimate, - intersection=parameterVector$intersection_Estimate) +intensityTheoretical=sicegar::lineFitFormula(time, + slope=parameterVector$slope_Estimate, + intersection=parameterVector$intersection_Estimate) comparisonData=cbind(dataInput,intensityTheoretical) -ggplot(comparisonData)+ - geom_point(aes(x=time, y=intensity))+ - geom_line(aes(x=time,y=intensityTheoretical))+ - expand_limits(x = 0, y = 0) +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) diff --git a/inst/doc/linear_vignette.Rmd b/inst/doc/linear_vignette.Rmd index 90da925..66dc47c 100644 --- a/inst/doc/linear_vignette.Rmd +++ b/inst/doc/linear_vignette.Rmd @@ -32,7 +32,6 @@ set.seed(seedNo) require("sicegar") require("dplyr") require("ggplot2") -require("cowplot") ###***************************** ``` @@ -77,8 +76,8 @@ intensityData=intensityData/intensityRatio The normalization code is ```{r normalize_data} -normalizedInput = normalizeData(dataInput = dataInput, - dataInputName = "Sample001") +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") ``` @@ -100,9 +99,9 @@ normalizedInput$timeIntensityData %>% dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined combined$process <- factor(combined$process, levels = c("raw","normalized")) -ggplot(combined,aes(x=time, y=intensity))+ - facet_wrap(~process, scales = "free")+ - geom_point() +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() ``` ## Line fit of the data @@ -110,7 +109,7 @@ ggplot(combined,aes(x=time, y=intensity))+ Now it is time to calculate the parameters by using `sicegar::lineFitFunction()` ```{r linefit_data} -parameterVector<-lineFitFunction(dataInput = normalizedInput, tryCounter = 2) +parameterVector<-sicegar::lineFitFunction(dataInput = normalizedInput, tryCounter = 2) # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::lineFitFunction is called from sicegar::fitFunction. @@ -124,7 +123,7 @@ the function outputs a vector that gives information about multiple parameters print(t(parameterVector)) ``` -Here is the brief explanations of the parameters that are given by lineFitFunction (In different order then than the output vector of the lineFitFunction) +Here is the brief explanations of the parameters that are given by `sicegar::lineFitFunction` (In different order then than the output vector of the `sicegar::lineFitFunction`) These are the parameters of the normalization step: @@ -138,10 +137,10 @@ They are the meta summary of the result parameters * `model`: Gives the used model for fitting * `isThisaFit`: FALSE means there is not any successful fit. TRUE means there is at least one successful fit -Likelihood maximization algorithm starts from a random initiation point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm. +Likelihood maximization algorithm starts from a random initiation point (if tryCounter!=1) and goes down the fitness space by a gradient decent algorithm. These parameters represent the start point of the gradient decent algorithm. -* `startVector.slope`: Slope value of the initialtion point -* `startVector.intersection`: Intersection value of the initialtion point +* `startVector.slope`: Slope value of the initiation point +* `startVector.intersection`: Intersection value of the initiation point For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter. __Note: They are for normalized data.__ @@ -172,7 +171,7 @@ They are the parameters associated with the quality of the fit. Final results that are relavent to most of the users -They are the fitter values after converting everything from normalized to un-normalized scale. +They are the fitted values after converting everything from normalized to un-normalized scale. * `intersection_Estimate`: Intersection estimate for the raw data * `slope_Estimate`: Slope estimate for the raw data @@ -180,16 +179,16 @@ They are the fitter values after converting everything from normalized to un-nor ## Check the results to see if the results are meaningfull -By using the `intersection_Estimate`, `slope_Estimate` parameters of the linefit and the time sequence that we already created we can calculate the intensity values by the help of `sicegar::lineFitFormula()`. We can draw the bes line on top of our initial data. +By using the `intersection_Estimate`, `slope_Estimate` parameters of the linefit and the time sequence that we already created we can calculate the intensity values by the help of `sicegar::lineFitFormula()`. We can draw the best line on top of our initial data. ```{r plot raw data and fit, fig.height=4, fig.width=8} -intensityTheoretical=lineFitFormula(time, - slope=parameterVector$slope_Estimate, - intersection=parameterVector$intersection_Estimate) +intensityTheoretical=sicegar::lineFitFormula(time, + slope=parameterVector$slope_Estimate, + intersection=parameterVector$intersection_Estimate) comparisonData=cbind(dataInput,intensityTheoretical) -ggplot(comparisonData)+ - geom_point(aes(x=time, y=intensity))+ - geom_line(aes(x=time,y=intensityTheoretical))+ - expand_limits(x = 0, y = 0) -``` \ No newline at end of file +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) +``` diff --git a/inst/doc/linear_vignette.html b/inst/doc/linear_vignette.html index 00f11d1..dc634e4 100644 --- a/inst/doc/linear_vignette.html +++ b/inst/doc/linear_vignette.html @@ -12,7 +12,7 @@ - + (1/3) Linear model @@ -70,7 +70,7 @@

(1/3) Linear model

Umut Caglar

-

2017-03-10

+

2017-03-15

@@ -109,8 +109,8 @@

Data normalization

intensityData=dataInput$intensity-intensityMin intensityData=intensityData/intensityRatio

The normalization code is

-
normalizedInput = normalizeData(dataInput = dataInput, 
-                                dataInputName = "Sample001")
+
normalizedInput = sicegar::normalizeData(dataInput = dataInput, 
+                                         dataInputName = "Sample001")

Components of the normalization output

head(normalizedInput$timeIntensityData) # the normalized time and intensity data
##        time  intensity
@@ -128,12 +128,12 @@ 

Data normalization

The figures of raw and normalized datasets

-

+

Line fit of the data

Now it is time to calculate the parameters by using sicegar::lineFitFunction()

-
parameterVector<-lineFitFunction(dataInput = normalizedInput, tryCounter = 2)
+
parameterVector<-sicegar::lineFitFunction(dataInput = normalizedInput, tryCounter = 2)
 
 # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::lineFitFunction is called from sicegar::fitFunction. 
 
@@ -164,7 +164,7 @@ 

Line fit of the data

## model "linaer" ## intersection_Estimate "1.448682" ## slope_Estimate "4.022677"
-

Here is the brief explanations of the parameters that are given by lineFitFunction (In different order then than the output vector of the lineFitFunction)

+

Here is the brief explanations of the parameters that are given by sicegar::lineFitFunction (In different order then than the output vector of the sicegar::lineFitFunction)

These are the parameters of the normalization step:

  • dataScalingParameters.timeRatio: Maximum of raw time data
    @@ -178,10 +178,10 @@

    Line fit of the data

  • model: Gives the used model for fitting
  • isThisaFit: FALSE means there is not any successful fit. TRUE means there is at least one successful fit
-

Likelihood maximization algorithm starts from a random initiation point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm.

+

Likelihood maximization algorithm starts from a random initiation point (if tryCounter!=1) and goes down the fitness space by a gradient decent algorithm. These parameters represent the start point of the gradient decent algorithm.

    -
  • startVector.slope: Slope value of the initialtion point
  • -
  • startVector.intersection: Intersection value of the initialtion point
  • +
  • startVector.slope: Slope value of the initiation point
  • +
  • startVector.intersection: Intersection value of the initiation point

For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter. Note: They are for normalized data.

They are the parameters associated with parameter “slope”

@@ -210,7 +210,7 @@

Line fit of the data

  • BIC_value: Smaller value indicate a better fit
  • Final results that are relavent to most of the users

    -

    They are the fitter values after converting everything from normalized to un-normalized scale.

    +

    They are the fitted values after converting everything from normalized to un-normalized scale.

    • intersection_Estimate: Intersection estimate for the raw data
    • slope_Estimate: Slope estimate for the raw data
    • @@ -218,17 +218,17 @@

      Line fit of the data

    Check the results to see if the results are meaningfull

    -

    By using the intersection_Estimate, slope_Estimate parameters of the linefit and the time sequence that we already created we can calculate the intensity values by the help of sicegar::lineFitFormula(). We can draw the bes line on top of our initial data.

    -
    intensityTheoretical=lineFitFormula(time,
    -                                    slope=parameterVector$slope_Estimate,
    -                                    intersection=parameterVector$intersection_Estimate)
    +

    By using the intersection_Estimate, slope_Estimate parameters of the linefit and the time sequence that we already created we can calculate the intensity values by the help of sicegar::lineFitFormula(). We can draw the best line on top of our initial data.

    +
    intensityTheoretical=sicegar::lineFitFormula(time,
    +                                             slope=parameterVector$slope_Estimate,
    +                                             intersection=parameterVector$intersection_Estimate)
     comparisonData=cbind(dataInput,intensityTheoretical)
     
    -ggplot(comparisonData)+
    -  geom_point(aes(x=time, y=intensity))+
    -  geom_line(aes(x=time,y=intensityTheoretical))+
    -  expand_limits(x = 0, y = 0)
    -

    +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0)
    +

    diff --git a/inst/doc/sigmoidal_vignette.R b/inst/doc/sigmoidal_vignette.R index 760950b..f7bdf22 100644 --- a/inst/doc/sigmoidal_vignette.R +++ b/inst/doc/sigmoidal_vignette.R @@ -16,7 +16,6 @@ set.seed(seedNo) require("sicegar") require("dplyr") require("ggplot2") -require("cowplot") ###***************************** ## ----generate data------------------------------------------------------- @@ -42,8 +41,8 @@ dataInput=data.frame(intensity=intensity,time=time) # intensityData=intensityData/intensityRatio ## ----normalize_data------------------------------------------------------ -normalizedInput = normalizeData(dataInput = dataInput, - dataInputName = "Sample001") +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") ## ----normalized_data_output---------------------------------------------- head(normalizedInput$timeIntensityData) # the normalized time and intensity data @@ -57,12 +56,12 @@ normalizedInput$timeIntensityData %>% dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined combined$process <- factor(combined$process, levels = c("raw","normalized")) -ggplot(combined,aes(x=time, y=intensity))+ - facet_wrap(~process, scales = "free")+ - geom_point() +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() -## ----linefit_data-------------------------------------------------------- -parameterVector<-sigmoidalFitFunction(normalizedInput,tryCounter=2) +## ----sigmoidalfit_data--------------------------------------------------- +parameterVector<-sicegar::sigmoidalFitFunction(normalizedInput,tryCounter=2) # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. @@ -73,13 +72,14 @@ parameterVector<-sigmoidalFitFunction(normalizedInput,tryCounter=2) print(t(parameterVector)) ## ----plot raw data and fit, fig.height=4, fig.width=8-------------------- -# intensityTheoretical=lineFitFormula(time, -# slope=parameterVector$slope_Estimate, -# intersection=parameterVector$intersection_Estimate) -# comparisonData=cbind(dataInput,intensityTheoretical) -# -# ggplot(comparisonData)+ -# geom_point(aes(x=time, y=intensity))+ -# geom_line(aes(x=time,y=intensityTheoretical))+ -# expand_limits(x = 0, y = 0) +intensityTheoretical=sicegar::sigmoidalFitFormula(time, + maximum=parameterVector$maximum_Estimate, + slope=parameterVector$slope_Estimate, + midPoint=parameterVector$midPoint_Estimate) +comparisonData=cbind(dataInput,intensityTheoretical) + +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) diff --git a/inst/doc/sigmoidal_vignette.Rmd b/inst/doc/sigmoidal_vignette.Rmd index 5133438..25bcc18 100644 --- a/inst/doc/sigmoidal_vignette.Rmd +++ b/inst/doc/sigmoidal_vignette.Rmd @@ -12,12 +12,12 @@ vignette: > ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` - -# The Sigmoidal Fit Function -This is a document invetigates details of sigmoidal model - - -```{r install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE} + + # The Sigmoidal Fit Function + This is a document invetigates details of sigmoidal model + + + ```{r install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE} ###***************************** # INITIAL COMMANDS TO RESET THE SYSTEM @@ -32,7 +32,6 @@ set.seed(seedNo) require("sicegar") require("dplyr") require("ggplot2") -require("cowplot") ###***************************** ``` @@ -83,8 +82,8 @@ intensityData=intensityData/intensityRatio The normalization code is ```{r normalize_data} -normalizedInput = normalizeData(dataInput = dataInput, - dataInputName = "Sample001") +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") ``` @@ -106,17 +105,17 @@ normalizedInput$timeIntensityData %>% dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined combined$process <- factor(combined$process, levels = c("raw","normalized")) -ggplot(combined,aes(x=time, y=intensity))+ - facet_wrap(~process, scales = "free")+ - geom_point() +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() ``` ## Sigmoidal fit of the data Now it is time to calculate the parameters by using `sicegar::sigmoidalFitFunction()` -```{r linefit_data} -parameterVector<-sigmoidalFitFunction(normalizedInput,tryCounter=2) +```{r sigmoidalfit_data} +parameterVector<-sicegar::sigmoidalFitFunction(normalizedInput,tryCounter=2) # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. @@ -130,9 +129,9 @@ the function outputs a vector that gives information about multiple parameters print(t(parameterVector)) ``` -Here is the brief explanations of the parameters that are given by lineFitFunction (In different order then than the output vector of the lineFitFunction) +Here is the brief explanations of the parameters that are given by `sicegar::sigmoidalFitFunction` (In different order then than the output vector of the sigmoidalFitFunction) -These are the parameters of the normalization step: +These are the parameters of the normalization step * `dataScalingParameters.timeRatio`: Maximum of raw time data * `dataScalingParameters.intensityMin`: Minimum of raw intensity data @@ -144,30 +143,35 @@ They are the meta summary of the result parameters * `model`: Gives the used model for fitting * `isThisaFit`: FALSE means there is not any successful fit. TRUE means there is at least one successful fit -Likelihood maximization algorithm starts from a random initiation point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm. +Likelihood maximization algorithm starts from a random initiation (if tryCounter!=1) point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm. + +* `startVector.maximum`: Maximum value of the initiation point +* `startVector.slope`: Slope value of the initiation point +* `startVector.midPoint`: Mid-point value of the initiation point -* `startVector.slope`: Slope value of the initialtion point -* `startVector.intersection`: Intersection value of the initialtion point -For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter. __Note: They are for normalized data.__ +For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter +They are the parameters associated with parameter "maximum" + +* `maximum_N_Estimate`: Here N stand for the intersection in the normalized scale +* `maximum_Std_Error` +* `maximum_t_value` +* `maximum_Pr_t` They are the parameters associated with parameter "slope" -* `slope_N_Estimate`: here N stand for the slope in the normalized scale +* `slope_N_Estimate`: Here N stand for the intersection in the normalized scale * `slope_Std_Error` -* `slope_t_value` +* `slope_t_value` * `slope_Pr_t` -They are the parameters associated with parameter "intersection" - -* `intersection_N_Estimate` here N stand for the intersection in the normalized scale -* `intersection_Std_Error` -* `intersection_t_value` -* `intersection_Pr_t` - +They are the parameters associated with parameter "midpoint" -Here are the fit-parameters that are not related with individual variable that is fitted, but gives information about overal fit. +* `midPoint_N_Estimate`: Here N stand for the intersection in the normalized scale +* `midPoint_Std_Error` +* `midPoint_t_value` +* `midPoint_Pr_t` They are the parameters associated with the quality of the fit. @@ -176,26 +180,25 @@ They are the parameters associated with the quality of the fit. * `AIC_value`: Smaller value indicate a better fit * `BIC_value`: Smaller value indicate a better fit -Final results that are relavent to most of the users - -They are the fitter values after converting everything from normalized to un-normalized scale. - -* `intersection_Estimate`: Intersection estimate for the raw data -* `slope_Estimate`: Slope estimate for the raw data +They are the fitted values after converting everything from normalized to un-normalized scale. +* `maximum_Estimate`Maximum intensity estimate for the raw data +* `slope_Estimate`: __Slope parameter__ estimate for the raw data +* `midPoint_Estimate`: Mid-point estimate (time the intensity reaches 1/2 of maximum) for the raw data ## Check the results to see if the results are meaningfull -By using the `intersection_Estimate`, `slope_Estimate` parameters of the linefit and the time sequence that we already created we can calculate the intensity values by the help of `sicegar::lineFitFormula()`. We can draw the bes line on top of our initial data. +By using the `maximum_Estimate`, `slope_Estimate`, `midPoint_Estimate` parameters of the sigmoidalfit and the time sequence that we already created we can calculate the intensity values by the help of `sicegar::sigmoidalFitFormula()`. We can draw the best sigmoidal fit on top of our initial data. ```{r plot raw data and fit, fig.height=4, fig.width=8} -# intensityTheoretical=lineFitFormula(time, -# slope=parameterVector$slope_Estimate, -# intersection=parameterVector$intersection_Estimate) -# comparisonData=cbind(dataInput,intensityTheoretical) -# -# ggplot(comparisonData)+ -# geom_point(aes(x=time, y=intensity))+ -# geom_line(aes(x=time,y=intensityTheoretical))+ -# expand_limits(x = 0, y = 0) -``` \ No newline at end of file +intensityTheoretical=sicegar::sigmoidalFitFormula(time, + maximum=parameterVector$maximum_Estimate, + slope=parameterVector$slope_Estimate, + midPoint=parameterVector$midPoint_Estimate) +comparisonData=cbind(dataInput,intensityTheoretical) + +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) +``` diff --git a/inst/doc/sigmoidal_vignette.html b/inst/doc/sigmoidal_vignette.html index 95209da..d9ecd82 100644 --- a/inst/doc/sigmoidal_vignette.html +++ b/inst/doc/sigmoidal_vignette.html @@ -12,7 +12,7 @@ - + (2/3) Sigmoidal model @@ -70,13 +70,11 @@

    (2/3) Sigmoidal model

    Umut Caglar

    -

    2017-03-10

    +

    2017-03-15

    -
    -

    The Sigmoidal Fit Function

    -

    This is a document invetigates details of sigmoidal model

    +

    # The Sigmoidal Fit Function This is a document invetigates details of sigmoidal model

    Data generation

    To simulate the results, we will go backwards and firstly generate some data to analize. To add some randomness to the input data I will use some noise. The input of all package must be in the form of a data frame with at least 2 columns time and intensity.

    @@ -114,8 +112,8 @@

    Data normalization

    intensityData=dataInput$intensity-intensityMin intensityData=intensityData/intensityRatio

    The normalization code is

    -
    normalizedInput = normalizeData(dataInput = dataInput, 
    -                                dataInputName = "Sample001")
    +
    normalizedInput = sicegar::normalizeData(dataInput = dataInput, 
    +                                         dataInputName = "Sample001")

    Components of the normalization output

    head(normalizedInput$timeIntensityData) # the normalized time and intensity data
    ##        time   intensity
    @@ -133,12 +131,12 @@ 

    Data normalization

    The figures of raw and normalized datasets

    -

    +

    Sigmoidal fit of the data

    Now it is time to calculate the parameters by using sicegar::sigmoidalFitFunction()

    -
    parameterVector<-sigmoidalFitFunction(normalizedInput,tryCounter=2)
    +
    parameterVector<-sicegar::sigmoidalFitFunction(normalizedInput,tryCounter=2)
     
     # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. 
     
    @@ -175,8 +173,8 @@ 

    Sigmoidal fit of the data

    ## maximum_Estimate "4.054168" ## slope_Estimate "1.038046" ## midPoint_Estimate "8.046254"
    -

    Here is the brief explanations of the parameters that are given by lineFitFunction (In different order then than the output vector of the lineFitFunction)

    -

    These are the parameters of the normalization step:

    +

    Here is the brief explanations of the parameters that are given by sicegar::sigmoidalFitFunction (In different order then than the output vector of the sigmoidalFitFunction)

    +

    These are the parameters of the normalization step

    • dataScalingParameters.timeRatio: Maximum of raw time data
    • @@ -189,30 +187,34 @@

      Sigmoidal fit of the data

    • model: Gives the used model for fitting
    • isThisaFit: FALSE means there is not any successful fit. TRUE means there is at least one successful fit
    -

    Likelihood maximization algorithm starts from a random initiation point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm.

    +

    Likelihood maximization algorithm starts from a random initiation (if tryCounter!=1) point and goes down the fitness space by a gradient decent algorithm. these parameters represent the start point of the gradient decent algorithm.

      -
    • startVector.slope: Slope value of the initialtion point
    • -
    • startVector.intersection: Intersection value of the initialtion point
    • +
    • startVector.maximum: Maximum value of the initiation point
    • +
    • startVector.slope: Slope value of the initiation point
    • +
    • startVector.midPoint: Mid-point value of the initiation point
    • +
    +

    For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter

    +

    They are the parameters associated with parameter “maximum”

    +
      +
    • maximum_N_Estimate: Here N stand for the intersection in the normalized scale
    • +
    • maximum_Std_Error
    • +
    • maximum_t_value
    • +
    • maximum_Pr_t
    -

    For each parameter that needs to fitted by LM algorithm; the algorithm gives a bunch of statistical parameters; including the estimated value of the parameter. Note: They are for normalized data.

    They are the parameters associated with parameter “slope”

      -
    • slope_N_Estimate: here N stand for the slope in the normalized scale
    • +
    • slope_N_Estimate: Here N stand for the intersection in the normalized scale
    • slope_Std_Error
    • -
    • slope_t_value
      -
    • +
    • slope_t_value
    • slope_Pr_t
    -

    They are the parameters associated with parameter “intersection”

    +

    They are the parameters associated with parameter “midpoint”

      -
    • intersection_N_Estimate here N stand for the intersection in the normalized scale
    • -
    • intersection_Std_Error
      -
    • -
    • intersection_t_value
      -
    • -
    • intersection_Pr_t
    • +
    • midPoint_N_Estimate: Here N stand for the intersection in the normalized scale
    • +
    • midPoint_Std_Error
    • +
    • midPoint_t_value
    • +
    • midPoint_Pr_t
    -

    Here are the fit-parameters that are not related with individual variable that is fitted, but gives information about overal fit.

    They are the parameters associated with the quality of the fit.

    • residual_Sum_of_Squares: Small value indicate better fit
    • @@ -220,26 +222,27 @@

      Sigmoidal fit of the data

    • AIC_value: Smaller value indicate a better fit
    • BIC_value: Smaller value indicate a better fit
    -

    Final results that are relavent to most of the users

    -

    They are the fitter values after converting everything from normalized to un-normalized scale.

    +

    They are the fitted values after converting everything from normalized to un-normalized scale.

      -
    • intersection_Estimate: Intersection estimate for the raw data
    • -
    • slope_Estimate: Slope estimate for the raw data
    • +
    • maximum_EstimateMaximum intensity estimate for the raw data
    • +
    • slope_Estimate: Slope parameter estimate for the raw data
    • +
    • midPoint_Estimate: Mid-point estimate (time the intensity reaches 1/2 of maximum) for the raw data

    Check the results to see if the results are meaningfull

    -

    By using the intersection_Estimate, slope_Estimate parameters of the linefit and the time sequence that we already created we can calculate the intensity values by the help of sicegar::lineFitFormula(). We can draw the bes line on top of our initial data.

    -
    # intensityTheoretical=lineFitFormula(time,
    -#                                     slope=parameterVector$slope_Estimate,
    -#                                     intersection=parameterVector$intersection_Estimate)
    -# comparisonData=cbind(dataInput,intensityTheoretical)
    -# 
    -# ggplot(comparisonData)+
    -#   geom_point(aes(x=time, y=intensity))+
    -#   geom_line(aes(x=time,y=intensityTheoretical))+
    -#   expand_limits(x = 0, y = 0)
    -
    +

    By using the maximum_Estimate, slope_Estimate, midPoint_Estimate parameters of the sigmoidalfit and the time sequence that we already created we can calculate the intensity values by the help of sicegar::sigmoidalFitFormula(). We can draw the best sigmoidal fit on top of our initial data.

    +
    intensityTheoretical=sicegar::sigmoidalFitFormula(time,
    +                                                  maximum=parameterVector$maximum_Estimate,
    +                                                  slope=parameterVector$slope_Estimate,
    +                                                  midPoint=parameterVector$midPoint_Estimate)
    +comparisonData=cbind(dataInput,intensityTheoretical)
    +
    +ggplot2::ggplot(comparisonData)+
    +  ggplot2::geom_point(aes(x=time, y=intensity))+
    +  ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+
    +  ggplot2::expand_limits(x = 0, y = 0)
    +

    diff --git a/man/categorize.Rd b/man/categorize.Rd index b48c694..20c783f 100644 --- a/man/categorize.Rd +++ b/man/categorize.Rd @@ -7,7 +7,8 @@ categorize(parameterVectorLinear, parameterVectorSigmoidal, parameterVectorDoubleSigmoidal, threshold_line_slope_parameter = 0.01, threshold_intensity_interval = 0.1, - threshold_minimum_for_intensity_maximum = 0, threshold_difference_AIC = 0, + threshold_minimum_for_intensity_maximum = 0.3, + threshold_difference_AIC = 0, threshold_lysis_finalAsymptoteIntensity = 0.75, threshold_AIC = -10) } \arguments{ diff --git a/man/categorize_nosignal.Rd b/man/categorize_nosignal.Rd index 679f762..b6f91ad 100644 --- a/man/categorize_nosignal.Rd +++ b/man/categorize_nosignal.Rd @@ -6,7 +6,7 @@ \usage{ categorize_nosignal(parameterVectorLinear, threshold_line_slope_parameter = 0.01, threshold_intensity_interval = 0.1, - threshold_minimum_for_intensity_maximum = 0) + threshold_minimum_for_intensity_maximum = 0.3) } \arguments{ \item{parameterVectorLinear}{is the output of lineFitFunction.} diff --git a/mathematica/candidate functions with explanations.m b/mathematica/candidate functions with explanations.m deleted file mode 100644 index 53dbcbe..0000000 --- a/mathematica/candidate functions with explanations.m +++ /dev/null @@ -1,394 +0,0 @@ -(* ::Package:: *) - -(************************************************************************) -(* This file was generated automatically by the Mathematica front end. *) -(* It contains Initialization cells from a Notebook file, which *) -(* typically will have the same name as this file except ending in *) -(* ".nb" instead of ".m". *) -(* *) -(* This file is intended to be loaded into the Mathematica kernel using *) -(* the package loading commands Get or Needs. Doing so is equivalent *) -(* to using the Evaluate Initialization Cells menu command in the front *) -(* end. *) -(* *) -(* DO NOT EDIT THIS FILE. This entire file is regenerated *) -(* automatically each time the parent Notebook file is saved in the *) -(* Mathematica front end. Any changes you make to this file will be *) -(* overwritten. *) -(************************************************************************) - - - -(* ::Code::RGBColor[1, 0, 0]:: *) -Clear["Global`*"] - - -fSigmoidal[A_,Ka_,B_,M_,x_]=A+(Ka-A)/(1+E^(-B*(x-M))); -Manipulate[ -Plot[fSigmoidal[A,Ka,B,M,x],{x,0,15},PlotRange->{0,1}], -{{A,0},0,1,.01}, -{{Ka,1},0,1,.01}, -{{B,1},0,10,.01}, -{{M,8},0,15,.01}] - - -Limit[fSigmoidal[A,Ka,B,M,x],x->-\[Infinity],Assumptions->{B>0}] -Limit[fSigmoidal[A,Ka,B,M,x],x->\[Infinity],Assumptions->{B>0}] -Solve[D[fSigmoidal[A,Ka,B,M,x],{x,2}]==0,x] -D[fSigmoidal[A,Ka,B,M,x],x]/.x->M (* As can be seen from the result the slope is also -related with (Ka-A); i.e the width of the function. But if the data is normalized in -such a way Ka=1 and A=0 slope is directly proportional to B*) - - -fNegativeSigmoidal[A_,Ka_,B_,M_,x_]=A+(Ka-A)/(1+E^(B*(x-M))); -Manipulate[ -Plot[fNegativeSigmoidal[A,Ka,B,M,x],{x,0,15},PlotRange->{0,1}], -{{A,0},0,1,.01}, -{{Ka,1},0,1,.01}, -{{B,1},0,10,.01}, -{{M,8},0,15,.01}] - - -fMultiplicationSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - (A1+(Ka-A1)/(1+E^(-B1*(x-M1))))*(A2+(1-A2)/(1+E^(B2*(x-(M1+L))))); -Manipulate[ -Plot[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30},PlotRange->{0,1.2}], -{{A1,0},0,1,.01}, -{{A2,0.2},0,1,.01}, -{{Ka,1},0,1,.01}, -{{B1,1},0,10,.01}, -{{M1,8},0,20,.01}, -{{B2,2},0,10,0.01}, -{{L,10},0,10,0.001}] - - -Limit[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->-\[Infinity],Assumptions->{B1>0,B2>0,L>0}] -Limit[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->\[Infinity],Assumptions->{B1>0,B2>0,L>0}] - - -Solve[D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0,x] -Reduce[{D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - -Solve[D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0,x] -Reduce[{D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - - -Plot[fMultiplicationSigmoidal[0,0.5368628,1.454867,1.084971,11.11337,8.529749,1.13329,x] -,{x,0,30},PlotRange->{0,1.2}] - - -fDMultiplicationSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]; - -Plot[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x]/. - {A1->0,A2->0.5368628,Ka->1.454867,B1->1.084971,M1->11.11337,B2->8.529749,L->1.13329}, - {x,0,30},PlotRange->Full] - - -xValue=2000; - -Manipulate[ - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,-xValue]]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,xValue]]]}, - {Plot[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All], - - {{A1,0},0,1,.01}, - {{A2,0.5368628},0,1,.01}, - {{Ka,1.454867},0,2,.01}, - {{B1,1.084971},0.01,10,.01}, - {{M1,11.11337},7.5-20,7.5+20,.01}, - {{B2,8.529749},0.01,10,0.01}, - {{L,1.13329},0,10,0.001} -] - - -xValue=2000; -Subscript[A1, 0]=0; Subscript[A2, 0]=0.06; Subscript[Ka, 0]=2; Subscript[B1, 0]=1.08497; Subscript[M1, 0]=11.1134; Subscript[B2, 0]=2.14; Subscript[L, 0]=1.13329; - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,-xValue]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]}]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,xValue]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]}]]}, - {Plot[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]},{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]},{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All] - - -xValue=2000; - -fProtoAdditiveSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L))))); -fDProtoAdditiveSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]= - D[fProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,x],{x,1}]; - -Manipulate[ - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,-xValue]]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,xValue]]]}, - {Plot[fProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All], - - {{Ka,1},0,2,.01}, - {{B1,1},0.01,10,.01}, - {{M1,6},7.5-20,7.5+20,.01}, - {{B2,2},0.01,10,0.01}, - {{L,10},0,10,0.001} -] - - -fDProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,M1] - - -Subscript[B1, 0]=1; Subscript[M1, 0]=6; Subscript[B2, 0]=2; Subscript[L, 0]=10; - -fProtoAdditiveSigmoidal2[B1_,M1_,B2_,L_,x_]:=1/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L))))); -fProtoAdditiveSigmoidalN[B1_,M1_,B2_,L_,x_]:= - fProtoAdditiveSigmoidal2[B1,M1,B2,L,x]/Round[NMaximize[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x0],x0][[1]],0.000001] - -fProtoAdditiveSigmoidalN[1,6,2,10,x] - - -(*Plot[fProtoAdditiveSigmoidalN[1,6,2,10,x],{x,0,30}]*) - - -D[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x],x]==0 - - -NMaximize[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x0],x0]/.{B1->.1,M1->6,B2->2,L->10} -u=Solve[Normal[Series[(B2-B1)*E^(B2*x-B1*x-B2*L)-B1*E^(-B1*x)+B2*E^(B2*x-B2*L),{x,L/2,13}]]==0,x][[1]][[1]][[2]]; -N[u+M1/.{B1->1,M1->6,B2->2,L->5}] - - -Subscript[y, line1]=(x-x0)*Subscript[m, line1]+y0/.{x0->0, Subscript[m, line1]->B1/4, y0->1/2}; -Subscript[y, line2]=(x-x0)*Subscript[m, line2]+y0/.{x0->L, Subscript[m, line2]->-B2/4, y0->1/2}; - -slope1=Coefficient[Subscript[y, line1],x,1] -intersection1=Coefficient[Subscript[y, line1],x,0] -slope2=Coefficient[Subscript[y, line2],x,1] -intersection2=Coefficient[Subscript[y, line2],x,0] - - -xIntersection=Simplify[(intersection2-intersection1)/(slope1-slope2)] - - -NMaximize[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x0],x0]/.{B1->0.02,M1->6,B2->2,L->2} -u=Solve[Normal[Series[(B2-B1)*E^(B2*x-B1*x-B2*L)-B1*E^(-B1*x)+B2*E^(B2*x-B2*L),{x,((B1+3 B2) L)/(4 (B1+B2)),3}]]==0,x][[1]][[1]][[2]]; -N[u+M1/.{B1->0.02,M1->6,B2->2,L->2}] -{L/2+M1,(((B1+3 B2) L)/(4 (B1+B2))+M1)}/.{B1->0.02,M1->6,B2->2,L->2} - - -Simplify[fSigmoidal[A,Ka,B,M,x]+fSigmoidal[A,Ka,-B,M,x]] - - -Manipulate[ - Grid[ - { - {Plot[fSigmoidal[A,Ka,B,M,x],{x,0,15},PlotRange->{-0.2,1.2}, - PlotLabel->Function,ImageSize->200]}, - {Plot[fSigmoidal[A,Ka,-B,M,x],{x,0,15},PlotRange->{-0.2,1.2}, - PlotLabel->Function,ImageSize->200]}, - {Plot[fSigmoidal[A,Ka,B,M,x]+fSigmoidal[A,Ka,-B,M,x],{x,0,15},PlotRange->{-0.2,1.2}, - PlotLabel->Function,ImageSize->200]} - } - ], - {{A,0},0,1,.01}, - {{Ka,1},0,1,.01}, - {{B,1},0,10,.01}, - {{M,8},0,15,.01} -] - - -fLeftAdditionSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L)))))+Ka/(1+E^(B1*(x-M1))); -(* Not the sign change in B1 terms*) -fRightSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/(1+E^(B2*(x-(M1+L)))); - -Manipulate[ - Grid[ - { - {Plot[{fLeftAdditionSigmoidal[Ka,B1,M1,B2,L,x],fRightSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Added Function",ImageSize->300]}, - {Plot[{fLeftAdditionSigmoidal[Ka,B1,M1,B2,L,x]-fRightSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Difference Function",ImageSize->300]} - } - ], - - {{Ka,1},0,1,.01}, - {{B1,1},0.01,10,.001}, - {{M1,15},7.5-20,7.5+20,.01}, - {{B2,2},0.01,10,0.001}, - {{L,1},0,10,0.001} -] - - -fRightAdditionSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L)))))+Ka/(1+E^(-B2*(x-(M1+L)))); -(* Not the sign change in B2 terms*) -fLeftSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/(1+E^(-B1*(x-M1))); - -Manipulate[ - Grid[ - { - {Plot[{fRightAdditionSigmoidal[Ka,B1,M1,B2,L,x],fLeftSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Added Function",ImageSize->300]}, - {Plot[{fRightAdditionSigmoidal[Ka,B1,M1,B2,L,x]-fLeftSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Difference Function",ImageSize->300]} - } - ], - - {{Ka,1},0,1,.01}, - {{B1,1},0.01,10,.001}, - {{M1,15},7.5-20,7.5+20,.01}, - {{B2,2},0.01,10,0.001}, - {{L,10},0,10,0.001} -] - - -fAdditionalSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - (Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L))))))+((Ka*A2)/(1+E^(-B2*(x-(M1+L)))))+((Ka*A1)/(1+E^(B1*(x-M1)))); - -Manipulate[ - Plot[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30},PlotRange->{0,1.2}], - {{A1,0},0,1,.01}, - {{A2,0.2},0,1,.01}, - {{Ka,1},0,1,.01}, - {{B1,1},0,10,.01}, - {{M1,8},0,20,.01}, - {{B2,2},0,10,0.01}, - {{L,10},0,10,0.001} -] - - -Limit[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->-\[Infinity],Assumptions->{B1>0,B2>0,L>0}] -Limit[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->\[Infinity],Assumptions->{B1>0,B2>0,L>0}] - - -Solve[D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0 ,x] -Reduce[{D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - -Solve[D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0,x] -Reduce[{D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - - -fDAdditionalSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]; - - -xValue=2000; - -Manipulate[ - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,-xValue]]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,xValue]]]}, - {Plot[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All], - - {{A1,0},0,1,.01}, - {{A2,0.5368628},0,1,.01}, - {{Ka,1.454867},0,2,.01}, - {{B1,1.084971},0.01,10,.01}, - {{M1,11.11337},7.5-20,7.5+20,.01}, - {{B2,8.529749},0.01,10,0.01}, - {{L,1.13329},0,10,0.001} -] - - -Plot[fAdditionalSigmoidal[0,1,1,8.88,19.5,0.121,0,x],{x,0,30},PlotRange->{0,1.2},ImageSize->350] - - -A11=0; A22=0.7; Kaa=1; B11=4; M11=15; B22=2; LL=1; epsilon=0.02; -(*Plot[1/((1+\[ExponentialE]^(-B11*(x-M11)))*(1+\[ExponentialE]^(B22*(x-(M11+LL))))),{x,0,30},PlotRange\[Rule]Full,ImageSize\[Rule]350] - -Plot[Log[1/((1+\[ExponentialE]^(-B11*(x-M11)))*(1+\[ExponentialE]^(B22*(x-(M11+LL)))))],{x,0,30},PlotRange\[Rule]Full,ImageSize\[Rule]350]*) - -argument=FindArgMax[Log[(1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL))))))],{x,M11+LL/2}][[1]] -const=1/((1+E^(-B11*(argument-M11)))*(1+E^(B22*(argument-(M11+LL))))) - - - - - -rightSide[x_]:=UnitStep[x-argument-epsilon]*(1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL)))))*(Kaa-A22*Kaa)/const+A22*Kaa); -leftSide[x_]:=(1-UnitStep[x-argument-epsilon])*(1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL)))))*(Kaa-A11*Kaa)/const+A11*Kaa); -wholeFunction[x_]:=rightSide[x]+leftSide[x] - - - - - - -derivativeRightSide[x_]=D[(1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL)))))*(Kaa-A22*Kaa)/const+A22*Kaa),{x,1}]*UnitStep[x-argument-epsilon]; -derivativeLeftSide[x_]=D[(1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL)))))*(Kaa-A11*Kaa)/const+A11*Kaa),{x,1}]*(1-UnitStep[x-argument-epsilon]); -wholeDerivativeFunction[x_]:=derivativeRightSide[x]+derivativeLeftSide[x] - - -M11Numeric=FindArgMax[derivativeLeftSide[x],{x,M11}][[1]]; -B11Numeric=wholeDerivativeFunction[M11Numeric]; -M22Numeric=FindArgMax[Abs[derivativeRightSide[x]],{x,M11+LL}][[1]]; -B22Numeric=wholeDerivativeFunction[M22Numeric]; -M11mid=x/.FindRoot[wholeFunction[x]==((Kaa-A11)/2+A11),{x,M11}][[1]] -M22mid=x/.FindRoot[wholeFunction[x]==((Kaa-A22)/2+A22),{x,M11+LL}][[1]] -A11Numeric=wholeFunction[0]; -A22Numeric=wholeFunction[30]; - -Grid[{ - {Grid[{ - {Plot[rightSide[x],{x,0,30},PlotRange->{0,1.2},ImageSize->250], - Plot[leftSide[x],{x,0,30},PlotRange->{0,1.2},ImageSize->250]} - },Frame->All]}, - {Plot[ - {wholeFunction[x],Kaa,fSigmoidal[A11,Kaa,B11,M11mid,x]} - ,{x,14,16},PlotRange->{0,1.2},ImageSize->350]}, - {Plot[{wholeDerivativeFunction[x]},{x,0,30},PlotRange->Full,ImageSize->350]} -},Frame->All] - -m={{,"original","simulation"}, -{"A11",A11,A11Numeric}, -{"A22",A22,A22Numeric}, -{"Kaa",Kaa,Kaa}, -{"B11",(1/4)*(Kaa-A11)*B11,B11Numeric}, -{"M11",M11,M11Numeric}, -{"M11_mid",M11,M11mid}, -{"B22",-(1/4)*(Kaa-A22)*B22,B22Numeric}, -{"LL",LL,M22Numeric-M11Numeric}, -{"LL_mid",LL,M22mid-M11mid}}; -Grid[m,Frame->All] - - - diff --git a/mathematica/candidate functions with explanations.nb b/mathematica/candidate functions with explanations.nb deleted file mode 100644 index ac256d4..0000000 --- a/mathematica/candidate functions with explanations.nb +++ /dev/null @@ -1,10401 +0,0 @@ -(* Content-type: application/mathematica *) - -(*** Wolfram Notebook File ***) -(* http://www.wolfram.com/nb *) - -(* CreatedBy='Mathematica 7.0' *) - -(*CacheID: 234*) -(* Internal cache information: -NotebookFileLineBreakTest -NotebookFileLineBreakTest -NotebookDataPosition[ 145, 7] -NotebookDataLength[ 478982, 10392] -NotebookOptionsPosition[ 466172, 10018] -NotebookOutlinePosition[ 466970, 10047] -CellTagsIndexPosition[ 466880, 10042] -WindowFrame->Normal*) - -(* Beginning of Notebook Content *) -Notebook[{ - -Cell[CellGroupData[{ -Cell["ANALYSIS OF SINGLE CELL VIRUS INFECTIONS", "Subtitle", - CellChangeTimes->{ - 3.621784640624446*^9, {3.6217846747934*^9, 3.6217846903612905`*^9}}], - -Cell[CellGroupData[{ - -Cell["Introduction", "Subsection", - CellChangeTimes->{{3.621787049310214*^9, 3.621787082697124*^9}, { - 3.621862565020999*^9, 3.6218625650259995`*^9}}], - -Cell["Please ", "Text", - CellChangeTimes->{{3.6218626286556387`*^9, 3.6218627342696795`*^9}}, - FontColor->RGBColor[1, 0, 0]], - -Cell[CellGroupData[{ - -Cell["run: Evaluation -> Evaluate Initialization Cells ", "Item1", - CellChangeTimes->{{3.6218626286556387`*^9, 3.6218627511746464`*^9}, - 3.621862866765258*^9}, - FontColor->RGBColor[1, 0, 0]], - -Cell["\<\ -Make sure: \"Evaluation -> Dynamic Updating Enabled\" is selected\ -\>", "Item1", - CellChangeTimes->{{3.6218627554098887`*^9, 3.6218627602471657`*^9}, { - 3.6218628412507987`*^9, 3.621862898759088*^9}}, - FontColor->RGBColor[1, 0, 0]] -}, Open ]], - -Cell["before using this notebook", "Text", - CellChangeTimes->{{3.6223915075410213`*^9, 3.622391514261876*^9}}], - -Cell["", "Text", - CellChangeTimes->{3.6223915075410213`*^9}], - -Cell[BoxData[ - RowBox[{"Clear", "[", "\"\\"", "]"}]], "Code", - CellChangeTimes->{{3.6218626286556387`*^9, 3.621862746966406*^9}, { - 3.6218628927137423`*^9, 3.6218628927167425`*^9}, 3.622391483816245*^9, { - 3.622391532430614*^9, 3.622391532432496*^9}, 3.622391577374984*^9}, - FontColor->RGBColor[1, 0, 0]], - -Cell["", "Text"], - -Cell["\<\ -The main idea is to model behaviour of infections in a single cell with a \ -functional model. - -The data can be classified into 3 main groups by just bare eye investigation\ -\>", "Text", - CellChangeTimes->{{3.621785057055264*^9, 3.621785059746418*^9}, { - 3.621785179360259*^9, 3.6217851882317667`*^9}}], - -Cell[CellGroupData[{ - -Cell["The ones with no infection", "Item1", - CellChangeTimes->{{3.621785458315215*^9, 3.621785468478796*^9}}], - -Cell["\<\ -the ones with infection, but stay alive at the end of the experiment\ -\>", "Item1", - CellChangeTimes->{{3.621785469857875*^9, 3.6217854888169594`*^9}}], - -Cell["Ones that die because of infection before experiment ends", "Item1", - CellChangeTimes->{{3.621785490088032*^9, 3.621785522588891*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{3.6217858230880785`*^9}], - -Cell["One candinate model might be ", "Text", - CellChangeTimes->{{3.6217855361816683`*^9, 3.6217856042665625`*^9}}], - -Cell[CellGroupData[{ - -Cell["A single line to represent data with no infection", "Item1", - CellChangeTimes->{{3.6217856139611173`*^9, 3.621785633674245*^9}}], - -Cell["\<\ -A sigmoidal function to represent cases, with infection but cell stays alive \ -at the end of experiment\ -\>", "Item1", - CellChangeTimes->{{3.6217856421467295`*^9, 3.6217856859192333`*^9}, { - 3.621785974901762*^9, 3.621785975465794*^9}}], - -Cell["\<\ -A double sigmoidal function or a variant of it that can explain both start \ -progress and end of the infection (i.e death of the cell)\ -\>", "Item1", - CellChangeTimes->{3.621785805921097*^9}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6217858102533445`*^9, 3.621785836242831*^9}}], - -Cell["\<\ -Te aim of this text is to investigate possible candidates for a double \ -sigmodal function\ -\>", "Text", - CellChangeTimes->{{3.621785854423871*^9, 3.6217859188005533`*^9}}], - -Cell[" ", "Text", - Editable->False, - Selectable->False, - CellFrame->{{0, 0}, {0, 2}}, - ShowCellBracket->False, - CellMargins->{{0, 0}, {1, 1}}, - CellElementSpacings->{"CellMinHeight"->1}, - CellFrameMargins->0, - CellFrameColor->RGBColor[0, 0, 1], - CellSize->{Inherited, 4}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Sigmoidal Function", "Subsection", - CellChangeTimes->{{3.621787127059662*^9, 3.6217871327079844`*^9}}], - -Cell["\<\ -A good start point for this is to investigate sigmoidal function that we are \ -currently using for cases where cell keeps on living with infection\ -\>", "Text", - CellChangeTimes->{{3.621785924537881*^9, 3.621786025735669*^9}, { - 3.6217860639208536`*^9, 3.6217860639328537`*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{"y", "=", - RowBox[{"A", "+", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M"}], ")"}]}]]}]]}]}], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.621786086890167*^9, 3.6217861742951665`*^9}}], - -Cell["\<\ -In this model variables have clear meaning related with behavior of the data\ -\>", "Text", - CellChangeTimes->{{3.621786189407031*^9, 3.6217862497044797`*^9}}], - -Cell[CellGroupData[{ - -Cell["A represents the initial value of the sigmoidal curve", "Item1", - CellChangeTimes->{{3.6217862667614555`*^9, 3.6217862918708916`*^9}}], - -Cell["Ka represents the maximum height of the sigmoidal function", "Item1", - CellChangeTimes->{{3.6217862938690057`*^9, 3.6217863375585046`*^9}, { - 3.6217863782068295`*^9, 3.6217863782248306`*^9}}], - -Cell["\<\ -B is related the maximum slope of the sigmoidal function (B>0)\ -\>", "Item1", - CellChangeTimes->{{3.621786379211887*^9, 3.6217864133418393`*^9}, { - 3.621786515926707*^9, 3.621786518408849*^9}}], - -Cell["\<\ -M represents the location on the x axis where the slope is maximum\ -\>", "Item1", - CellChangeTimes->{3.6217864971616335`*^9}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6217864984767084`*^9, 3.6217864984787087`*^9}}], - -Cell["Here is a simple sigmoidal function with changable variables", "Text", - CellChangeTimes->{{3.6217865034109907`*^9, 3.6217865773922224`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A_", ",", "Ka_", ",", "B_", ",", "M_", ",", "x_"}], "]"}], "=", - RowBox[{"A", "+", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M"}], ")"}]}]]}]]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", - - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], "}"}], - ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B", ",", "1"}], "}"}], ",", "0", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M", ",", "8"}], "}"}], ",", "0", ",", "15", ",", ".01"}], - "}"}]}], "]"}]}], "Code", - CellChangeTimes->{{3.6217865789873133`*^9, 3.621786675980861*^9}, { - 3.6217867233935733`*^9, 3.621786744690791*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A$$ = 0, $CellContext`B$$ = - 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = 8, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B$$], 1}, 0, 10, 0.01}, {{ - Hold[$CellContext`M$$], 8}, 0, 15, 0.01}}, Typeset`size$$ = { - 540., {171., 181.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A$14292$$ = - 0, $CellContext`Ka$14293$$ = 0, $CellContext`B$14294$$ = - 0, $CellContext`M$14295$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A$$ = 0, $CellContext`B$$ = - 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = 8}, - "ControllerVariables" :> { - Hold[$CellContext`A$$, $CellContext`A$14292$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$14293$$, 0], - Hold[$CellContext`B$$, $CellContext`B$14294$$, 0], - Hold[$CellContext`M$$, $CellContext`M$14295$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`fSigmoidal[$CellContext`A$$, $CellContext`Ka$$, \ -$CellContext`B$$, $CellContext`M$$, $CellContext`x], {$CellContext`x, 0, 15}, - PlotRange -> {0, 1}], - "Specifications" :> {{{$CellContext`A$$, 0}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1}, 0, 1, 0.01}, {{$CellContext`B$$, 1}, - 0, 10, 0.01}, {{$CellContext`M$$, 8}, 0, 15, 0.01}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{604., {298., 305.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{{3.621786654829652*^9, 3.6217866774379444`*^9}, - 3.6217867497290792`*^9, {3.621789544149911*^9, 3.6217895447019424`*^9}, { - 3.6217958789822426`*^9, 3.621795887780746*^9}, {3.6218185632683725`*^9, - 3.6218185694066534`*^9}, {3.621826861039407*^9, 3.6218268670377455`*^9}, - 3.6218271032679415`*^9, 3.6218584238246603`*^9, 3.6218593789840045`*^9, { - 3.6218640598564987`*^9, 3.621864085011938*^9}, 3.6218643238055964`*^9, { - 3.6221641585250163`*^9, 3.622164171985362*^9}, {3.622300999257716*^9, - 3.62230102650132*^9}, {3.6223122545495787`*^9, 3.622312282326543*^9}, { - 3.6223378486782017`*^9, 3.6223378762299*^9}, {3.6223799243739033`*^9, - 3.622379952561266*^9}, {3.622389211716777*^9, 3.622389240794537*^9}, - 3.622391600534286*^9, 3.6223917416884737`*^9, 3.622391790098755*^9, - 3.6224180786704283`*^9, 3.622465538317253*^9, 3.6224680201405077`*^9, { - 3.6225047725956373`*^9, 3.622504801182616*^9}, 3.622563731068397*^9, - 3.622563761574595*^9, {3.622761048122775*^9, 3.6227610749249353`*^9}, - 3.622780777319971*^9, 3.6235548919225817`*^9, 3.623554939957521*^9, - 3.632018618207048*^9, 3.632064096126544*^9, 3.632071945877782*^9, - 3.632095298939793*^9, 3.632147973563547*^9, 3.6914608863350153`*^9, - 3.691460921106196*^9, 3.69816860411108*^9, 3.698168638339744*^9}] -}, Open ]], - -Cell["", "Text"], - -Cell["Lets look at the functions behaviour more deeply.", "Text", - CellChangeTimes->{ - 3.62178789297847*^9, {3.621788010370184*^9, 3.6217880346615734`*^9}}], - -Cell[CellGroupData[{ - -Cell["\<\ -left and right limits should be equal to A and Ka respectively \ -\>", "Item1", - CellChangeTimes->{{3.62178803722672*^9, 3.6217880804901943`*^9}, { - 3.621788442644909*^9, 3.621788448159224*^9}, {3.6217886052912116`*^9, - 3.621788654241011*^9}, {3.6217886955233727`*^9, 3.6217887022297564`*^9}, { - 3.621789152264497*^9, 3.621789154900647*^9}}], - -Cell["\<\ -Maximum of the slope should be occoured at point M (i.e. second derivarive of \ -the function should be equal to 0 at x=M)\ -\>", "Item1", - CellChangeTimes->{{3.62178803722672*^9, 3.6217880804901943`*^9}, { - 3.621788442644909*^9, 3.621788448159224*^9}, {3.6217886052912116`*^9, - 3.621788654241011*^9}, {3.6217886955233727`*^9, 3.6217887022297564`*^9}, { - 3.621789152264497*^9, 3.6217891622970705`*^9}}], - -Cell["\<\ -Slope of the function should be related with B at x is equal to M\ -\>", "Item1", - CellChangeTimes->{{3.621789166909334*^9, 3.6217892170862045`*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", - RowBox[{"-", "\[Infinity]"}]}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{"B", ">", "0"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", "\[Infinity]"}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{"B", ">", "0"}], "}"}]}]}], "]"}], "\n", - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "2"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", "x"}], - "]"}], "\n", - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - "x"}], "]"}], "/.", - RowBox[{"x", "\[Rule]", "M", " ", - RowBox[{"(*", " ", - RowBox[{ - RowBox[{ - "As", " ", "can", " ", "be", " ", "seen", " ", "from", " ", "the", " ", - "result", " ", "the", " ", "slope", " ", "is", " ", "also", " ", "\n", - "related", " ", "with", " ", - RowBox[{"(", - RowBox[{"Ka", "-", "A"}], ")"}]}], ";", " ", - RowBox[{ - RowBox[{ - RowBox[{"i", ".", "e"}], " ", "the", " ", "width", " ", "of", " ", - "the", " ", - RowBox[{"function", ".", " ", "But"}], " ", "if", " ", "the", " ", - "data", " ", "is", " ", "normalized", " ", "in", " ", "\n", "such", - " ", "a", " ", "way", " ", "Ka"}], "=", - RowBox[{ - RowBox[{"1", " ", "and", " ", "A"}], "=", - RowBox[{ - "0", " ", "slope", " ", "is", " ", "directly", " ", "proportional", - " ", "to", " ", "B"}]}]}]}], "*)"}]}]}]}], "Code", - CellChangeTimes->{{3.621788495362924*^9, 3.621788576333555*^9}, { - 3.6217888830030956`*^9, 3.621788884341172*^9}, {3.621788923678422*^9, - 3.621788925701538*^9}, {3.6217889761654243`*^9, 3.6217890249262133`*^9}, { - 3.621789064669486*^9, 3.621789088175831*^9}, {3.6217892289978857`*^9, - 3.6217892508251343`*^9}, {3.621789290342394*^9, 3.6217894244470644`*^9}}], - -Cell[BoxData["A"], "Output", - CellChangeTimes->{{3.6217885598526125`*^9, 3.621788577414617*^9}, - 3.621788993830435*^9, 3.621789025799263*^9, {3.62178906630758*^9, - 3.6217890887518635`*^9}, {3.6217892370703473`*^9, 3.621789251473171*^9}, - 3.6217892978958263`*^9, 3.621789544334922*^9, {3.6217958791872544`*^9, - 3.6217958878687515`*^9}, {3.621818563549173*^9, 3.6218185694222536`*^9}, { - 3.6218268612094164`*^9, 3.6218268670517464`*^9}, 3.621827103525956*^9, - 3.621858424624661*^9, 3.621859379074004*^9, {3.621864060096513*^9, - 3.6218640850869417`*^9}, 3.6218643239186025`*^9, {3.6221641587830315`*^9, - 3.6221641720321627`*^9}, {3.622301002868284*^9, 3.622301026602626*^9}, { - 3.622312258089252*^9, 3.622312282425892*^9}, {3.622337852254578*^9, - 3.622337876335288*^9}, {3.622379927913171*^9, 3.622379952666768*^9}, { - 3.6223892152184563`*^9, 3.622389240869385*^9}, 3.622391600640831*^9, - 3.622391741789173*^9, 3.62239179019459*^9, 3.622418082204179*^9, - 3.622465538427639*^9, 3.622468023813992*^9, {3.6225047761301928`*^9, - 3.62250480128022*^9}, {3.622563734537277*^9, 3.6225637617763433`*^9}, { - 3.622761051542911*^9, 3.622761075003591*^9}, 3.622780780783102*^9, - 3.623554892048208*^9, 3.6235549400717363`*^9, 3.632018621875533*^9, - 3.632064096259856*^9, 3.632071945998673*^9, 3.6320953024881887`*^9, - 3.632147977093061*^9, 3.69146089019027*^9, 3.691460921301937*^9, - 3.698168607682456*^9, 3.698168638446034*^9}], - -Cell[BoxData["Ka"], "Output", - CellChangeTimes->{{3.6217885598526125`*^9, 3.621788577414617*^9}, - 3.621788993830435*^9, 3.621789025799263*^9, {3.62178906630758*^9, - 3.6217890887518635`*^9}, {3.6217892370703473`*^9, 3.621789251473171*^9}, - 3.6217892978958263`*^9, 3.621789544334922*^9, {3.6217958791872544`*^9, - 3.6217958878687515`*^9}, {3.621818563549173*^9, 3.6218185694222536`*^9}, { - 3.6218268612094164`*^9, 3.6218268670517464`*^9}, 3.621827103525956*^9, - 3.621858424624661*^9, 3.621859379074004*^9, {3.621864060096513*^9, - 3.6218640850869417`*^9}, 3.6218643239186025`*^9, {3.6221641587830315`*^9, - 3.6221641720321627`*^9}, {3.622301002868284*^9, 3.622301026602626*^9}, { - 3.622312258089252*^9, 3.622312282425892*^9}, {3.622337852254578*^9, - 3.622337876335288*^9}, {3.622379927913171*^9, 3.622379952666768*^9}, { - 3.6223892152184563`*^9, 3.622389240869385*^9}, 3.622391600640831*^9, - 3.622391741789173*^9, 3.62239179019459*^9, 3.622418082204179*^9, - 3.622465538427639*^9, 3.622468023813992*^9, {3.6225047761301928`*^9, - 3.62250480128022*^9}, {3.622563734537277*^9, 3.6225637617763433`*^9}, { - 3.622761051542911*^9, 3.622761075003591*^9}, 3.622780780783102*^9, - 3.623554892048208*^9, 3.6235549400717363`*^9, 3.632018621875533*^9, - 3.632064096259856*^9, 3.632071945998673*^9, 3.6320953024881887`*^9, - 3.632147977093061*^9, 3.69146089019027*^9, 3.691460921301937*^9, - 3.698168607682456*^9, 3.698168638456715*^9}], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{"{", - RowBox[{"x", "\[Rule]", - RowBox[{"ConditionalExpression", "[", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{"B", " ", "M"}], "-", - RowBox[{"2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", - RowBox[{"C", "[", "1", "]"}]}]}], "B"], ",", - RowBox[{ - RowBox[{"C", "[", "1", "]"}], "\[Element]", "Integers"}]}], "]"}]}], - "}"}], "}"}]], "Output", - CellChangeTimes->{{3.6217885598526125`*^9, 3.621788577414617*^9}, - 3.621788993830435*^9, 3.621789025799263*^9, {3.62178906630758*^9, - 3.6217890887518635`*^9}, {3.6217892370703473`*^9, 3.621789251473171*^9}, - 3.6217892978958263`*^9, 3.621789544334922*^9, {3.6217958791872544`*^9, - 3.6217958878687515`*^9}, {3.621818563549173*^9, 3.6218185694222536`*^9}, { - 3.6218268612094164`*^9, 3.6218268670517464`*^9}, 3.621827103525956*^9, - 3.621858424624661*^9, 3.621859379074004*^9, {3.621864060096513*^9, - 3.6218640850869417`*^9}, 3.6218643239186025`*^9, {3.6221641587830315`*^9, - 3.6221641720321627`*^9}, {3.622301002868284*^9, 3.622301026602626*^9}, { - 3.622312258089252*^9, 3.622312282425892*^9}, {3.622337852254578*^9, - 3.622337876335288*^9}, {3.622379927913171*^9, 3.622379952666768*^9}, { - 3.6223892152184563`*^9, 3.622389240869385*^9}, 3.622391600640831*^9, - 3.622391741789173*^9, 3.62239179019459*^9, 3.622418082204179*^9, - 3.622465538427639*^9, 3.622468023813992*^9, {3.6225047761301928`*^9, - 3.62250480128022*^9}, {3.622563734537277*^9, 3.6225637617763433`*^9}, { - 3.622761051542911*^9, 3.622761075003591*^9}, 3.622780780783102*^9, - 3.623554892048208*^9, 3.6235549400717363`*^9, 3.632018621875533*^9, - 3.632064096259856*^9, 3.632071945998673*^9, 3.6320953024881887`*^9, - 3.632147977093061*^9, 3.69146089019027*^9, 3.691460921301937*^9, - 3.698168607682456*^9, 3.698168638464924*^9}], - -Cell[BoxData[ - RowBox[{ - FractionBox["1", "4"], " ", "B", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "A"}], "+", "Ka"}], ")"}]}]], "Output", - CellChangeTimes->{{3.6217885598526125`*^9, 3.621788577414617*^9}, - 3.621788993830435*^9, 3.621789025799263*^9, {3.62178906630758*^9, - 3.6217890887518635`*^9}, {3.6217892370703473`*^9, 3.621789251473171*^9}, - 3.6217892978958263`*^9, 3.621789544334922*^9, {3.6217958791872544`*^9, - 3.6217958878687515`*^9}, {3.621818563549173*^9, 3.6218185694222536`*^9}, { - 3.6218268612094164`*^9, 3.6218268670517464`*^9}, 3.621827103525956*^9, - 3.621858424624661*^9, 3.621859379074004*^9, {3.621864060096513*^9, - 3.6218640850869417`*^9}, 3.6218643239186025`*^9, {3.6221641587830315`*^9, - 3.6221641720321627`*^9}, {3.622301002868284*^9, 3.622301026602626*^9}, { - 3.622312258089252*^9, 3.622312282425892*^9}, {3.622337852254578*^9, - 3.622337876335288*^9}, {3.622379927913171*^9, 3.622379952666768*^9}, { - 3.6223892152184563`*^9, 3.622389240869385*^9}, 3.622391600640831*^9, - 3.622391741789173*^9, 3.62239179019459*^9, 3.622418082204179*^9, - 3.622465538427639*^9, 3.622468023813992*^9, {3.6225047761301928`*^9, - 3.62250480128022*^9}, {3.622563734537277*^9, 3.6225637617763433`*^9}, { - 3.622761051542911*^9, 3.622761075003591*^9}, 3.622780780783102*^9, - 3.623554892048208*^9, 3.6235549400717363`*^9, 3.632018621875533*^9, - 3.632064096259856*^9, 3.632071945998673*^9, 3.6320953024881887`*^9, - 3.632147977093061*^9, 3.69146089019027*^9, 3.691460921301937*^9, - 3.698168607682456*^9, 3.698168638472414*^9}] -}, Open ]], - -Cell["\<\ -If we change the sign in front of the slope term in sigmoidal function we get \ -a decreasing sigmoidal function that starts from Ka parameter and ends in A \ -parameter\ -\>", "Text", - CellChangeTimes->{{3.621787648782502*^9, 3.6217876692316723`*^9}, { - 3.621787768467348*^9, 3.621787827707736*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{"y", "=", - RowBox[{"A", "+", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B", "*", - RowBox[{"(", - RowBox[{"x", "-", "M"}], ")"}]}]]}]]}]}], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.6217878482569113`*^9, 3.621787851073073*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.6217878556533346`*^9, 3.621787855657335*^9}}], - -Cell["Lets see how this function behaves dynamically", "Text", - CellChangeTimes->{{3.621787904850148*^9, 3.621787925172311*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"fNegativeSigmoidal", "[", - RowBox[{"A_", ",", "Ka_", ",", "B_", ",", "M_", ",", "x_"}], "]"}], "=", - RowBox[{"A", "+", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B", "*", - RowBox[{"(", - RowBox[{"x", "-", "M"}], ")"}]}]]}]]}]}], - ";"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fNegativeSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", "\[IndentingNewLine]", - - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], "}"}], - ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B", ",", "1"}], "}"}], ",", "0", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M", ",", "8"}], "}"}], ",", "0", ",", "15", ",", ".01"}], - "}"}]}], "]"}]}], "Code", - CellChangeTimes->{{3.621787945353465*^9, 3.6217879736640844`*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A$$ = 0, $CellContext`B$$ = - 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = 8, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B$$], 1}, 0, 10, 0.01}, {{ - Hold[$CellContext`M$$], 8}, 0, 15, 0.01}}, Typeset`size$$ = { - 540., {171., 181.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A$14361$$ = - 0, $CellContext`Ka$14362$$ = 0, $CellContext`B$14363$$ = - 0, $CellContext`M$14364$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A$$ = 0, $CellContext`B$$ = - 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = 8}, - "ControllerVariables" :> { - Hold[$CellContext`A$$, $CellContext`A$14361$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$14362$$, 0], - Hold[$CellContext`B$$, $CellContext`B$14363$$, 0], - Hold[$CellContext`M$$, $CellContext`M$14364$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`fNegativeSigmoidal[$CellContext`A$$, $CellContext`Ka$$, \ -$CellContext`B$$, $CellContext`M$$, $CellContext`x], {$CellContext`x, 0, 15}, - PlotRange -> {0, 1}], - "Specifications" :> {{{$CellContext`A$$, 0}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1}, 0, 1, 0.01}, {{$CellContext`B$$, 1}, - 0, 10, 0.01}, {{$CellContext`M$$, 8}, 0, 15, 0.01}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{604., {298., 305.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{{3.62178796326749*^9, 3.6217879744181275`*^9}, - 3.621789544496931*^9, 3.621790154780837*^9, {3.621795879263259*^9, - 3.621795887934755*^9}, {3.621818563751973*^9, 3.6218185694588547`*^9}, { - 3.621826861326423*^9, 3.621826867083748*^9}, 3.621827103634962*^9, - 3.621858424864661*^9, 3.6218593791340046`*^9, {3.6218640602495213`*^9, - 3.6218640851529455`*^9}, 3.621864323985606*^9, {3.6221641589440403`*^9, - 3.622164172065363*^9}, {3.62230100318119*^9, 3.622301026655074*^9}, { - 3.622312258417959*^9, 3.622312282492507*^9}, {3.622337852594061*^9, - 3.62233787638733*^9}, {3.622379928225832*^9, 3.6223799527186203`*^9}, { - 3.622389215470565*^9, 3.622389240902934*^9}, 3.62239160069153*^9, - 3.622391741839387*^9, 3.622391790245242*^9, 3.622418082585856*^9, - 3.622465538492811*^9, 3.6224680244199657`*^9, {3.622504776437352*^9, - 3.62250480133121*^9}, {3.62256373479062*^9, 3.62256376189184*^9}, { - 3.622761051816475*^9, 3.622761075039279*^9}, 3.622780781038123*^9, - 3.623554892114503*^9, 3.623554940134777*^9, 3.632018622174739*^9, - 3.6320640963238583`*^9, 3.6320719460640287`*^9, 3.6320953028416348`*^9, - 3.632147977390066*^9, 3.691460890489777*^9, 3.6914609214432497`*^9, - 3.6981686082129927`*^9, 3.698168638507153*^9}] -}, Open ]] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Double Sigmoidal Function", "Subsection", - CellChangeTimes->{{3.621787010177976*^9, 3.6217870264549074`*^9}, { - 3.621787414880124*^9, 3.6217874313410654`*^9}}], - -Cell[CellGroupData[{ - -Cell["First Try (multiplication sigmoidal)", "Subsubsection", - CellChangeTimes->{{3.6217874487840633`*^9, 3.6217874519882464`*^9}, { - 3.6217915317685966`*^9, 3.621791539402033*^9}}], - -Cell["\<\ -The first try to find a model that can capture death is to use a function \ -composed of multiplication of an increasing and a decreasing sigmodal \ -functions\ -\>", "Text", - CellChangeTimes->{{3.6217875413373566`*^9, 3.6217875814776525`*^9}, { - 3.6217876118053875`*^9, 3.6217876360557747`*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{"y", "=", - RowBox[{ - RowBox[{"(", - RowBox[{"A1", "+", - FractionBox[ - RowBox[{"Ka", "-", "A1"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}]]}], ")"}], - RowBox[{"(", - RowBox[{"A2", "+", - FractionBox[ - RowBox[{"1", "-", "A2"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}]]}], ")"}]}]}], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.6217896957215805`*^9, 3.6217897042570686`*^9}, { - 3.621789820533719*^9, 3.621789880305138*^9}, 3.621789936585357*^9}, - CellTags->"multiplication sigmoidal"], - -Cell["\<\ -So the first term is related with increasing sigmoidal function and second \ -term is related with decreasing sigmoidal function (B1>0 and B2>0).\ -\>", "Text", - CellChangeTimes->{{3.6217898879595757`*^9, 3.6217899931905947`*^9}}], - -Cell["The terms in the function are ", "Text", - CellChangeTimes->{{3.6217898879595757`*^9, 3.6217900389142103`*^9}}], - -Cell[CellGroupData[{ - -Cell["A1 is the starting height of the function", "Item1", - CellChangeTimes->{{3.6217898879595757`*^9, 3.621790061223486*^9}, - 3.6217900985436206`*^9}], - -Cell["A2 is the end height of the function", "Item1", - CellChangeTimes->{{3.6217900627485733`*^9, 3.6217900975375633`*^9}}], - -Cell["B1 is the slope for the increasing part of the function ", "Item1", - CellChangeTimes->{{3.621790091594223*^9, 3.6217900956844573`*^9}, { - 3.6217902261209173`*^9, 3.621790242930879*^9}}], - -Cell["B2 is the slope for decreasing part of the function", "Item1", - CellChangeTimes->{{3.621790243888934*^9, 3.621790264857133*^9}}], - -Cell["\<\ -M1 is the point with highest slope (absolute value) for increasing part of \ -the function\ -\>", "Item1", - CellChangeTimes->{{3.621790265759185*^9, 3.6217903342461023`*^9}}], - -Cell["\<\ -M1+L is the point with highest slope (absolute value) for decreasing part of \ -the function (With a positive L one can speculate we are giving a boundry \ -condition to the system saying death of the virus happens after infection)\ -\>", "Item1", - CellChangeTimes->{{3.6217902910176296`*^9, 3.6217904477775955`*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.621790079041505*^9, 3.621790079044505*^9}, { - 3.621790501211652*^9, 3.621790506513955*^9}}], - -Cell["\<\ -Here is a simple double-multiplication sigmoidal function with changable \ -variables\ -\>", "Text", - CellChangeTimes->{{3.6217905082720556`*^9, 3.6217905286832232`*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.62179057705999*^9, 3.6217905770659904`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1_", ",", "A2_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", - "L_", ",", "x_"}], "]"}], "=", "\n", "\t\t\t\t\t\t\t\t\t\t\t", - RowBox[{ - RowBox[{"(", - RowBox[{"A1", "+", - FractionBox[ - RowBox[{"Ka", "-", "A1"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"A2", "+", - FractionBox[ - RowBox[{"1", "-", "A2"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]]}], - ")"}]}]}], ";"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1.2"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A1", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A2", ",", "0.2"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "8"}], "}"}], ",", "0", ",", "20", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0", ",", "10", ",", "0.01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "]"}]}], "Code", - CellChangeTimes->{{3.621790585603479*^9, 3.6217906658770704`*^9}, { - 3.621790697501879*^9, 3.6217907632636404`*^9}, 3.621790797210582*^9, { - 3.6217908455383463`*^9, 3.621790860097179*^9}, {3.62179092830308*^9, - 3.62179094561207*^9}, {3.621791087087162*^9, 3.621791142667341*^9}, { - 3.6217911735301065`*^9, 3.6217912963221292`*^9}, {3.6218593595319767`*^9, - 3.6218593648819847`*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.2, $CellContext`B1$$ = 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = - 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 8, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A1$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`A2$$], 0.2}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 8}, 0, 20, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 540., {171., 181.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A1$14417$$ = - 0, $CellContext`A2$14418$$ = 0, $CellContext`Ka$14419$$ = - 0, $CellContext`B1$14420$$ = 0, $CellContext`M1$14421$$ = - 0, $CellContext`B2$14422$$ = 0, $CellContext`L$14423$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.2, $CellContext`B1$$ = 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = - 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 8}, - "ControllerVariables" :> { - Hold[$CellContext`A1$$, $CellContext`A1$14417$$, 0], - Hold[$CellContext`A2$$, $CellContext`A2$14418$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$14419$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$14420$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$14421$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$14422$$, 0], - Hold[$CellContext`L$$, $CellContext`L$14423$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`fMultiplicationSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> {0, 1.2}], - "Specifications" :> {{{$CellContext`A1$$, 0}, 0, 1, - 0.01}, {{$CellContext`A2$$, 0.2}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1}, 0, 1, 0.01}, {{$CellContext`B1$$, 1}, - 0, 10, 0.01}, {{$CellContext`M1$$, 8}, 0, 20, - 0.01}, {{$CellContext`B2$$, 2}, 0, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{604., {359., 367.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.621791143395383*^9, 3.621791186163829*^9, {3.621791231973449*^9, - 3.621791238120801*^9}, {3.6217912685735426`*^9, 3.6217912971941795`*^9}, - 3.6217949308250113`*^9, {3.621795879405267*^9, 3.62179588803176*^9}, { - 3.621818563814373*^9, 3.6218185695098577`*^9}, {3.6218268613994274`*^9, - 3.621826867135751*^9}, 3.6218271037049665`*^9, 3.6218584249846616`*^9, - 3.6218593792340045`*^9, {3.6218640603395267`*^9, 3.621864085239951*^9}, - 3.621864324089612*^9, {3.622164159019045*^9, 3.6221641721121626`*^9}, { - 3.622301003284512*^9, 3.6223010267545357`*^9}, {3.622312258523415*^9, - 3.622312282592197*^9}, {3.6223378526997337`*^9, 3.622337876487001*^9}, { - 3.622379928330818*^9, 3.622379952818976*^9}, {3.6223892155556726`*^9, - 3.622389240986211*^9}, 3.622391600791951*^9, 3.622391741938221*^9, - 3.62239179034429*^9, 3.622418082687257*^9, 3.622465538593143*^9, - 3.6224680246182632`*^9, {3.622504776549281*^9, 3.62250480143426*^9}, { - 3.622563734950747*^9, 3.622563761992785*^9}, {3.622761051900881*^9, - 3.6227610751237373`*^9}, 3.622780781120077*^9, 3.623554892228993*^9, - 3.623554940254746*^9, 3.6320186222645197`*^9, 3.632064096441333*^9, - 3.632071946164863*^9, 3.632095302947524*^9, 3.632147977493971*^9, - 3.691460890602868*^9, 3.691460921559238*^9, 3.698168608379725*^9, - 3.698168638602421*^9}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{3.621791411948743*^9}], - -Cell["The function satisfies some limit properties at \ -\[PlusMinus]\[Infinity]", "Text", - CellChangeTimes->{{3.6217913084808254`*^9, 3.621791357263615*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", - RowBox[{"-", "\[Infinity]"}]}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", "\[Infinity]"}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}]}], "Code", - CellChangeTimes->{{3.621791400985116*^9, 3.6217914384442587`*^9}}], - -Cell[BoxData["A1"], "Output", - CellChangeTimes->{ - 3.621791467689931*^9, {3.6217958795672765`*^9, 3.6217958881457667`*^9}, { - 3.6218185640795736`*^9, 3.6218185695698614`*^9}, {3.6218268616464415`*^9, - 3.6218268671947546`*^9}, 3.621827103954981*^9, 3.621858425404662*^9, - 3.621859379334005*^9, {3.6218640607405496`*^9, 3.621864085345957*^9}, - 3.621864324208619*^9, {3.6221641592570496`*^9, 3.6221641721745625`*^9}, { - 3.622301003637547*^9, 3.622301026873962*^9}, {3.622312258876725*^9, - 3.6223122827087173`*^9}, {3.622337853049252*^9, 3.622337876601656*^9}, { - 3.6223799286883574`*^9, 3.622379952947805*^9}, {3.622389215907737*^9, - 3.622389241077816*^9}, 3.622391601196268*^9, 3.622391742347476*^9, - 3.622391790460696*^9, 3.6224180830392237`*^9, 3.6224655387087317`*^9, - 3.62246802498005*^9, {3.622504776895925*^9, 3.622504801547174*^9}, { - 3.622563735230448*^9, 3.6225637621072693`*^9}, {3.622761052161099*^9, - 3.6227610752170887`*^9}, 3.6227807814690647`*^9, 3.6235548923665047`*^9, - 3.6235549403894987`*^9, 3.632018622646955*^9, 3.632064096575189*^9, - 3.6320719462978907`*^9, 3.63209530330646*^9, 3.6321479778564043`*^9, - 3.691460891018362*^9, 3.691460921706684*^9, {3.698168608755886*^9, - 3.698168638710452*^9}}], - -Cell[BoxData[ - RowBox[{"A2", " ", "Ka"}]], "Output", - CellChangeTimes->{ - 3.621791467689931*^9, {3.6217958795672765`*^9, 3.6217958881457667`*^9}, { - 3.6218185640795736`*^9, 3.6218185695698614`*^9}, {3.6218268616464415`*^9, - 3.6218268671947546`*^9}, 3.621827103954981*^9, 3.621858425404662*^9, - 3.621859379334005*^9, {3.6218640607405496`*^9, 3.621864085345957*^9}, - 3.621864324208619*^9, {3.6221641592570496`*^9, 3.6221641721745625`*^9}, { - 3.622301003637547*^9, 3.622301026873962*^9}, {3.622312258876725*^9, - 3.6223122827087173`*^9}, {3.622337853049252*^9, 3.622337876601656*^9}, { - 3.6223799286883574`*^9, 3.622379952947805*^9}, {3.622389215907737*^9, - 3.622389241077816*^9}, 3.622391601196268*^9, 3.622391742347476*^9, - 3.622391790460696*^9, 3.6224180830392237`*^9, 3.6224655387087317`*^9, - 3.62246802498005*^9, {3.622504776895925*^9, 3.622504801547174*^9}, { - 3.622563735230448*^9, 3.6225637621072693`*^9}, {3.622761052161099*^9, - 3.6227610752170887`*^9}, 3.6227807814690647`*^9, 3.6235548923665047`*^9, - 3.6235549403894987`*^9, 3.632018622646955*^9, 3.632064096575189*^9, - 3.6320719462978907`*^9, 3.63209530330646*^9, 3.6321479778564043`*^9, - 3.691460891018362*^9, 3.691460921706684*^9, {3.698168608755886*^9, - 3.698168638718713*^9}}] -}, Open ]], - -Cell["\<\ -Unfortunately first or second derivative of multiplication sigmoidal is so \ -complicated it can not be solved algebrically to find \ -\>", "Text", - CellChangeTimes->{{3.621791483459833*^9, 3.6217914939344325`*^9}, { - 3.621791582849518*^9, 3.621791676817893*^9}, {3.6217918526539497`*^9, - 3.621791854882077*^9}}], - -Cell[CellGroupData[{ - -Cell["Positions where the slope is maximum ", "Item1", - CellChangeTimes->{{3.621791483459833*^9, 3.6217914939344325`*^9}, { - 3.621791582849518*^9, 3.6217917011852865`*^9}, {3.621791765744979*^9, - 3.621791776637602*^9}}], - -Cell["Value of the slope at this point", "Item1", - CellChangeTimes->{{3.6217917032624054`*^9, 3.6217917291938887`*^9}, { - 3.621791779550769*^9, 3.621791809555485*^9}}], - -Cell["Location of the maximum (local & global) of the function", "Item1", - CellChangeTimes->{{3.621791788547283*^9, 3.621791803788155*^9}}], - -Cell["The maximum (local & global) of the function", "Item1", - CellChangeTimes->{3.6217918082854123`*^9}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6217919203008194`*^9, 3.6217919203288207`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", "x"}], - "]"}], "\n", - RowBox[{ - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", - " ", "\n", "\t\t\t\t\t\t\t\t\t\t", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", " ", "x", ",", " ", "Reals"}], - "]"}], "\n"}], "\n", - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "2"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", "x"}], - "]"}], "\n", - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "2"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", " ", - "\n", "\t\t\t\t\t\t\t\t\t\t", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", " ", "x", ",", " ", "Reals"}], - "]"}]}], "Code", - CellChangeTimes->{{3.6217919369677725`*^9, 3.621791995799137*^9}, { - 3.621792930002571*^9, 3.6217929866758127`*^9}, {3.6217930208077645`*^9, - 3.6217930387247896`*^9}, {3.6217930771929893`*^9, 3.6217930902177343`*^9}, { - 3.62185848793375*^9, 3.6218584969147625`*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Solve", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Solve. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Solve\\\", ButtonNote -> \ -\\\"Solve::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.621791998384285*^9, {3.621793051132499*^9, 3.621793095675047*^9}, { - 3.621795880368322*^9, 3.621795888812805*^9}, {3.621818564750375*^9, - 3.621818569941882*^9}, {3.621826862282077*^9, 3.6218268675583744`*^9}, - 3.621827104603018*^9, 3.6218584265756636`*^9, 3.621859379984006*^9, { - 3.6218640618426123`*^9, 3.621864085996994*^9}, 3.6218643248626566`*^9, { - 3.62216415989106*^9, 3.6221641725177636`*^9}, {3.622301004847279*^9, - 3.622301027511437*^9}, {3.622312260057459*^9, 3.622312283360195*^9}, { - 3.622337854134287*^9, 3.622337877243533*^9}, {3.622379929941687*^9, - 3.622379953612446*^9}, {3.622389217009194*^9, 3.6223892417810917`*^9}, - 3.622391602418869*^9, 3.622391743594015*^9, 3.622391791125944*^9, - 3.622418084222413*^9, 3.622465539460348*^9, 3.622468026148534*^9, { - 3.622504778110774*^9, 3.6225048021963367`*^9}, {3.622563736278907*^9, - 3.622563762754821*^9}, {3.6227610532070217`*^9, 3.622761075920925*^9}, - 3.622780782545946*^9, 3.623554893034768*^9, 3.623554941115683*^9, - 3.6320186239426107`*^9, 3.6320640973009377`*^9, 3.632071947033145*^9, - 3.6320953045550613`*^9, 3.632147979012072*^9, 3.691460892314486*^9, - 3.691460922420274*^9, {3.698168610084085*^9, 3.698168639389312*^9}}], - -Cell[BoxData[ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{ - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", - RowBox[{"(", - RowBox[{"A2", "+", - FractionBox[ - RowBox[{"1", "-", "A2"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]]}], - ")"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]], "-", - FractionBox[ - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", "A2"}], ")"}], " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", - RowBox[{"(", - RowBox[{"A1", "+", - FractionBox[ - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]]}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]]}], "\[Equal]", "0"}], ",", "x"}], "]"}]], "Output", - CellChangeTimes->{ - 3.621791998397286*^9, {3.6217930511384993`*^9, 3.6217930956810474`*^9}, { - 3.6217958803713226`*^9, 3.6217958888158054`*^9}, {3.621818564750375*^9, - 3.6218185699428825`*^9}, {3.6218268622840767`*^9, 3.6218268675593743`*^9}, - 3.6218271046050177`*^9, 3.621858426585664*^9, 3.621859379984006*^9, { - 3.621864061850613*^9, 3.621864086001994*^9}, 3.621864324866657*^9, { - 3.6221641598920603`*^9, 3.6221641725333633`*^9}, {3.6223010048515043`*^9, - 3.622301027514213*^9}, {3.622312260062737*^9, 3.6223122833634863`*^9}, { - 3.622337854139441*^9, 3.6223378772469788`*^9}, {3.6223799299451447`*^9, - 3.622379953615684*^9}, {3.622389217014885*^9, 3.622389241783963*^9}, - 3.622391602421714*^9, 3.6223917435972843`*^9, 3.6223917911294403`*^9, - 3.6224180842276793`*^9, 3.622465539464707*^9, 3.6224680261528053`*^9, { - 3.62250477811651*^9, 3.622504802200205*^9}, {3.6225637362834377`*^9, - 3.6225637627583857`*^9}, {3.622761053213134*^9, 3.622761075925251*^9}, - 3.6227807825498457`*^9, 3.623554893048818*^9, 3.6235549411221933`*^9, - 3.6320186239488907`*^9, 3.632064097307728*^9, 3.632071947043521*^9, - 3.6320953045625563`*^9, 3.632147979021082*^9, 3.6914608923254957`*^9, - 3.691460922428812*^9, {3.698168610095211*^9, 3.698168639397868*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Reduce", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Reduce. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Reduce\\\", ButtonNote -> \ -\\\"Reduce::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.621791998384285*^9, {3.621793051132499*^9, 3.621793095675047*^9}, { - 3.621795880368322*^9, 3.621795888812805*^9}, {3.621818564750375*^9, - 3.621818569941882*^9}, {3.621826862282077*^9, 3.6218268675583744`*^9}, - 3.621827104603018*^9, 3.6218584265756636`*^9, 3.621859379984006*^9, { - 3.6218640618426123`*^9, 3.621864085996994*^9}, 3.6218643248626566`*^9, { - 3.62216415989106*^9, 3.6221641725177636`*^9}, {3.622301004847279*^9, - 3.622301027511437*^9}, {3.622312260057459*^9, 3.622312283360195*^9}, { - 3.622337854134287*^9, 3.622337877243533*^9}, {3.622379929941687*^9, - 3.622379953612446*^9}, {3.622389217009194*^9, 3.6223892417810917`*^9}, - 3.622391602418869*^9, 3.622391743594015*^9, 3.622391791125944*^9, - 3.622418084222413*^9, 3.622465539460348*^9, 3.622468026148534*^9, { - 3.622504778110774*^9, 3.6225048021963367`*^9}, {3.622563736278907*^9, - 3.622563762754821*^9}, {3.6227610532070217`*^9, 3.622761075920925*^9}, - 3.622780782545946*^9, 3.623554893034768*^9, 3.623554941115683*^9, - 3.6320186239426107`*^9, 3.6320640973009377`*^9, 3.632071947033145*^9, - 3.6320953045550613`*^9, 3.632147979012072*^9, 3.691460892314486*^9, - 3.691460922420274*^9, {3.698168610084085*^9, 3.69816863996562*^9}}], - -Cell[BoxData[ - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", - RowBox[{"(", - RowBox[{"A2", "+", - FractionBox[ - RowBox[{"1", "-", "A2"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]]}], - ")"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]], "-", - FractionBox[ - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", "A2"}], ")"}], " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", - RowBox[{"(", - RowBox[{"A1", "+", - FractionBox[ - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]]}], ")"}]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]]}], "\[Equal]", "0"}], ",", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", "x", ",", "Reals"}], - "]"}]], "Output", - CellChangeTimes->{ - 3.621791998397286*^9, {3.6217930511384993`*^9, 3.6217930956810474`*^9}, { - 3.6217958803713226`*^9, 3.6217958888158054`*^9}, {3.621818564750375*^9, - 3.6218185699428825`*^9}, {3.6218268622840767`*^9, 3.6218268675593743`*^9}, - 3.6218271046050177`*^9, 3.621858426585664*^9, 3.621859379984006*^9, { - 3.621864061850613*^9, 3.621864086001994*^9}, 3.621864324866657*^9, { - 3.6221641598920603`*^9, 3.6221641725333633`*^9}, {3.6223010048515043`*^9, - 3.622301027514213*^9}, {3.622312260062737*^9, 3.6223122833634863`*^9}, { - 3.622337854139441*^9, 3.6223378772469788`*^9}, {3.6223799299451447`*^9, - 3.622379953615684*^9}, {3.622389217014885*^9, 3.622389241783963*^9}, - 3.622391602421714*^9, 3.6223917435972843`*^9, 3.6223917911294403`*^9, - 3.6224180842276793`*^9, 3.622465539464707*^9, 3.6224680261528053`*^9, { - 3.62250477811651*^9, 3.622504802200205*^9}, {3.6225637362834377`*^9, - 3.6225637627583857`*^9}, {3.622761053213134*^9, 3.622761075925251*^9}, - 3.6227807825498457`*^9, 3.623554893048818*^9, 3.6235549411221933`*^9, - 3.6320186239488907`*^9, 3.632064097307728*^9, 3.632071947043521*^9, - 3.6320953045625563`*^9, 3.632147979021082*^9, 3.6914608923254957`*^9, - 3.691460922428812*^9, {3.698168610095211*^9, 3.6981686399733562`*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Solve", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Solve. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Solve\\\", ButtonNote -> \ -\\\"Solve::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.621791998384285*^9, {3.621793051132499*^9, 3.621793095675047*^9}, { - 3.621795880368322*^9, 3.621795888812805*^9}, {3.621818564750375*^9, - 3.621818569941882*^9}, {3.621826862282077*^9, 3.6218268675583744`*^9}, - 3.621827104603018*^9, 3.6218584265756636`*^9, 3.621859379984006*^9, { - 3.6218640618426123`*^9, 3.621864085996994*^9}, 3.6218643248626566`*^9, { - 3.62216415989106*^9, 3.6221641725177636`*^9}, {3.622301004847279*^9, - 3.622301027511437*^9}, {3.622312260057459*^9, 3.622312283360195*^9}, { - 3.622337854134287*^9, 3.622337877243533*^9}, {3.622379929941687*^9, - 3.622379953612446*^9}, {3.622389217009194*^9, 3.6223892417810917`*^9}, - 3.622391602418869*^9, 3.622391743594015*^9, 3.622391791125944*^9, - 3.622418084222413*^9, 3.622465539460348*^9, 3.622468026148534*^9, { - 3.622504778110774*^9, 3.6225048021963367`*^9}, {3.622563736278907*^9, - 3.622563762754821*^9}, {3.6227610532070217`*^9, 3.622761075920925*^9}, - 3.622780782545946*^9, 3.623554893034768*^9, 3.623554941115683*^9, - 3.6320186239426107`*^9, 3.6320640973009377`*^9, 3.632071947033145*^9, - 3.6320953045550613`*^9, 3.632147979012072*^9, 3.691460892314486*^9, - 3.691460922420274*^9, 3.698168610084085*^9, 3.698168645819582*^9}], - -Cell[BoxData[ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{"1", "-", "A2"}], ")"}], " ", "B1", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}], "+", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], ")"}]}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "2"}], " ", "B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "3"]], - "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - ")"}], " ", - RowBox[{"(", - RowBox[{"A2", "+", - FractionBox[ - RowBox[{"1", "-", "A2"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]]}], ")"}], - " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], ")"}]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", "A2"}], ")"}], " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "3"]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]]}], ")"}], " ", - RowBox[{"(", - RowBox[{"A1", "+", - FractionBox[ - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]]}], ")"}]}]}], - "\[Equal]", "0"}], ",", "x"}], "]"}]], "Output", - CellChangeTimes->{ - 3.621791998397286*^9, {3.6217930511384993`*^9, 3.6217930956810474`*^9}, { - 3.6217958803713226`*^9, 3.6217958888158054`*^9}, {3.621818564750375*^9, - 3.6218185699428825`*^9}, {3.6218268622840767`*^9, 3.6218268675593743`*^9}, - 3.6218271046050177`*^9, 3.621858426585664*^9, 3.621859379984006*^9, { - 3.621864061850613*^9, 3.621864086001994*^9}, 3.621864324866657*^9, { - 3.6221641598920603`*^9, 3.6221641725333633`*^9}, {3.6223010048515043`*^9, - 3.622301027514213*^9}, {3.622312260062737*^9, 3.6223122833634863`*^9}, { - 3.622337854139441*^9, 3.6223378772469788`*^9}, {3.6223799299451447`*^9, - 3.622379953615684*^9}, {3.622389217014885*^9, 3.622389241783963*^9}, - 3.622391602421714*^9, 3.6223917435972843`*^9, 3.6223917911294403`*^9, - 3.6224180842276793`*^9, 3.622465539464707*^9, 3.6224680261528053`*^9, { - 3.62250477811651*^9, 3.622504802200205*^9}, {3.6225637362834377`*^9, - 3.6225637627583857`*^9}, {3.622761053213134*^9, 3.622761075925251*^9}, - 3.6227807825498457`*^9, 3.623554893048818*^9, 3.6235549411221933`*^9, - 3.6320186239488907`*^9, 3.632064097307728*^9, 3.632071947043521*^9, - 3.6320953045625563`*^9, 3.632147979021082*^9, 3.6914608923254957`*^9, - 3.691460922428812*^9, 3.698168610095211*^9, 3.6981686458265333`*^9}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Reduce", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Reduce. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Reduce\\\", ButtonNote -> \ -\\\"Reduce::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.621791998384285*^9, {3.621793051132499*^9, 3.621793095675047*^9}, { - 3.621795880368322*^9, 3.621795888812805*^9}, {3.621818564750375*^9, - 3.621818569941882*^9}, {3.621826862282077*^9, 3.6218268675583744`*^9}, - 3.621827104603018*^9, 3.6218584265756636`*^9, 3.621859379984006*^9, { - 3.6218640618426123`*^9, 3.621864085996994*^9}, 3.6218643248626566`*^9, { - 3.62216415989106*^9, 3.6221641725177636`*^9}, {3.622301004847279*^9, - 3.622301027511437*^9}, {3.622312260057459*^9, 3.622312283360195*^9}, { - 3.622337854134287*^9, 3.622337877243533*^9}, {3.622379929941687*^9, - 3.622379953612446*^9}, {3.622389217009194*^9, 3.6223892417810917`*^9}, - 3.622391602418869*^9, 3.622391743594015*^9, 3.622391791125944*^9, - 3.622418084222413*^9, 3.622465539460348*^9, 3.622468026148534*^9, { - 3.622504778110774*^9, 3.6225048021963367`*^9}, {3.622563736278907*^9, - 3.622563762754821*^9}, {3.6227610532070217`*^9, 3.622761075920925*^9}, - 3.622780782545946*^9, 3.623554893034768*^9, 3.623554941115683*^9, - 3.6320186239426107`*^9, 3.6320640973009377`*^9, 3.632071947033145*^9, - 3.6320953045550613`*^9, 3.632147979012072*^9, 3.691460892314486*^9, - 3.691460922420274*^9, 3.698168610084085*^9, 3.698168648239354*^9}], - -Cell[BoxData[ - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{"1", "-", "A2"}], ")"}], " ", "B1", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}], "+", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]}]], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], ")"}]}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], - " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "2"}], " ", "B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "3"]], - "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - ")"}], " ", - RowBox[{"(", - RowBox[{"A2", "+", - FractionBox[ - RowBox[{"1", "-", "A2"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]]}], - ")"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], ")"}]}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", "A2"}], ")"}], " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "3"]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "2"]]}], ")"}], " ", - RowBox[{"(", - RowBox[{"A1", "+", - FractionBox[ - RowBox[{ - RowBox[{"-", "A1"}], "+", "Ka"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]]}], ")"}]}]}], - "\[Equal]", "0"}], ",", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", "x", ",", "Reals"}], - "]"}]], "Output", - CellChangeTimes->{ - 3.621791998397286*^9, {3.6217930511384993`*^9, 3.6217930956810474`*^9}, { - 3.6217958803713226`*^9, 3.6217958888158054`*^9}, {3.621818564750375*^9, - 3.6218185699428825`*^9}, {3.6218268622840767`*^9, 3.6218268675593743`*^9}, - 3.6218271046050177`*^9, 3.621858426585664*^9, 3.621859379984006*^9, { - 3.621864061850613*^9, 3.621864086001994*^9}, 3.621864324866657*^9, { - 3.6221641598920603`*^9, 3.6221641725333633`*^9}, {3.6223010048515043`*^9, - 3.622301027514213*^9}, {3.622312260062737*^9, 3.6223122833634863`*^9}, { - 3.622337854139441*^9, 3.6223378772469788`*^9}, {3.6223799299451447`*^9, - 3.622379953615684*^9}, {3.622389217014885*^9, 3.622389241783963*^9}, - 3.622391602421714*^9, 3.6223917435972843`*^9, 3.6223917911294403`*^9, - 3.6224180842276793`*^9, 3.622465539464707*^9, 3.6224680261528053`*^9, { - 3.62250477811651*^9, 3.622504802200205*^9}, {3.6225637362834377`*^9, - 3.6225637627583857`*^9}, {3.622761053213134*^9, 3.622761075925251*^9}, - 3.6227807825498457`*^9, 3.623554893048818*^9, 3.6235549411221933`*^9, - 3.6320186239488907`*^9, 3.632064097307728*^9, 3.632071947043521*^9, - 3.6320953045625563`*^9, 3.632147979021082*^9, 3.6914608923254957`*^9, - 3.691460922428812*^9, 3.698168610095211*^9, 3.698168648246698*^9}] -}, Open ]], - -Cell["So one needs to go with numerical solutions...", "Text", - CellChangeTimes->{{3.621792808735635*^9, 3.6217928237774954`*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.6217934772988744`*^9, 3.6217934773208756`*^9}}], - -Cell["\<\ -The real problem with this model is that; \"with some parameter sets the \ -function behaves wierdly\". Here is an example:\ -\>", "Text", - CellChangeTimes->{{3.621793478690954*^9, 3.621793491311676*^9}, { - 3.621793529581865*^9, 3.6217935754494886`*^9}, {3.6217957088075094`*^9, - 3.621795718901087*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "0", ",", "0.5368628", ",", "1.454867", ",", "1.084971", ",", "11.11337", - ",", "8.529749", ",", "1.13329", ",", "x"}], "]"}], "\n", ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1.2"}], "}"}]}]}], "]"}]], "Code", - CellChangeTimes->{{3.621793604750164*^9, 3.62179364331237*^9}}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[ - "Butt"], LineBox[CompressedData[" -1:eJwd1Hc8le8bB3DZlL1nRpxz7GMcs3Nfksxs2SWp0JKVaKAUKikyI8qK6itK -ZWVUMhKS7GyHzGwZv+f8/jnn9X5d9+e6n/t6hqTHBZuTtDQ0NEPYD/V/ZaDh -07472WQ5wqsm7uIh8roB8ax+VwTaG2/8IvL3EPlk2YS9YNdDZH3I0ugc2zA5 -bbm2ka7rKbL63Hb0ic8wmRSvErn+qxhZNIqmF8mNkOk9Tnss/apFxsuRM+m1 -o2Quw+NH/Bk+oY6bXV/nVkfJ4ngX07+qn5F/VNGjRsUxstasher8vXrERLK5 -JZE2Rj4XQqKdNmhGvIupIoFXxslnGmjbFn61o30eH/4wuVDIf8t2TF+f/4FY -dfpLH6VQyMEvNj/5MnSgl8odcp+6KORb91fez6n+RI5MvTdYnCbJmfZTmTP3 -fqHxry1SnsenyB1Dbb6TBn0o+arWja6H02Txq1ZR87+GEV98m/nP2nkyzQjF -Jo8wgu5xvXoeuTBPHjYOFzsaOoK+HiHwvpdYIOfwFhc3iY+ihd7lqvywBbLC -C57+3JNjaFuon2H40F+yTm8n0W1xAq2ZmRQzzi6SRfUvbPIYUtCXVz55MTJL -5O1cpvrGRAoqUSTAc7clco2flquWziRSGZQQrfy+RDZmTb3FEz6Fbl+q/XSh -fJl8RNutt4F9BmXnN+Hii1fJWk+Wc8LcZ5BU1OrAo6VVsjBDrK9m8QwS7bkZ -aKW5Ru5vrWLIsZ9FIzsbh5ar1sieXhIqYY/nUMpV82HSr3Xyh6aLB0T4FlBn -0i/7YMVNcv2GelLb00UU9GTgVFI1DfKRke5b/bqIyk1rKmWmaRC7FZek+Nwi -6ns5aCMjuAsdyZkp8NFdQnOSlzuuXNyFRi1zq+g6lpCSX4HsKwItoskRGNdg -WEE0A5mt8q/pUPZ3BnlX+RW0nyn1+9FROmS0sXghwnoFkQ5V/uEXpEexlq3r -LekrqPSN6YRIOD0S3Yhi8yKtojzWxuwnTgxIy3JDPfX0GnLxFNnTKsOE+i5T -LlffW0N/zuky7xxnQtezO6vGS9ZQf/XClcYMJvRlvdhYjWYdiQ94Ku8XZkZ2 -2Wdcm5PX0UoyRe+jIAu6uN53Y7thA8lEHzYo0tiNCp59bPdQ2EK9Z8+4s2xy -oCXhozcbrLeQzsRv/npZToQebmqoXNpCmwxhRxcsOVFHmHbKVs0WQguypeHP -ONG2W8mxZIdtlNpRKvWfJReyFsyb/haxgwKJtW2qldzo8X3DDPX8HRQx+sxm -eZobjTOOWqZ920GHTZzvEMV4UGVInJP6HhqgebOHRvQ6D7Lx/laxy4EGFE49 -yus15kVXDhndeDxNA/SZ9kyyy3xIMoK/z3KHBi7UaHiKKvKjL5Vj6nTcu+AW -7/CxrJP8iEvj5ri35i4YmJsfde3iR7nSNSaaEbtgJPB1U+0nAdRKo8vZLkAL -nVffpqSVCSHpcqV0JgM6KD7ObD0oI444/Tw/WDnQgedhTa0Dl8XRJj71Z8oZ -OuhTSXgf800cdSYysCsk0AGf8/6I7uC9KMav75rVGB1cp/PqdD4ngeYJMe4p -t+lhytDqe/+4JOof/HhlOI0eYhLlm9wFpVBj0nKyfBE9WKobl5w1lULZDMfb -KrvoYcitiCRTJIUchjQPDBMYgPldVJBBhDSqSh6Tlm9mAF0hM8PEAzKo0FIE -AgYZIFDQu8rjqgxKZrR2rVxigA+nCG1t72WQX0BFgqUYI8SlpLZkEGWRjFU8 -Q8B5Rkg1IkXLyuPQXSb9iQpOJkgYs8uNQwTkFPS4wMKeGarrjs2zbCoiCcIz -0n4vZrh9Ty73lIkSGu99Xisfygx1l4xmYpKUkJ/+ux7mLGYg6CKkSlJGMXva -WeummeGsdGdtKlkFVTxlOqN5kwWeNOuFrKQQUYQ9+6pMEgvQ5092H6snImNm -vhu8BSwQJ+ruRl4mop/npNIWvrNAoP54zDEbVTSrtb+pUIQVgj4smdpxq6G9 -3/3kJUpYwWitQUSiQB2Nh19+x/6FFfpf2Sn6/lZHL9TDDLa6WEH55kyNCZ8G -0kq959KzzQpSlpu7nkRoIKuT+XcSTHfDgIHu7fUTJBTxr/8P8/BusKVzJ7w/ -oIXGcCYvFjjZwLfkw+ilUD301770X6AMG3xmInBKNukhmpvSZhvabEA5PLKS -L7IfiQ5uTdKeYIMu3/DSox/3I7vkYhzvWzaQO3q1Oo8LoVpm0WckJ3YI+E33 -38YCoFZS9N+yc+zQFnXg1VFJfTTguaKPItjBQSpXzshaH61Xtw4aFbJD9WfP -04XF+kjlcqS40xY7VHC1nJ0KPYAyJmdTQrM4QGhvw/HHhIPohYDr5M5bDvBX -ruzcPn4QlRk2aN1s5IDVKR3KdupB9DPr2a+7ixwgt+j2ZYDdEDEqvmD9LsUJ -NUnnP1tsGyLymLvxYAAnNLM3r8RsGaEX9o11tEJcUO7Ea3L6jjnq23nByCfN -BVNWQ5rV3eaIreC+CU6RC05P83LO4w+j89t23830uSD/p2Rpf8NhRMz73ZPg -zQWRUy9bVPktUena0oJsGRfgtZLeB8xYofGnv9S1P3GB06XO5EkRayRwuOyS -WQsX8NQnDPabWqPgrOtbF4a5IOFwh5hpgTXSNWVl+cDKDfzmg56OF2xQddpe -CTMXbhBKQo8e8NiheUPaE24nueHxX8+xfFM7JDk/mnPhAjfAaiY4RNihiIMF -8gk3uKEwweXh9UU7ZDijrtlfyA3/Wnj+KvTbo0ayqcWFTW6I29zWvPLdAf0Y -CrgSn84D8k6d1f/0XNE8C1xay+UBoTcZVqRIV8SuutvPrYgH7AQZTxNaXJFx -RNZpXB0PvOg6EwkebqhKqsWmnMIDviHCEqfjj6L8EzjCiBovqBsG6ebcc0ef -7/yVNt7PC+5vD6htvHNHwyWV4i8P8ULVJ5Jh+bA7EqO3473kxAthbB5Mt7SP -o4fZYTus13lhcczsm+v0cXRlrPunaiMv7NnF85fd6wRKYctpTfrBC3dXkspe -pJxApRq+TZt9vPDMJhXX0HQCLUQy1nyZ44Xx5D8bEURPdEpW7YUzHx8kvne+ -J053ElmdvhsR4c4HP2WvBkhUn0Iyk2Tl9hU+kFZLzXEv9EHjFpW7aXfxQ3S0 -16T5sg/Kf6NLIe7mh9snX6YxwBkkF6aV9WAvP1x/c0t07NcZpCSgymNtzA8n -p4RS0rjOIZKhzOr3FH6YueDisPjqAlotePZj5xk/yNh0z7jR+aL3nFJFyq/4 -4V9ud1C5si/S6RP3vl/LD87fxh5NRPsi5C/Ya/GHH3YOy7sSDl5Exlm7P37T -E4CKiodfo9v8EAtTTNrWIQF4ZBb5Xy6DP2o8yxysaC0ABhd2ztvq+CNzLQbi -vZMCkG0XmeOR44+sv28/NY/F8jOx4jcjApDz1sKtpt8CAIzGKwecg9AZpy6L -hghBKAygvSR5NwQJ7kcjZncFgU9KtSinNQR9kci91PJIEHqGr81384UiKYp/ -5o98Qeig7Lrj9DQU9QRx/O1vEYQW3hLyRN0VZJxw6NFfYSGwN3x+oE/uOlq5 -9JIQuE8IHHd+t+iFXkfZLrxVq4pCYNO9eOtM83W0IzU8vglCYH6EpTNdKwyV -vr6qxXRaCJyIglm+w2Fo3/c3vSIlQmD2F2/LYxaB2otFfDMqhCCR7t8hjZAI -FJYYQS/5RQhwd9rGvz+PQL1uVoqy3UIQM3l+wZ/1Bno4/eeayg5mGmSc0nYD -0bBKSxmaCYPyCH2+f3Ak6jv4wOv8iDA0xcY/GCNGoze6+wRrpoXhfuvdYfeL -0eiO6rt6nhVhaGfOqg15HY10JPplPzCLwO+afKM4tRiU/A8/RqckAh9M6jrO -oTvIrrj6eEqwCLhrhBQ4X7qHFJ7bck2Hi4CPT7v91Zp7iC5zvJp8RwSYBcQz -HffEouJ7eyRG00XAKPOwOGTHIk5vxwGlOhEgJD7exdB/HzXvnXf+xCYKiRNG -BDqdByib/wargIAohDckPTQ6+QCFsvGXeUuIgsJZMdfVuAdI7p+uEIeaKOwb -/iWZPvkARXXe/uXkKAo8CQOXxTMfooP39trNPRUFyvUrVhSpBFS+YXFYWEsM -+OlTPj2+nYRIyo8GNA+IAd/vD9Wh9Umo+ETvBXtzMeB53mvIwJyM8ptPP4xz -F4M0u+gW8TvJKDEj7BdjtBjUrNeuPU5JQb4Hio8vdovB3nt291y709CfoLW/ -nKNikHllObB832N0qpB8U2kWq0/4egz7PkZuvE253rTicCb6FMTtTkem4yN/ -fsuJg0U603i2aQbaF8MX1BwqDui3Mcun4Ez0pMqFaSpSHBJDjEVUcjKR8GJW -MlOcOJT68pC42jMRl6tS+YFscTDc2BTTVMxC24pGNB+axYEN8s+rTmah7rbg -mByxvVDh/PT0cvAzFCvUl3Ht4164N82f85ImD600sVJmv+4F8OP+Qq+Th45e -0yYea98LAe3rxHH/PKQ4kliHxvZCxMHlz+aTeehUJz4gjEECeneVuzX15CPG -zJFkfXkJULkZ2Py8uwDprIdUritLwAnhQA490UJ03oZ7+LW6BDwuiuQ7d6wQ -ddLry0uRJcAn53RP0UQhyvXOqKS1lgD3TOuusZ0X6JCa03BdkASUTdcu61v9 -h0LuzjNeCZUAc6uOE17p/6FXY7fl1cMkYNrB9NTBP/8h/uTSgOxoCbAu2pX8 -4GARGt/kYYp8LAFSUanGP8aL0K0vLfKHaiWg1fY194P9xeiL08HAr2yS8GJW -ha1A+y1qtn7LOs4tCU4PZCHk4lvUbiKbSScoCQ2mVwgdz9+iAW3mJrKUJCje -qSkiiJaiZaFmibckSaioseoNZXqH9vXYNmcdkwS6E3dO1a2/R3Ltn45/9JSE -5qO3Rst0PiCVRo3VPm9JYPR1+Gdx5QPSKxOQEgyQhFOOr39Z7ypDtqm9l2Kj -JGEprubzKHc5inA+IR36WhL+zAzHH7GvRFE2He+TSyUhK+hlyIvMShRramhR -Wi4J//6VbxZPV6JUHdzlhc+S0JqVPtd5qwq9Fv7TcrpHEnTr10Iy6j6iwR6/ -EDs6KYhJ6vaXValByCWiTdFeCnY0n5JTBT6hHtfoADVnKRAgHnn1zPgTCjga -J6B9TAquLEXs5g/5hAqOZ7gd9JYC2XDjOc2BT4jPq2zS+aoU9J5qGQkr/Iz+ -BPzdFZUjBWN3XCOeO9ejW0Hr2fcKMF9Obrn9sB5JBNMYx/8nBWHSNLpdjfXo -SCh7bMYHrL/u46w2va+oJlxO+O03Kbgd8TdLQ7YBJcV6qA4vS8Ei+RAbiaMJ -qcZ5/5zYkAIW21N7Ai2aUPMD3+CZHSkwnpYyUoptQrSPrlWtsUgDX+x7xMXR -jM6lpZpyiEtD3Vu/Wzn835BBfruH3iFpuPTmIduJ/d/RXM2B+MREaZB40+TU -uNyGwmjJDw3TpKF0LKi8XLgdcRtoP1h6Ig34116546gdqX9Svm/zXBrezwwc -noxpR8FfRO+wV0iDHUsv1zPpH4imaSXi1pA0FMklnZ451oG4Owr8ghT2wXDs -csc7ul9IfZzb5kjtPnBkkmO6s9CHkj5P1PjU7wNef2b1J/h+tJFdQbzevA9S -hks1po/1o+oTp7jyO/eBwJLDV6Xv/ch86EPr+tQ+iD9Zvtu4aAB59rlbpvPI -wN+WzA948iBKaH9lPuopA3yCm69LRYbRYpWpkR+TLMgvNX4aYRpH5v08PCp7 -ZOHIVRvGKplxlPuvb2CGUxZqfhUOpBmMI0etC0HewrIwvcJX5X59HFW9js9x -V5SFt66nGOlXx1FUdh+dpa0snC30S7cfn0DiMeer5Z/Iwu6JbhdC7SS6lK95 -d/KZLFSmD0Xn/p5ErV9oHPPyZaHkzT6S0NYkukEXPydVLAtfVWP7+jSnEOXK -O3Hhz7Jg7DXk+O3FFCq5QHOV+Y8sXLj/Ma02/g8ytn+oPUbCwdygAW2+5Qzy -59YIYtbDwds0Hgu/szMo4/uvYnl9HMR8WfdmiJ5ByyZiCn5mOKCvwHsF18yg -p+R88Z1jONAK7x+QVJ5F3/6ZukidxMFy5eyNTyazaO39TJKhDw4cinn893jO -Iks1Na67ATjIochs+CXNok1cFZ1QNA4ieA5ZNK/NItyYO+jF4uAIKH3+xjGH -bJ7SXT0WjwN70v5lVdk59FzUZCUnHQeHXzoc3bCaQx3df1QbnuKg/k3cEYOT -c4gmKfbCdB4OxButzlYGz6EjXB0U1WIcmJS3fmBKn0PhLUEyR97hwM37Qn7p -yzn04o6Qx+UKHNwdVd5jVzmHuowrMh7X4CA9UPBEc9McomM81vvxCw52abKt -snbPIaW6XYIjTTgwamDsXh+dQ85h2XaMbThY1Db7HT43hyL3Gz0gdOLgWZtt -XszaHCramPxm3ouD/XfFHm/szKHed3dZfQdxkKzQE9ZLO48YA5WN4sdw8H7j -LF07/TxSVW2/UTqF7X+j93w7wzxymwuo7p7DwUEbo9lvmKNeCGxtLuFg6M87 -27fY+jfeZdoSGzhwpJslXsb6/ZZ1CzLYwcG0oOkqz/YcYh3dKT5Fj4e//jbW -RUtzSCPr6Vw0Cx5WJvfV5lPmkPtRQ4WX7Hg4rfHS7Td2vrsiFK9WHjwQ7oSc -0fw6h951xeQsCuLB7ovQyKOSOTT8SHGYXxwPB5UFlobS5hC7bau4jjQejAoP -JzOEzyFtTn8XNzweRNNuK816zCHPb3zJYYp4SFf9InxPfw7dj3nf8UwVD92a -37y6ROdQmZELV70mHu7U9Z5tWppF4/Tbh6f08PBgV7vb6YZZxFWbGcN2AA8s -koEjJamzSO+6Qb2KER4k1kXiP3rNIi+9cTo7czzw7QzYZarNoqpS+aupR/Cw -lRHUfbR6Bk36t3yodMFDGGlwIDZiBvESL64MumP97y2ZaR2YQT6FpRdwZ/CQ -2usgOVM2jQQy9T3eXMeD65Ha5cGUP6jrVMiLjzfxwD9/3mnT6g9KVixZaYzG -w3lDVdIa0x8kWL7vzlA8HjrYkwN+Bk2hrnC3n9PJeHjxmWBiqzyFko0T966l -4yGyzMyPQplEgp1Mb9jz8XD2to68p/sk6noM20Iv8aDLM0CuFZ9EyScuG8sU -40H4F+WFzG8KElyY6tOtwINpQjNz9ikK6nonjTOqwcPu+w6Ju5QoKPma60Wb -L3gosZgZn1ydQIJ7Whi8W/GgE57RlxQ/gbraGa0CfuJhlUdM99zJCZScglKv -9+CBS7SteEZ7Ajm6B4/G/MZD+7j6aV4uLI97rZQ4ioeN2GvWXVPjqGtmMjhr -EjsfXeRXhfpxlPxGqu7FLPX6XjLSYl9soQMJDnVreFBIxGuM+IyjHuZvWS1b -eAiQtgz8ZDWOUr8zTHfTEoBNhmatTWscOSeSSWNMBODw1vJclBpHwm6Xwub3 -ECDFe7yVgwPLSxc1/uMigEPDHk72rTGUOkXhZRIgwIgg53zH9Bhyfi15jFuU -APLu2f5mA2NIONj5uZgkATquzNM4tY2hHnL8Il6WAAXv46PGPmN5hub96vIE -yG8/lNNdjuWb6aOQCgH4WzrfiJdg+fj97aYaBNj1g/QnoxDLOwWJHtEhgFqp -u7thDpaX+O/UcUSAtsxioe0nWH5ioujsQQK86z3LUZo2hkReSfy7ZEKA+t4x -JZfkMdQX4GR4w4IAXixbTn2PxtBj3Yf3Y20JEDd9yJOQMIZcaZu6UxwJkNFx -jF0tfgyJNtDty3EjwBjb552ph1j+vt75Ig8CfA6I+miA1R8fCXxffpoAYt2y -L1SoebFXtPVnCeAHH//mYP1FR8fN2y8SgPDf78jkJCxfsDepP4gAIe94eLdT -sPxFxyFKKAFck5y2mx9jea0H8kthBMgUf2yxiZ1HdKchcCeSAHn9Jq9uPMPy -n2mrWe8QQBov5uaSh+Xv6rLyxxFAXGMf/go2H1HhlxkKqQSQS1z+ee0Ntn5w -jKL5hACRkeINdh+w9XniagbZBHhQkTbpUoWt14ird3pFALNpwompr2NIzMp/ -/lYtAVR/Grsm/B5DHfaZibr1BDAOau7hHxtDMS7f9OabCGC/bD7xfGoMrZzC -RTv9JMCqi7fN+vIYar3aK6lAIUDWs9vau9nG0c1CA9s2NjmgP3dhqEl3HE0x -8paKOMnBdES9sFXiOMrco+/a6iYHjAtbpe/TxpED93naSA852JwRiBTMGkef -xL5azJ6RA4uUDzqVheMoQ/3KRPU1OWBy4vVMrh5H1h6jgqey5cDWKV0nmjKO -3le+CS2ak4OxFakIM+IEAo/yh41LcnDCOy1/RGMCfWWsfT66LgcdaYeVL+pM -oG7L778E6eVBTAGfftZgAm0MTaqFC8qDd6Rc07jdBNrPuHfaWl8e+I5VF68G -TqAvBTJ0Zw/JQ9n2Su/M5QlkYakgfMtMHk4YjV/tuTqBjiZrG5fZy4PD6rfA -pMgJFCZnly3lIw+MFA/dpwkTqNYi2nXxoTy4iT7U2/16Apku3vdnS5aH/1yN -Ei6+mUA/khJjcOnywPByNfr7uwk0OvjsvUuePOgPdyT6VU0gBv8q3k/l8nDX -f17WoWkCGSctNieMykOXl77r85EJ9O23234SSQG+XNTdGGenIPM6x6J1HQUY -jloR1OKioMZcW+lKpAC+hhElN3go6Os5E5aDJgpw6OHeu6yCFFT7T/2ntasC -LPpeFuiSoKD3AnvOnYtQgFGvsyVXiBRE+sc4qHJbATb//WEMVaOgtwO7bJfu -KMBv9/33AjQoqDhnVSv0kQL0VRx2c9KmoJdqI/TR+QrQKnFP7Q9Q0FPLssfZ -LQpAjOso07KkIAm1txxePxQgf/68yJwVBT3hL4qQ71KAV3QN1lk2FPS4P8er -eEgBhDzaT67bU1DSmQfq1UsK8GzjHfGyKwXdve3V3CusCGnr65YfvSjo0kf+ -Te7TiiBzP/J11jUKinmRd6XqjCJYx2ck91+noIwUrS1vX0XI+VkewR9OQV/8 -nberLyuCO2NJ6PUbFMSLz6C5cFcRKrlIH5WiKKgoToah6bUipG5P2DA/oKBP -V0sjg0oVobbi4B2BhxT0y8eIUapcEWzfrinti6eg7YPeTJc/Yf1+p7VqPMLm -v/6CBfdLEXR/ekvrplAQ5bg6+41NReihY+L+kUlBmxafY5V2KcFxtvDy8iwK -4tA7wtHDoARlnSfknz7F5s0fzEnkUII3fKH+XtkUdLOxnPu3pBKk2DORevOo -8zMQ0DVSgjFYnHB7RUGO9DYSiw+UAMJ8fq99oCByXAUXfZIS8M8Y4IrLKEha -FEfH91gJOHrNr3uXU9Cs2uYYKVcJ6EIJAe0VWP8TuYUhZUpw68fiv3sfKei/ -2g0S7YgSfH43XvzfJwpKsDiJ56Eowds+SwPzzxQU0vNdaN+MEggMOChPYD74 -N3vTcFUJ7jbFyAvWU1CPpGVt9G5l6ONmkj/dQEGM4c8Oc6krw3Tr9q+KbxQ0 -vYcdSWkrQ7BNFLd+CwW1JQerqJGVId2dcbIO8+Oiwzz2xsoQbpAU/Pk7BREH -V7uSXZXhzBWa2+/bKMgVmXtKRCpDru1rn+M/KahkaylEuVMZNN5f7eropaDY -r7ZfJ3uUQbbM4KtCHwX5xBfzZf9Whs/ajD03MEsRfIsEJ5XBxEvmrHI/BT20 -+zO2a1MZuAdxt64MYM//T1/8FKcKnLnj4TI/SEGyuhKWRjwqEOf15ITuEDaP -zO+B2Xwq8E5I4lUkZt8zSnVHhVWghuEIl+AwBeF2Tbv9kFaBafogA/URCkpU -OB1fQVKBc58VfpuNURD9Q/4yIW0VuOb9bfAOZr/Vz4NBuipw2dEFmjBb1O5T -IoIKsK8n7TUepyAGx+GvOSYqEKSFj9GZoKCAG27bsa4q8Dak9xjdJAXZ9Nh6 -H49QAYmigR9K0xRE4PA1XripAjuD+geOY6Y5eBcXflsFJvl2ycZjfvXy01jm -XRWwiA61XcbMEq7hMZioAoNVPedLZiioGifgcqxQBTT2hQ8IzGHvn6uaztxL -FShc6zA7gPn8A0uh60UqsIf+zMGzmEX+3f6V8VYFOFSd+qowB7Ws2Q58VIEB -c4+Go/MUpBjYY+7WoQK6frkZMQvY+QtW5Gc6VeC6RqvFK8w9A9y7r3arAFng -zeM2zFHGZg2PB1TgRVg/n8BfChoVqTDso6hAK/F6ajrm1Np0ssuWCjho6Dem -LFIQM+dxFSdZIjCyT8jaL1PQcxNj/n48ERKeF82dw2x6Q3nTXZ4I73k8A29h -vreyVe+lQoTiOueyUszc/anHgnWIsMfr937eFQoSLeiITbIgAucNtuo6zJUj -5QEi1kSI+Gmd34X5qNgz5ye2RFiUWnOYwZwVd1E2z5EI3ZPNHPyr2PNyib2q -1IMI4WUzC56YVQ4az/wMIkKB1NutNcxtV5V/OF0mAj/5VCbrGnb/3/F/6A8l -gtSCFY8o5rdyYzfHwohAc67zDBmzDleE6HIMEdKTzi2HYT44UG7G+4QI1ioT -HVuYnYKVC2zqidB86efP7nVs/m2c5MIGIsR2RcWMYX4o97eNrpkIbEpZkguY -G/verL9pJYI0p/wa0wYF6enrmAj0EMHB7pmFOmYJVkNK7zQRylfbBm5T6ydk -r6jPEWGKxqb3AWanCibOewtEaFmJrUrD/PB8oyZ5hQh/j5B1/sNM/8PyduYO -EXA/DrH9xDyR5ix7klsVgv2fHRH9h9WXdcsqeVVB+VFU7z7MEhZiFvwCqqDT -8ttUEbMjzWBgvYgqoInKyf2YGz1PfibIqIJp0h6lo5hfKfp6zmqqwknr4a1U -zIEfI59eclOF627nmJk2KWhj4scsrTvW/15VNRvmME4p3VgPVXhHzDzFiznm -eNWP7NOqQH9pIFQScybdKn37RVUItX7RpoO52cjrtMItVWBXYrTzwWzjW1ry -LkoVJlam/l3A/CuZnsbgjirsETZLCMQ8PJmZ7BSnCozKuKQwzKt3uhtuparC -t5TuyUeYpVpNFYZeqUIOI/d4Jeb8teTgs69VIdYsP78Ws6LkxKfVElVwrFQ6 -Wo9Zy++GG/sHVRDlTHvaivkwb0Wsbp0q+MZ9ShjGHOyouPDolyrw0FXr0m9R -UMsgR6kpjRqoVIWeQ1TjHYsKaNVgYfZq/AHM330zC1gZ1OBu8PnXhphbaYhP -GlnUgIHr3E8zzO0SNlGmPGrAq8df7YD5l3uCs6msGlRLSBLPY+7K77MrwKsB -zs3kty/V8/ssWeXVwG5X/C1/zD1hbw0aldWApby1OhhzX2angqm2Gpyo/zUW -gXlwUHDHxFwNirkf0SRSjT++/txCDXZ83hgnYx7yfb7IYq0GsWkbMamYh2l0 -KA32anDQSnM7A/OohEubyTE1+GmwJysP86R7+jMTPzVo8L06+g7z30FJY5Nk -NeBiVazqwFypqGGSnqoG5TQqbp2Yo0KMTRceY/sxSKz9wizOe8E8JUsNPHnn -JXsxmxpVWE0WqEFcktehIcxPXx5xiq5UA70Nhd5pzOc2vJ37P6qBY0ni/lnM -WkZXXYi1ajBVGfl47v/zf+bW/UUNbj7nt/qLeYNn4TihVQ3CjRZjVzHbhNzx -aRhWA4XBb367tilIrD7jjNiYGnzXvJRFi5nCU3z24oQadEzhvtFhvvay67zQ -tBqUKFaKMGIuGJTx915Wg4tZNxJZMdMaVYeyMKtDD+NzZh7Mr3mW75ooqgOj -hxSbFOZR5cBDrcrqkH0uZpNqQfPlnSOq6jDSdXJSGnPYzWU/T011GLr1sFwG -s9XysuN1fXWgqIUfIGCe71zZ99ZeHdK2Tw8qY963GDSg66gOVb/2FqhgduRY -Tap1Vgf7ptcXiZirjVZZW4+pQ45b6IYq5rj3q/NT3pj1DBc1MCunrlVIXFMH -W/2IW7qYPUqDg/LC1CE3J1hFD3Ni+5qy0g11UHnzpIvqbdb1p7pR6hB+LV6a -jLkldD3qyEN14MhJzgbM59027O7mqoPcvIyDIeaXEpvTqy3qUDim/fgwZlfX -IDvbNnXYc7hrjwXmPcnz5a9+qMN9WccrVPtwjMWc7FIHgXtMjpaYZbe/4X8M -qYOMlD+tNeaM3ieer5bUoeJ8p4wd5sMCws0sq+qw/3h7JNWbNglqJ9fVoVew -Z5Rq58YoWtFtdZi7xZ9pj1ngw8XMaCYNONQRuduBOo9Egz5PYQ3Y8SO/d8KM -2isNqkU1IPjPHlZnzLNsWoUiezXgl+5uF6rNIxVC2qU14EHOkw2qWQL4BEFR -A7b13VVcMUdYT9iKgAY4k5YvHcUcsOdOU9tJDWi7JHTTA/NdAb8/x7w04PnQ -1U9UZ0s57Z710YDajyr0JzB3aOHMWH014N7l6HCq1U/WNR4I0QBjGd0AT8zL -lf8aSmI1IGZYRfcUZvaG4Un9BxqwNHLkItWyHQ0srfEaIJg8kUv1kakkk+lk -DaiPsOQ8jbmUX71h3zMNOG97so/qoAtnvz56pwHrtzecvTHHhthSpMs0oO7w -jSiqcyN1mIsrNCDhVuxbqjvTmI1bajTAoJTI7oOZ9DW7nrFZA2hpWz9QvSrR -/+XSoAYM6UT9O4M5uP3wZycWElilCRDPY969pRRfsZsEoafkLanOwHEe38tO -gn8fFs5S/flK++YoNwn4+FPyqObGOaj7ipLgz+ppoQuYX4S6P7ulTAKTioI5 -qlGu/sVJIgmcbYHFF3N7qxQyVyeBKkOCFNXrMmM9XNokcDsabEf1oVZv7vQD -WH2P0VuqB/f5h5fYk4BOOurMRcz+lnaW/I4kEHYwC6eaMURD7LIzCUaudiZS -rfh99T35GAnujRyqoTrk8pX5Bi8SjF57wuOHmbcl8thgKAneDea+otroUvJ+ -tqck8FoKq/Gn3u/cg9ye2SSYd19opZq2c368LJcEXK06g1RXqZvEeRWSYIvs -vE21+t/14bo3JBic+KkVgFnqnEtUSD22fwpXHtVhj5nc2hpI4GFMfkN1f1MJ -Ed9MgqHXJjVUJ8vt6f3ZSgIh+u0eqjkoFYrEHhIcfjq2J5D6vniI/5iYJsF1 -zhUfqp0fNuaR50jQxqoeRPW7mqArjxZIIJ5lH061n8R3GYMVEnz4eDCJ6sn+ -68EZO9j99e2pobrTcUjMnlsTKB/FuYOo3z+LbK9aTU1oS67NpDr4cOWymY4m -cNQ8fU412bwz4qeeJrSk+RRT3WzCnE7R1wSyX3Ed1eMHz7axm2vC10rCGNXC -uuo6Lu6aEOEzI32Jev+0D9ePemjCqs8pearztE7ZnT+pCQ7LjapUq5OSz4f7 -YL7toE+1JXHzaV6AJhSk3XSj+ibu0+6lKE2gv+76kGpT2f7kq3c0gUEsL5lq -LpkVGaZYTZgKG8ygOkMKD8LxmhB9RKKQ6g9idwMgXRN8DnTXUj3LY9d/97Um -FLcdmaPakWb0lUyPJpysztgfjDlVfHXyRp8mzLz4qk91nx6rzPCAJoQsTRhS -feyySlrGiCao7GKyoPrU3yu3BWY0QXCjwY3qgFE+dxYaLUjvvBxKdSktIe00 -rRZcy2K4TvWahF7nZ3otyHaJiqA61M3DPIJFCzQ3/KKpjuh8pfWPWwuWnH8n -Uv3gqxHXjIwWzNbhiqhuH3c2N8NrQf6wQgnVvAznbz+X04IFY7lSqpP1E7ZO -KmvBtA57BdWZZYOTA1paMNR6pZ7qVy8u17aaaUEqM0M/1Y1xhf5vLmrBo4s6 -dJcxB16TP20YoAWCPSkMVEucLXTuDMLqRX+Z/l83KtRfC9UCzvm4Pf+vbxdw -6N3SgoMF4XxUB50pKKxL1YKRlQOyVEs6yT2xS9eCvy76eKqbDxU8HHuiBVm6 -OnL/r0sVXGbK0YKePBGl/9e7nhuZ/acFN39maFAtdej5SHudFrBzlBhQHSz5 -vHHpqxZMyTMbUf1tM/81f4sWhM6Ymv6/XpJ/3blLCxgXUq2obpHIFxmexuYf -ccGV6sv/cm0X+LTB4L7WRao9B/WM/wlrgzFHlD/VFp/b9RgktOEHR1Pg//e/ -vy0jJKcNIU8UQv5/fVJH1oCsDckMJyOoLmWanjY10IbGTIebVGdOhw/ZGWvD -ZjG69f95lb5s9LLRBoG9C9FUi5sypMed0gZPpt9xVP/lId7K9tUGqWrxBKrr -+10vvA/RBt1i3SSqfS++0R+M1YYhOp50quuST4wrv9OGzx6ueVTfHLx0O7Fa -G7qCbz6n+hD+Ln6rQRsithMLqf767o1PY582/Pfq2n9Umxn1v0ia0walb0Il -/59PJ8OcJ60OOGmeL6Xa6pQSUZVPB6Idwj9Q/WP5iP8OTgdmFR0rqO7izV9N -OawD+iInaqh+uldza/O4Dggkfauj+qzcF1r3IB3YGKT/QjVJw565LkYHajXY -vlK9C0bZZJ/owNXgqQaqE+1phabrdeBfFfEb1XJnJPYVz+uAc8fid6rfR2au -/9DTBWfRzR9UG2VKfF+O0oXAtxOdVEvb7bqW/EMXhPg3u6jeYRpW0BXXAw6h -sB6qN/JdJ9Uv6MEk63+9VC+Z/MpRqtaDj/8i+6i263kkWbV7P0R08vVT/cbH -Lv2ww37oN7z2fxPO3m7ILdwPjBfa/u+Mc2XLOzv7wStl9wDV/wP03f1G - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{0., 29.999999387755103`}, {0, 1.2}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, {0, 0}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]], "Output", - CellChangeTimes->{ - 3.6217936476586185`*^9, 3.621794937595399*^9, {3.6217958874297256`*^9, - 3.621795895595193*^9}, {3.621818569125853*^9, 3.621818573505375*^9}, { - 3.6218268662136984`*^9, 3.6218268711393766`*^9}, 3.6218271085292377`*^9, - 3.621858434297675*^9, 3.6218593864650145`*^9, {3.6218640705111084`*^9, - 3.621864092480365*^9}, 3.621864331377029*^9, {3.622164163953206*^9, - 3.6221641760568447`*^9}, {3.622301013662486*^9, 3.62230103641057*^9}, { - 3.622312269172592*^9, 3.6223122919495783`*^9}, {3.622337863077457*^9, - 3.6223378858267717`*^9}, {3.622379938997304*^9, 3.622379962252388*^9}, { - 3.62238922628862*^9, 3.622389251129589*^9}, 3.622391611003169*^9, - 3.622391751943068*^9, 3.622391799469709*^9, 3.622418093145266*^9, - 3.622465548882906*^9, 3.6224680351441317`*^9, {3.6225047869619637`*^9, - 3.622504810641518*^9}, {3.622563745151473*^9, 3.622563771182764*^9}, { - 3.622761062620596*^9, 3.622761084367087*^9}, 3.62278079148042*^9, - 3.623554901771655*^9, 3.623554949881578*^9, 3.63201863404986*^9, - 3.6320641071667128`*^9, 3.632071956124366*^9, 3.632095313807721*^9, - 3.632147988421797*^9, {3.6914609018455257`*^9, 3.6914609316802473`*^9}, { - 3.698168620365481*^9, 3.6981686483810987`*^9}}] -}, Open ]], - -Cell["\<\ -It is kind of obvious to see the problem with bare eye, but it is hard to \ -quantify the problem basically because the equations related with the \ -derivatives (first & second order) of multiplication sigmoidal function are \ -not solvable analytically. But after some investigation one can see that the \ -problem is related the function reaches its right side limit from below, but \ -we want it to reach its rightside limit from above. This is equivalent that; \ -on the right limit the first derivative of the function approaches zero from \ -above (the function is increasing), but we prefer the first derivative of the \ -function reach zero in the right limit from below. The function should \ -decrease!.\ -\>", "Text", - CellChangeTimes->{{3.6217936700288982`*^9, 3.621793786038533*^9}, { - 3.621793847145028*^9, 3.6217941532925386`*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.621794155531667*^9, 3.6217941555426674`*^9}}], - -Cell["\<\ -This can be seen more clearly if we look at the plot of the derivative of the \ -same function.\ -\>", "Text", - CellChangeTimes->{{3.6217941571237583`*^9, 3.621794165439234*^9}, { - 3.6217942097397676`*^9, 3.6217942250566435`*^9}, {3.6217942561874247`*^9, - 3.6217942561994247`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1_", ",", "A2_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", - "L_", ",", "x_"}], "]"}], "=", "\n", "\t", - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}]}], ";"}], "\n"}], "\n", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{ - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], "/.", "\n", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"A1", "->", "0"}], ",", - RowBox[{"A2", "->", "0.5368628"}], ",", - RowBox[{"Ka", "->", "1.454867"}], ",", - RowBox[{"B1", "->", "1.084971"}], ",", - RowBox[{"M1", "->", "11.11337"}], ",", - RowBox[{"B2", "->", "8.529749"}], ",", - RowBox[{"L", "->", "1.13329"}]}], "}"}]}], ",", "\n", - "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", "Full"}]}], "]"}]}], "Code", - CellChangeTimes->{{3.6217942788957233`*^9, 3.621794346812608*^9}, { - 3.6217944391418886`*^9, 3.621794497999255*^9}, {3.621794530937139*^9, - 3.6217947311835923`*^9}, 3.621794767432666*^9, {3.621794869278491*^9, - 3.6217949054305587`*^9}, {3.621794985162119*^9, 3.6217952650021253`*^9}, { - 3.621859323056926*^9, 3.621859341788952*^9}}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[ - "Butt"], LineBox[CompressedData[" -1:eJwVV3c8lf8Xlz1K9k723q7rcnk+RzKTTUiRpFJZIbMQIiNRyAohIV+jqFRX -lKzsPUoys0fIyM/vr+f1fp3nnPM+43Ne5wg6uZtfIicjI0unICP7/3fje9Nn -kZg8zFX4lfaW0i/sr7bida2BMDS9If9Uz/kXdundtBXXQCLa1/Z/yp78C0v/ -U9dMMZCLPHxqCpR2fmH4JIWIv/0VKDcwROlxywRG6XTZab2/Dnl8XQyWipzC -mHUuWN+k+oyeTqzuUtROYfwSZw1Xlb6gD9KmR722pzDCorHSctxXFIpTm2H2 -nMZuBODJ57Vb0ZXjiCfm0gx2rYm8c6W/Cx0pqGZruP4bW323b1ju1o2I7LWn -88p+Y34lu589qHrQL/aFHoU/v7HIBxtvlpR6kVFXW8fZkDks2+p39kJcPzru -dzVR+uk81vOz02NWewTtBBLUzMmWMP5g06jl/nGkfiTtp6P8Kkb2a8b8ueQv -9ITU8oDWaRUb1w89dj7wF6p12rfWfLyK5bNVVLTwTyC/xWoby71VTKaEdbTg -0iSaCo1Rce5Zw9SH+xTPrU0jKiHBSwFP/2B8Wu67rDozyIcfxb0e/oP9K6D5 -2pw8g+YWQgNSuTawT14Ee4L6LLIcrdiwf7SB6dOnRbKG/kYzv/G9bI82MWu1 -c8NNjAtI5bJ1xvrrvxjh6Z/8EMcFFFcX9Dxx7y/GQxXvoVqxgPC8d+W2dLax -0Y6PVPlWiyhNpNhZaHAbc74ioBCSsYTMatarFOl2sbctnid42VfQ/obZ+InE -f9jXbVxKZ+4aklJpFJuUIUeuosIjm41riOt6zFUxe3LEaMosyL+0hqp52O+N -x5Aj6/yFIlfiOvr2Em/RMU+OJkwKPlL0rKNxE835/FcUiCyfc0qFagNxyrAI -OJ2jQnntVNL20htItpKBe/ERFdLbXnMPM9tAFPRTAfTfqFC8ScfftswNtFSc -bbeNUSO+7agjV/CbqEbgTsyYJA0imGzj0i5vofhncs3Cx+jQiP+Mf23cFvpi -+33K7TwdupPX93GqcguZ/fOpu5hNhxr+Vugrk/1F45OtT83E6JFl3jX71tS/ -6FpZrLm7OgPy/Dty91/TNkr7dPa3UcQRVPSM1OUks4dOtl+9+cqWGa3znA9v -MttDZ8J+h89HMCOUuKuicGsP4U8c131cwYx6QtSe7H3aQ1Vzm9aaR1jQv3OV -Dqln/qGn9JrtNI0syIzr+fy3sH0UzfO5IcGSDWU80MnCFe6jT6Wq3x2j2NAU -9YRJ+rd9dDjO79+r92zoQ0CCLe4wGbDPGWctirEj86vf3h86Qwb/8hh3Wg9x -oCBdvbsZ82QQFDv0xK2LEwmGcYyY7JMB25u4YJGjXKjhwySOguUQzOGU2H2M -uBCzSvjUVdVD8OJWdex8IxcqEP5koBp2COY/6ZU7NnGjDjIiUxcnOeBxyd9b -ZnmRcI1cJo02BQxTVOmG2gkgJi/nt6ZnKOD3SUO9mnsCaFcirffJNQromNO1 -9notgPqSqRhlHlEAj+oi3TkWQXTfa+S26SQF9FYYhZ/qEkTLkvcdn9yjBBGZ -QN/2a8JodIwUNJ5OCVoFZsPhOcKoOeVPqnQZJag8cKlt6xdGeVQXOj8MUEKY -vb+/mK4IOvNT9cS4JBXErorls0qJoo+pk8LSrVTQEWxK5cwkjopNeMF7jAr4 -rxOGpU3FUSq1mf2HdSpoOe1Ak5cgjry83z8yOUYNlvtjlC9ZJZCoaRKVtxs1 -4CpuytsISaJYGq3p90w0wMDzSnjoojSy9c0oMraihbYmgkSQtgISkHyG17xC -C2mx9+953FBAU8Mv6qQDaSE+7hZXZ4oC8tKqHqLNoYUm0JUdXlBA9w930dfP -00K7h6al0lNF9D6X5ppqOB2oP9+sWeJURmFWjJuiKXTglmSAFAyUkT4t+122 -Ijq4EqdatxSgjHpvCKWvtNNB/xv26eUfymiRoNlSzEsPhrf59QXKcOh4u5e0 -QCU9nHcIDbvoij+YM/7VjA30wI1Dnbg8PCrBhWjvDdDDaf5ehfTveERIizs7 -9I8ebC+aislaqSLTS4UxjwwZgEz72I8EAwIK2xmdox1nAM7mDIf3pupoUtyg -ZIXpCFCbxgoUT2Bo1apqx0f0CLT3n+1lICJEFi58alvtCHQXvZo+l4gQ39je -LPnFI1BNcrFdFgRkmVohzvb6CHiLLyhYDwKqo+V7hrdlBEPTa7kzjidQBz56 -9d0NRmj11+U0fHQCfXfe0EJhjPAo14aD2HgC/a3tGNMrZgSdBaG/nYraSME/ -gt92jxEUWJ4okh0+ibJmF58E5hwFm3RFx55RHVTCaT+7//ooPPqxS7XOo4ve -6TQRwpuPgtODXxc+2uii3pxn/bFrR+HaoY0yuz5dRC1bQt8uxAS7I8oU04N6 -CJt01B/zZgKtgdY5ekpDVGLVXE/OzQxet2O/J64Zo5H9Emp2YWbg1zw34q9v -go4UPTAQl2WGlhNzPgZZJsjtn2X7KS1moHGZJViLmSLF5z+GHl1lhsjEf47O -Q6aoamt9RewdMwSrVzZb2Zmjqdx+nNpnZkj41NNcFGuOOE+/u3WqjRmYDRSz -o0nmyC/nzp77ODOUXPz7328xC0Q0pKd7S88C1ZkiMc67Fqg2/bjAqbMsINCh -z51cb4WWdcgvnrvEAgtK/d+19q2Q4PJEvrs7C1CXim4kEK1R2Mki6Ud3WWDg -2l02gSprpLOAUx0tZoG28uvrypVnUDNmaOy+e6BfVhvd2WaLun96ByVlsoKN -7xL/6pPzaJkObm0VsMJZ+lkWgZnziFGJwetcGSsoDm/psKs6IP2wnMvi9QfY -/p7FuX4H9FGozbxmhhVOESd02hIcUeFFcclfymxAsX9c1nrpAvoSsyqsr8kG -vC3rosLHnNB45Qf+l7pskNrfT3I+5YSOUVqy3bJlg+n+Jl/DF04oMS9kn/4O -G1hWxa3Xul5EQZODvUrNbPDeTVnkOtUl9ORIfkdKNxu8uE3iYSNeQlUqHi27 -I2xAlrOfcNLzElqJoP7UsMQG+kvxF0/+uIRcxJRL7NjZwX/ZQn7qkwsyvRwb -FubIDikmbw1Xc68g0VlMvmuDHd5M1hgvfr+Opow/MJAf4oCraj+VGuRuoMJX -xBlFBg4IfHN03P/ODSQVQsh5eJwD7iSaU90WdkNynEqsZvocwLkrFKTh647w -OqKb7U844EHGMOYo4ok2i5517z/jgK7yYs6PFp7oDZNQmXwpBxSR9/Bk3fVE -6iP8Vx/UccBqUYnU7wlPhG5yDRvPccCNKSe6oZdeSD+HgfRNgxNK/R+zOdl5 -Izqa++l7upzwgPVDYUKiN2q+Tusna8YJkay3TGxbvJERgUox7hIntCZE2JMw -H2TW/i/XKJ4T1Nxv8x+R9UV2eyuRLT84IYngqaAs6Yeu2Q4YN4VxQQl2OuZT -SRDi0kS/TsVywb+YyPobG0GoQaDgVttjLrj8YCyiF4KR0MzN7O5CLlgj1v77 -3h+MhnyPro62cYH+TztmxqN3kP4j3cerPNzgSibO8rUzBG3ceinpI8INR59l -Kc3vhqC8s2wfN2W5wVzwbettiVC0LzQ+tQvcEL/zuHQ5JBRVlQcTaC5zw458 -WqCoahgSaX81zFvJDeS7L8za3t5FXRW8HlnvuSHf+8SWyfxdFJIcRinYwA19 -1fUGZsfD0fA5U1mxQW5Yy6UY7I8MR4nzc7cV9rnB+87rt5z2EYiMXlhI5xQP -CMWTvQoXuIdGTj684vaLB0SaJGcbeGLQK6II16d5HnhioeMTeD4GxShVf2Xd -4IFC5bdCfbkxSF1gVOwtLS9curxMHS4bi1J3JCYp5HjB6NCnVwuGcciyovbC -Ez9eSFWLGLrw/AGSeWHBPB/KC+k3y8dVNx4giuypWiyGFyzJbnJOCyWgirjD -AhOZvDBDxmaUczMBMV21+S5XzwtzVLwmH7kfotbjy3afj/CBzXj+iyv+iSiP -4y49JycfFPpjGyeeJ6LAIxzvrgrwQcix6waxvYlIaofIfVSZDyZXSGQeykko -qu9ev60NH7z0qmVKXU9CJ+OOWy7l8sF/6wO2lnGPUc228WkewjFwLj+jpibw -BOHlH39XPXEMXnek4M0vPkEVF4fdrYyOwQtbzYPV5gkqbL2cmOB4DLSDj9pU -KKSh5KyQfuroY3CytO/lKaN05HGi4sLa4DEQuae/EVeQieZ8t1aZJo6B9y+P -RK0/mcilGAuXWzwGNTb0uR9OZqFzbC0FV8n5QfeuwgWOqSxkOPVr7ocUPzib -uO1h3NlI5D67b2sgP7xM5wyd8s9BTz+epfkdwQ9Ty7bm689zEM9aTipNAj8s -Tyfn+vTlIGZ7uZoTefzwiXGtsQ+Xi/7J6pG9beUHunqeevnNXDTY6Xc//9hx -SH8rISqWlIfiuUeybpOOA/XnC5Ek+UK00UI/s9h4HOS3NKK4XQvR+dtqig5d -x6FnNS9+I68Qyf5KrkeTB5iT644m3wvk0ifhHUIlAKxbv9e5mYsQdfavVC1p -AfDNudw0zVaC1P8GfPgrLwD3yzrKps6UIDdzlvFynADQB7Hq+aWXoD5KLWkh -TAC+vj5654zIS1RwNesDuZkA6EyYSQtpliJdZdvxel8BCCMxLU7olKGA2GXq -oEABOFbpxou/XoZKJ+9J40IEoIXM5+VAYhniSK3yzosWALGuw5RsP8vQ1C4r -TUSGAGyGvH7sGVqOIhvapHXrBOCwORZN6KpADbYnfRqPCMIbsZr5S9WvUavZ -a/opFkHQ0fijSrnwGnUZiGVTcAmC3Vr4JTbhKvRdjbYFExKEZx3/8mMTqtAf -7laB13hBCNI/zDfvUY1EhixacxwEwdw8Rn1E7y0Ks7soHFguCPqXMw+/N/uA -osx73qRWCUJLsIlUVPIHFG+oY1xVIwhX7X7R9Qx/QGnq4v4rXwRBUECTav7y -R1TOM9d2eUjw4D19axGKJKGxIa8ASwohkM15oeWyUIvQ2bBOWSsh2N+LMIvx -qkdD9tHeynZCMH+b6SI+ox55n0/gVHMQAr3OMIy/oR4VXcg6d/KqEJx41Rb0 -jOczYr/ybtYuWAgkVOKCghs+oznv1UNR+ULw+qsZrbxkA0qJd1Ia/yMEcnTm -D95yNqGlTyeSkpOFQbvE8XeIdzsKIccSddKFgVEwRi4rvx2xaKs9XH8qDHhd -HdLXvnaE+yz/wPyFMAjbnvkvk68D+TXwxTC+FwZ597SbJ+50ILKWjbDIn8LQ -Knk0q+VkJ2LpKfLylREBvQtrOOvWLvSMrcBTVFEExiejKn0muhDOKsejR0UE -MghdxpG7Xci6L8VNCYmAANvzzlsy3ShtINx10UwElq9ZhUTGdCPh0fNOLrdE -oKMslZSr04NwUyzm1nUioGLodEI+rxelfJn+5PpVBM6JRqg+f9eLtvPeK95p -FYH/bBYISx29qPaiC3NhnwhsqT6Vm9s9uKt/vu34+1sEDlvdKPEx70POI44m -mayi0HnYWW9xtQ99rVEhlXOJwn5Ux9Zvqn4klU4v33BMFPqGKJ2fc/WjZdtX -jEviouAqKh91VrMfBfXTtIGGKNSHUFxMvtuPHnWVGk04iwKH8xAxmnwAbZbf -fb91VRQ0BueJLMwDyO6hjcwRd1GY+26dYnR8AAmYkh/G+4tC1zkTuS71AVTy -zarlXpwoxGaNExncBtDRl1LEjERRKKxRdKALGEBesftFZSmikHiztasiYgAR -Tr24P5gjCkRVphnKjAH0uXHXQLpKFGyOjaKkzwNIvLDzLaoRBZ9yQ63BbwPo -/r0CSctaUVhYVnf90jeATHVN6YKbReFuR+1Y3PQAqhQV9X/YLgqWycVHri4N -IA6q7Zn8HlFY8koSmNkYQCP1zxrbvovCo3XCYDvlIELP/Ai/fokC9N32VWUY -RLlhpws3Z0ThklnQDDAPIionIa7Di6JAN36ifI5jEF3R2rwnsCYKdp3UVqp8 -g6hFoHUTtyUKN76N2goLDiI5spzLBnuiwNTpo/ef6CBK+OHTf45cDDwr6wuG -JAfR2kdDPS8aMegrLDyULzuIjEZZWRUOi0GnL/+XPoVBVLAz8n2BSQzO7Tto -VioPon3ugqJidjEIL8ulV8cPIhuCu+9VHjFoqfZvdSUMogprwgnx42KwIucm -qKM+iBh8DjFOCovBenJcQSNxEDknNQ/mSoiBX//CxrrGIPpYnpTvKCsGD6ZF -i5s0BxFnh70nv5IYPFd6Z6OLDSKPRVHNEbwYnHkT+ND1ADcfXqJNI4qBcMfA -uMoBFpZ+03MGxOD2Rf7e5wf6QQah2ew6YiBvXfibdGC/77Lh9W4DMXj8bj8r -+MC/fCQr4aGxGMiaTV4aUxtEUXkjFCYWYvC2QrdoWnUQjdfltx+2EYO9C3zf -ElUGEfGnW3qzvRh8HJYT+ak0iB7tq16OuiAG9Um1W53yg2jx2CFlXRcxEMnh -iXSWGUR6Gs3/KK6Jwc+Sv5spEoMo2y6p+ZP7Qf7CBq5cExlEFimiTpr+YpBK -WDJZ5BlEJa8XZXeCxUDos3VSOvsgou6p/vsmTAwseB9emzg6iBxWQ7743hOD -5dyC4K90gwf7ouFDXKwYvBlNM9GmGEQs8qznVhPEoNn8io717gC6dnpEouyx -GBQW1GT+Wx9A/PfdaqWfikEiT1I2zeQAulWoGjv7TAxwtyLnL44MoI4GMpvn -hQf+0pR7jboH0F2KpCWhCjH4cIje8S3poD8F7WvGqsTA39yyHf96AOFB9F5W -jRhQfim9iisaQDNB1fw8Xw7q8eCRQ3biADqRHvK7v0kM+tNq16giB1D6W4Oq -x21i8L14gnXIbwAZbwyfZh4QO9iPj1dX2x+8D3eyYNq5g3hsw/bj+QbQ4fgm -/YYlMajyGBSuoB9ALiWJbOHrB/V4OEJHu9WPuGZFSvb3DuqXc+GkQEc/8qJZ -vPWBXBykVRNONr/rRy2i1dqBNOJwcrAN55vXj247GQxvMInDx67/epO9+1F/ -CMvzV+zi8H3+W/msXT9SeDrs5cUjDnO62lnbqB/9Gr5BvygsDjptpezk1P1I -YxvfVywhDgTfwJGmqT6UzEWWe1VWHLyNz/5a+dKH9K0S1Sbx4tCpIGG8eLsP -3WRR8aXVEAfO7jFLnFUfymrvr5DWEofkbV6tTYk+1BwbsGSsKw5+5+0pqbZ7 -0R+DYzJep8TBSO8EUbyxFwnQ1F55bCoOOKbKAaGkg/n62Sn/jZU4qLS5t1bb -9aJcrJB/30EcPlSRySd+70HfdgzPCl0SBzLZ3sPEtB609WYhRcdVHLgenzLV -NutBIr4JPVfcxUHZa/2IEUUPMlFWZo71FgctrqTlxf+6UcBy7+n//MWBlHS8 -9YN1Nyp46Xe/67Y4PGLBK53Y7EK74h8puKPFYWomXdZFuAuJTzqCRvyBPQsC -8/zLTmSeSxHskCQOeV1nfNbkO9Fth4K3YaniEEGIkeov7EAv+Aw28jPF4fg9 -u9/TnB2oZ3BOqSlXHGgTZVMGttoQWUq8+/xzcTA+FFauVfwNWTP3zChViENk -nafcmy/NKLTNV9S6WhyqZ0o7baWaUEkMt5P/e3HwOOGRds/zKxrQf5+V8Ukc -UoY7v7o8+YIoqB2GSQ0H2C2UnzW7HsnVH+L61SIOTHJHjz27+wnZheRZUneK -Ax+dhbVd+EdUtj37zWj4oD+YdJgcHr5Cw9Wx9B5j4pBwe/rxKVwpovaR10ua -FIcO99yflx7nonNL3rWDS+LgWDasMIViSFElnHu76+LQqBzYxfY0j/Tq6js1 -ge0D+fn3iq9Tykn0E/sVLpQS8Pv93yiJ/FqSSk7uUjSdBFBGOm0pDH4mOZ7X -kXnJKAFuhLIzZMQmUvXA/fw1LgmYFP3CxIs6Sc7f2FNDZCWgmaYz1k9vmPTg -/pueZ0oSMMoX4MX4c5T0Tu8s81dVCYjTZuGixcZIzHXZ94+ckACBFbpiu85x -ksYd7a8KehKQvN54pIl5gnRFY4rC0kgCzgs2HlLTnyR9rJIOTrOWAHvMuYEr -Zpo0e7Pt7YezB3zYLueHP5whsSl6bow5SsDhC9dzGMJmSWiRVZnSRQKCWfon -Nmx/k1yLq9zFr0nAf8+PJn7jmCM9vmJbYughAaSJtzmXquZItaK7Mzd8JGAr -XklwDT9Pmh/PEn0YIAHmTcd52FPmSZzZWk6v7kiAaX992I/eedKAS0AJKVwC -9I/emnu+Ok9Kla3caI6WgEzh+3fmFudJNutz0BcvAbNJm8xSLfMkrhqRmJ9J -EmA4/VbIIupAP/Rc73yqBLj426l9FD/Q108+vpUpAfkm1bcEiudINkfbr1I8 -kwAPPenZO2xzJK4+mleMhRLAZ1YsLurymzSQAf+4X0rA4Bn5nZjcWVLqRX99 -0YoDeddUikXrDIlr5fcI8b0EyAiwl/atTpEGqoXF9T4d8JUvE99enySl3rb3 -NG+QgMiz+wO4pQkS1+E2qqsdB/m8mBlZ0ztOGuiiNvXulQAR47/uEQ0/SalP -UNqdoYN69OaFnnkzRuISL5dLnjioV6LzeNOpUdLAwqxfzqwErDpR36I0GCal -vhKqL1mUgKBXS1xDFoMk7hOPztRvSQD/o6l2nye9pCHabzltexJAHH63M9XX -TUprp5ofJJcEcjf/vTPiXSSec7dClg9LwuXNtcvR1G2kIeGy5h1mSTirmUZ/ -nr+FlPZ7ho2GUxJuk0suMpxvJPH42b04JigJZJnv/n02rycNYUlrEmKSwOWx -McFD/YmURtWqiZOWBPnu+bGFmg8ku1bKKKQgCaZrWQZiFW9JPEmaXYYqkqBG -eVTy+Pxr0pCtL5+1uiQ8OJYjsO5SQUoT+M/lApKEddEUCQtUSuItFdi5ZSAJ -LE5StNLBuaQRb1udu8YH8jManpsBaaQMYuKDeAtJGGv0CflVl0CyJ28ZfGIj -CY4FIfhd7jskviYKkfxzB3w/8Yxe/A/QyAMNtzInSZB4xqg0fCYEZVj7vKm5 -LAlM3hyrmW7xiG9iyqjLUxI0Xrar+eWlo5Gi4ymjvgf8Iy0VPGOzUYanzc+Z -QEkAyqOVHxmeIXvCQ+n1EEn4nnnzFN4yH/HtN/nsR0jCVk2vb+nV52jkC3kt -fYwk3FL7vVZv8gJlxBLpORIk4Q41VdgwXTGyt/C2FHwsCfqKaz+ED+49Pp6X -WTJpkkB6G7uVQl2KRsYmZ1SfSgLjUyq5Qyb/oYzn/MraeZIgldA0HEQsQ/Zu -Z4KNX0hCZlXq3Vu1ZYhPJeGrbakkPC15ypmoWo5GdhqZL1UexJuZJzCUU44y -6g7Ze7yRhIYfjqaGZBXIPlq9IPCDJBgbtOS2WFSgY6Y3lyPrJKF3rMEHn1mB -eqyyk4lfJWGoQIDu9GAFun/2m8ZyywH/vyt3x49UIriwPZ7XIQnzVu6C4cRK -tOEiHm3bKwn5FYtXXjtVopLrlvKMQwfxX/NpWb5biS56hfbWfT+wv6OoVvi0 -EvH4lQbe+iUJEVT/SnWqKlFH8LCgzIwkKJWxvpdurESRd2kbx+YP+uujDFlV -byXSjFZxe7wiCQG6hrlqPyrRerwTm+GGJIgau9ZSTVaiokcP3v3bloSJbu+B -i9OVyDHtvWPlviRYvyyRSp2qRJzZs9RXKKXgEN0q+/h4JWrL53jJR3eAO0Xc -gkYqUXixtkXnESlQfbXemtldidTLPf5GsEjBhve1Ub8DPitVmU/VOaWA73pQ -rkZNJSp836yzxCsFIyzjb9hKKtH5us25ZwJSMPD3wSPJ9ErE1iiSaCMqBZYL -u2+zoypR8zczwhEpKThDiFzL8K5EqoPF4b7KUhBi0GP6TL8SLX4fkJImSAH5 -OR/2aYVKlDdB1flDQwpm+LnvCnNVIqZlh2MGulKQ5qcy8utXBfpNzVbFaysF -EYaMQlVeFSj7sJZ9xzkp+E1ciSazqkBnWNzII5yk4MaH32X9+Ar0+Vij8eI1 -Kbi58nTh/N9ylIULmq69LQVyhFhR8sByZOY0weWSJwXmjzVru26VoTcfXgWW -LUlBnQIu2HO1BIFTTWLzuhQcHTKoyvyvBDVS172Y+CsFuVYPlWVulKBBk/Z+ -LkppoHs8Jug/W4y2f84qh3JJg2W3wwfq6SKkSX183kxLGlx+WCmQbxaihiJR -iuu60vD1R3wbZU0hMjaR4Yk8JQ0O3o9EA+8UovOpavrvrKSh9IZ3dD1dIQqR -sswTcpUGHFVOcr3wc1RnHG2/ligNDzK+29nfyEeGaw9uHkmVBtpP8z8fEPJR -d0ryffFMaVDTDV1RpsxHE2PP3px9Lg11zy82t2TkIaqbH9k+10hDigKniUz3 -M6Sfstb6aEIaPLlfdeEsc9G3H+c08XgZIPaci5fVfYqM6m3K/qrLgExSdOvH -nSzUXGAh/AHJgItDypnV8izUeMOA7qSBDETrcewTBbJQ3Q6u18xeBg6VEHSJ -lJnoDefhGzfCZGDLcc1kayYN4XeoxxTuyQCF8tk5mcI09Pr7IYv1GBkQfOuT -v3o5DVXkbxICH8uAMK8HJjv7BL1U/kUZXSgDReY+pVqrqSjX5F1GXpsMHDHM -HN4/loIElF8fvdItA7eFiz40TSajpxxlYdIDMhD3ntmIrTQZZYzmX6n4KQOc -4ZU+B1soSrn2EFe7LgNJ8zduSrk+RrH3rrQO88iCfTjfp+aeJHSLxLHLclkW -9jM/HFrfS0D3S54HfbwmC5N84zYdPQko6wlh76qHLDzZ1RI+XJKAGm7a/av1 -l4W6mc3FrLMJiE0ii8w9Vhbs3se5qt5+gMoSRKlaymXhj++c80PZOPQ5uCrC -t0oW5LsqI0OnYlG/qx61UI0s8Ps9TufKjkX/Tl6l8f8sC1Pdx/6qsMcio78l -dOL9smBCuRxJTRODZi7gGO/uysIptRjOdppotGv8JV7ukBw4HzLgvd8chY5q -WB8dopKDcGXK1L64KITn8GNSPCoHwab2q/wcUSi8uYblh6Ac3BfhvWIoe+8g -f9qcRD05uOko9HvPOwLZUJoLrD2UA8HQK8zDF8IQlvCemTJFDjKfn4krVghD -wnziFOwZcpDza6V5dz8ULSrvTuIL5GBgWOAeX3YoCr9YUBzwTg5Chcbvyk2F -oP/qtvHkv+TAd4RcSJj5DnpkfEmCdUYOLM6c+PLuw20UMNTOLbIgBzF1Yyfl -rt1GJ1fzdnU25SBq84d4dmMwGhI0qYtmkAehItL7m3FBiDr02WlmnDw04K01 -DmsGoPnDjEhITR40w7TYL2/4o85UPwVlTB6y+8g0gsv8UUbZaVYrfXlwZP64 -1i3mjxTHNgdS7eUBnvHEbPL6IXtk5CwQIQ9xrRVJ0WK+qHJvPUC+Tx7WDPSO -niz3QvGNFo2zQ/Kg6q55hjXMC7kmVbDn/ZCH2iP/+dlYeCEhSY8yrtkDftkX -WtCmJ0q0nJs8tCsPRxQXBy6e9ERvej0kfjMpgPoIyVRsyh2JEQVM9FgVYP9T -98Xgx+7oUXa7Tx67AsS/yYjN0nFHHtfk6s/zKMAVLNpRtdANiR+aP9ctrABv -tHYG4nxvoGSZy0nv8QrQt0VsVsJfQ5SJHO+41RTg0Q4bh9GKK/La/DLmS1SA -k+1ygSwvXZFxnYicIijAoXLC5FMxV0RlM96Yb6AAwxPsFx8IXkXed8/9i7dX -gLIX//07r3IZmQ9ZXL0QpgBNDGPSHs0XkeRRD/2VcAVYvcTnQfvoIiI7GSse -ek8BLIuHr6mcv4hKX36ezI5VgJ1+f129dSdEF6riNJasAA7xbMnHxZ1QrTjn -WYdiBVA75c5tU+CIUuyV1ZdeKoCIKi0xys8RuT004b5TpgAR/WSdKqccEe/O -vf6s1wqwWEfGTTvhgHzbtiy+kxQgnzr0W8L980jWZ8joXI8CKEuTj5WT2yPK -og3phT4FqOxuKUh4fRYNfWdhCB5UADOv9M0TV8+iKP1TTRnfFeDUiAzi7rZD -E7zvdUZmFIC+ouW3cZktSqvLxM7uKYDTzNcvVA/OIFqmCwq2YooH8y8pbKPd -Ar0w0OcYlVAE1RzDHqs0C2R4V37XUVoRPLg5p3QuWaC4jb2vVxQU4Y3UCrFr -1xyxjKY5+KkrQsfOpKyXkjniK+qJTzE+qACL88cHVabow68ab14zRZh5ggs8 -HW2Kzh97ZvfUQhEeKXAFR9ibopwET7HnNoowpn1HwYHSFIndYvxY5aQIP7Tt -r8tUGiOFk/oLvb6K8K44k4xOyQh1Bst32/orQqPu5wvPJ08hr2qOt6OBivDp -b782W9op9FpqMnwyRBEOjRqMmVKdQurMYXx/7ivC/nQUC8+kATr5veYU21NF -aMJJ2wk36iFbP/ki86+K0G87pznMeBL5djJhxU2KYNREmyUwoo0SpVY7KVoV -IWSZn2/qhTZqHnn191WHIgQmNLnO62ojDS11A84hRcirkvlWH3kCCdDrzAzP -K8J/h056JPFpIY2LYkG4JUXIMs0UNlwBZPuehiluRRHqLetwbg2AEt2aVbEN -RfinEy6y7QmIstvkXva+ItzERfjRZCA0nW4ndolFCZiZNOvXFTUR5R/iuw9s -SpDT/HuWY0YDCRgfM+bgVIJxu626tSwNZEM25vOVVwk81FRV+hg1ULPzpS+S -okqgbPr0LcOmOiqV9XBeVFUC0cFPza+mCciHFJF765wShF2QzqnCVND2dPci -uaMSPBumZnCjVEEhTELEeCclqHS9QPzSjEP3L3zszrusBHzUI/xGtjiUTbFJ -2eWpBK/38FhcsDJq1btyWSZSCVxipn/7/FRE5h5VldVRSvCDKTjZpUwR9adS -kmnHKIH6+4avo3cU0fhsdqptwoG/urY9WwFFtBkz2BSZpgQVqnMXnC4rIKEO -Q5mfpUrwk9vXmY5bDhVupfpdL1cC8oL4cq8GWSQrOP15s1IJdIRz7nz0lkUE -r7vnGN8qQcsLybW1bhl0mu19PLFeCdSW5TaSMqSRn43syuN+JVhT/iBVbCmJ -2saOVhmSKYN8ls3EXTNR1CZhU1ZErgwcFO6nf/KIonaP7CJ6KmU4wUBX2jwh -gjrIFJ820ymDSoVwLTFABHUJmEcZsirDZ9POPo9iYdTv+MjOUEwZ1ErE7u2L -CqGBwhHLIglloBKipg3aFEQDyyIm9NLKwFgS+dq9SRANhbzWbpZXhqedP3uq -3QTRSHafjKGaMpQlat0t+iiAxsa49g2MDvyPhplqTPGjMYkLf18YH/B9bP2B -LoUf/fR4sUZnpgxPZM9z5+rzo3Ey9ZkmK2X4GOEYIV16DE0InO00cFCGxPHo -J1fD+NCsY+YzAy9lsFcauz51mgetjgnqG6Qqg/HToQBfZw70QVbFIDPtIP7P -3+IUZDhQVIC+4UqGMtwvN6b0W2dH/GzuRk9ylGHdiDbpRSQ7MtR7bzpbdGDv -U7OaZzkbyn1pbRv9QRnoHgVV3TjOim5sX7UbJSnDg7sui+eXWBBBL/isYp0y -EHRcpxtJLAf5f3ZusEEZaEq8ncidWNA268oFyQ5l2Ajwo5srZkbmATGuTePK -MGS98yPVkgkd+5p17dikMki2nDSIl2ZCM6wV1z2nleF29H/dv8mZ0O2XA27c -88oAXlbhRZeOoqIx0ZtX/yiD+aWejOdyjIhcrzaQjhYHy5e/dGtPMKBy1j+x -BrI40GvI+vSkkwZNyPvodsjjILDaOaU4gQZxGf3Zt1bCgbHRmytupjQoJPyP -l7MqDg5HL/vvd1Ij0z9/bO5o4QBR2/XxjlKh5b4NkddWOKBwu/OgnJkSiaz5 -fifa4EDnv7vjO0MUyOboZkqdHQ7Yq0Kth/MoUK3eJn2HAw52WOiMLNQpUMKb -zeXfVw/sjWvS7F4jR/JpW+8FbuNAXSdd4NcMGXKq8vN9HoKDr95hIs3vyFBy -15a83F0cPPhc3iEXR4b+0f/NJUbhwJ0zr+WaMhlqC/wbZZ2IAwHtkZvHGfYx -t3PblrEFOMg+sVreensXeymwO7/ZhgM3l0hhJ/ItzN7e19KiEweLVnbThl82 -scOpyzWl3TjofBDC0x61ibkenbx/aQAHgnNrec+YNzGxf98kun/ioCI9a99c -agPLGn7qXLqOA9+Zpq5w33XsNCdPK90mDnhl7cJunljHds0fKV/6i4OhX0kl -U4zrmF1zFDnfPxyYvJRTsHqxhnG+9cyOplGBYeEf03ITq1hCsvaIM48KUJla -nyB5rGCo64N2LZ8KMCbYV58/uYItHiEU8x5Xgf0WCQ53rhXMKEImoEtYBfTp -ezm+f1rG6LzZuUBWBSpwTNf6uJexMLNpC15QAdvL8sfvvVvAvA/HtHReUoF0 -23LaC9azWCyn15zDFRWQ00Bu4UyzWJ6QLcOiqwqQT/Z7XWmZwXoI4qfoPVTg -jF0ui6v2DIa7VN98IkAFZChqdng0prE/H3aaKuNV4Hbj5ZE7xpMYY9P4rNZD -FZi1C7apZZ3ExHqa6DqSVIBWOrE9d3ACs/6dYjCfqgLjZlJvdS9PYFUcuCaR -ZyrA9ObJt6HoX5iv+/XGx9Uq8MDmZ8mX3z+x+ACLGeF3KvAUlIrPv/2JFUSo -01a8V4HdWOGxO1E/sb50Wv22TypQYvqW1UriJ4ZvzPtK3aoCfXDnvpDbGLYp -MNpwa0wF4sOP2UgLfcf8uk5/saXDw4J+efW69SDGsCeX9J4BD853rAfL2Aex -LHGmC8cZ8RA4aMXK3juAfQnq2p1gwYOdKjVzu9UAxiJ+BufBh4feBK7ZofP9 -WEmg47NIeTzcKwl3W4jrxVCBluesIh5Kkhwdrlr3Yl0dQsgIhwfjjCdG3sd7 -sb+ik0PManhQ6W86r1jZg+l2XGXJPIGHlTwOcsGf3diYyM3QSis8NC2emSuw -6sJumliacNjgYX1tfOiGWBdGHaByzN8ODzt31lxLNzsx2fbNN5gDHqKxhvsp -6Z1YgH/QctMVPHz/2mE4M9OBsbVFOIwF4oGj6VwkhWI7pncrVfNILh7+XnpZ -qxTVjOUVnGRxzsPD57WETkWdZoy8b3nqXQEeXl5f5Rwib8Y+4gwSrhTjIW9O -MuN4SBOGW/07Xv8KD/4ah76ZhjViQjfORgV8xQNNEqvr3LMGLCSD5lxnEx7S -r5l5f3RtwEZbKhUlWvFQJXV+XFCpAUuVOjzc24GHoytr6o/qvmBHZ97LKg7h -QSd2eWR/9jO268TfPT2PBy81crkGs3rMLrH5ObaEBwZfA4ldgXqs+pNv0OMV -PJyiz7B5uVyHeQm0i2pv4OHLwGBo0MM6bHb0jl/WPh6kYyRKSwY+YX02P49Z -sagC/S7qtgiqxcqN867UqarCVgjNYpLQe8zv9Ic/p9RVoXrhm8r93hoMM+oL -69VQBcGzNm4W0TVYqwFt5oyWKhicflxutfYOmzp5vZPRSBX6Qjd7hzveYjxE -nPpZR1VIZFrJYSurxsbUTn+dcFIFi4g8XYJ7Nfac4GLpdkkVqsRdwo/IV2M4 -fKpbqKsq3JsRVv1SVoWZKO7mPvdWBZyCcLzK+9dYuPhnhvUoVXDaEdq6v1KJ -GYqNpgbHqIJV7B21pXeVGLPohihNvCrY6Lscmg2vxLKEJIAnSRX+8UfUJ/NU -Ym+PxXpDpioQ9O7b/WdUgS2yWo7GlqsC3XjBSHhzGWZDNlEqOqQK+EGbOH7d -EiyNf3P27ogq8Ld/yuvbK8ZGNOhFx78f+Lf2CNerKsYc/BXSs36pgjRNKzKS -LMZcVoPucS6oQtBXA6H/OIsw7wl2RzoyApAexxhZsRViVeSS6ZfJCWC8xuPX -0Pcc2xLQ6PtCSYDM+ybkvU+eY4HnnIzC6AgwonxzoV7wORbWV0rYYSHA4eEF -ro+EAuxhox7zgigBnJ25iAOheVjXlJ3RKQkC7BtXYNdO52FsVG73XkgR4FvW -Bf1w7jwsVevR3iV5ArioLnBoVz7Dst+NzX4nEKAmbGK3bT4XKy3xr+s4RYAn -iqSHVLdysOaE4puvPAlwekeNIYCUifnclr6s400Aa0pTV+4bmZjA9WK7Pl8C -rNDGT2fwHsj1irW2AgkwLxnnrBuYgQn8KzqqEUmAXk73nR8n0zHfa0XF9WkE -uOgblC2+n4oJ2ko9tcwkwK/znSpLb1OxVt2ixMmnBOCTEg3w9TmQCxX50+QT -oHrIuLlmMQVrHXihd+o/Aoh1O4/NzCZjQrovfnXVE2Da8GIu96HH2Ddlyf6L -DQTIKwG/pYZHmJ/gi+b1RgKU1Bc4uMQ9wr7tFpZztBEgqvizuwLfgbyy8I7d -AAG+Wif9pdJKwtoECnnH5wkgsV+xoV/wEPPfKbBYYVeDL3e/m+i+iMMWF1ZO -+3KpwalXKrbZNnGY85iG/g6PGvRNBRX10sZhxl+6NKgE1CDdxmSo8VosJvTg -nyi3lBqUWh/9/JAYg7UKWW8Bpgbjftl6n8miMS32nNUvoAZr/668aXwfhVXR -zM8baqvBugnfoUj/KCx7PvSnpb4akBpP6Aj/uYf5VL1svmKuBnGlJgsV65EY -vyFVZoKLGqRGNAndZ43AkjRMU9ivqsGHibLPxKFwjFY+/WHaNTUoCaJWjc4J -x1ZZFSPzPNRAVnN0dVkxHPs6au/+JkAN9HPLohts72Ienq+0xuLV4B1fvIvc -51CsPvXilHy1GijK60q2rgVjr4oK46PfqsFCGd3v1ufBWN77BfyvGjV4o7Mc -HG8fjIWP3bqXXKsGTU/J7xg1BmG6ErESe01qkNN1LPFOYSDWWP3KtXlEDWhM -r2XJ3ffH3jT9ZRH5oQYMmq9DLxj4Yy+GsZrgn2qwHL3XTqDzx+7vNzIoTqlB -cuWOTNt9P+yU3mhJypIauNozG15+fAtr66NaciZXB4Myk+M7DT7YxxnDlI+U -6tBs5Tnz9oEPVrr9AHHRqIOqcu0vSlsf7AE/T0ILgzr8C02YVFvwxkxd5BSV -2NXh+Wdh+m1eb6z7j/XNfXF1IJrzP3z50AsbYCvcfHJaHV6dezT2vsgdU9yw -tREzVQeqeU695xbu2P1+hrcV5urALqgoGbrnhmmmuQe0nFGHO6en+P5auGG5 -x1X3di+oQ7FA2s1KhhvYdakGckffA34dpFSVPFfsC4PfxXk/dWAwO7yxYueK -8S9IfvYLVAeyvpBvt1hcsc7/4iIehqgDh+4j/f67VzG8ihVt/f2D/+9SGBS5 -X8EOwcQRsafq8GKUd27wqgtmJ5jsVpGjDn0/xhrwMi7YK3L9dixP/eDevi6s -uXQJc/lSnHDmhTp8+mfEi25dwloNb7JGV6oD87PfJ6binbFkK3Lu+a/qYD/Z -zaA97IRJXRMQqVhWh0L2j3zn3jlg/661KrGuHeQzZcV47IoD1n3dT8v7jzqo -dZ1qxnE5YEFuHefx2+og/KKVaOB/HmvzDHnyjoII+NQLCVMnz2GefmOM9RxE -KLEdliSQncV0/WOPiXATQYuB5PzjnR3GE0CQieAlgraVwzuCrx1WF5hgoCdA -BN2i14+2F20xtjsQ3iJJhPTzunz3Z2ywNxHZf7s1iJB3Ry/dYdsai400olVB -RLD+mdt2lmSNXbi3xZGsRQR4l560FG6N0Ueb4mx0iRBhoPSpn9kas48lcx8x -IcJPlaMMoUpWGFmS48SEExFWFEqebcRZYHrZAu1/og70f5jQCOaZYlP5KROG -MUR48OtlpVqAKRZezLj9NI4IRdXaEzWmplhd1a6IYSIRFC07z67smWDYt4GA -rHQifLgcuuBWa4ypbCeI6ZUSQV9l9vroVSOsZ59GI6OMCINzpfpmQkaYF9Ud -s5UKInyZ+nnaf/gUVsZ0Iyi9mghRvBfqvpucwmTEDbqWaomwhFtuaQNDTNjy -0O3UbiL0ES/Lf9PSx+ps/ZIWeolwVS/G/Q2lPubosFR4YoAIZ2yVb2s26mFZ -rqPd8yNE2G8v3WM008N4Qt9Kak0RAWuf5yi4qosxl3r2zm4RIT9pUvPS65PY -Ps24DJFfAy55FdiNvdTCqEe/bNcJaICDethyarAWxljxotFQWAM+JH4/13ta -C+O393S2k9CAHK0moZ4lwLAysgx/JQ2IGqeYqFMDLMjmOMMb3QPMWBQT2KiJ -hctSDCIDDUg+ectO7JYmFks+XfD1lAaQx/uf/E9ME8soKT3Rb6oBA9meG2ZR -GlgNGRawYXfgf3qLMc2KiG0X2s/i3DVg2jRBR5tDDSO/DdXvPTVAsg9EPnUS -MHoLkYiT3hpwNfs513YcAePemxOw9NeAnzhvo8e0BIxgFmhz864GxEZTWKhT -q2K3/j75Wp6iATPCKC5dUAVbN+jPl6vVgEMuRj7ZrYrYLey1YEydBvwL+U6r -9VQR21ZKypz+rAG1is90rLwUMTI+k8fZTRowe/mcUA+3InZ4sSGcpVsDXuTG -jDG4KWAiiVUXNyY1wKXOYHDMUg57Hvnoh/mMBoQElck9oJHDpAK9zv73WwNE -3UsyyGtkMQVnOYsrSxpw/XnlgoKILKaBLzgxtKUBNn0PCn32pTHLoceCHxk0 -QdfwkvOhAUmsv+1mJg+jJjSO3rQVSJbE7OrNuG8xacKmdKHmtKUk5lhyhFmB -XRMcIm+Iu/RIYNdvR5Dl8mvCMzPcm+0hcSxcyOdHhKImPNWm3zxGJYa9crXM -PH1GExoEuemZ6oWwWvIql2VbTTi/kn/pVZwQ1pLGqZBkrwm5T3xClm2EsPHm -obqBC5pgQ3FNXXJFEGOWvjBz8bommNxjqnaTEMTc5m4oB4RqQvATLpHOC8ex -gLvtu3zhmkDJOnz1Ie1xLJJXsYEUqQkamF6oSRk/lnlq3YYqVhNGJT9OviXn -x1qLA24nJGvCxJeSiO0KPkzy+r2mgmJNaFKbOjGC8WA4ytlEg1JN6Cu7pkRY -58Ygw9B+vkwT8iTwV64UcWM2rUeWFKs0Qds7AtPg5sYiZR6xfajVhO/kMwqe -ZFzYxHy2Q3evJrhwXqEUWmPHlsPJJX0HNOGLExb++hU7tsPnvMo1rAnmjTUx -277sGMtp8YjzY5pQe/GDxcM9Nkzr5cui2d+aUH1vY76GhQ0z0jnqHbugCfMj -5M/zB1kxm1EPTfllTRDt0ahRzGHFPI7gOrz/aEJ8pV+tpBIrFpT/+Annlia8 -MjkvmrjDgt3T3HR6t60JVau8rY+/sGCJvTYy5/YO4ssX21FKYMGybrz7s7+v -Ca+lh/cun2XB/gcVjBfe - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{0, 30}, {-0.9046210860183033, 0.3944345875487491}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.02], - Scaled[0.02]}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]], "Output", - CellChangeTimes->{ - 3.621794467718523*^9, 3.621794498923308*^9, 3.621794533802303*^9, { - 3.621794605371396*^9, 3.621794620457259*^9}, 3.6217946956005573`*^9, - 3.62179473323971*^9, {3.621794892174801*^9, 3.6217949058085804`*^9}, - 3.621794940931589*^9, 3.621794988066285*^9, {3.62179506192651*^9, - 3.6217951042839327`*^9}, {3.6217951482664485`*^9, 3.62179515336674*^9}, { - 3.6217952387576237`*^9, 3.6217952658671746`*^9}, {3.621795887603736*^9, - 3.621795895766203*^9}, {3.621818569235053*^9, 3.621818573588379*^9}, { - 3.6218268663217044`*^9, 3.621826871223381*^9}, 3.621827108634244*^9, - 3.6218584344876747`*^9, 3.6218593866250153`*^9, {3.6218640706851187`*^9, - 3.621864092651375*^9}, 3.6218643315450387`*^9, {3.622164164062406*^9, - 3.622164176134845*^9}, {3.622301013790451*^9, 3.622301036688349*^9}, { - 3.622312269315567*^9, 3.622312292086137*^9}, {3.622337863220257*^9, - 3.622337885966668*^9}, {3.6223799391364307`*^9, 3.62237996240704*^9}, { - 3.6223892264219027`*^9, 3.6223892512587433`*^9}, 3.622391611192319*^9, - 3.622391752083853*^9, 3.6223917996117487`*^9, 3.622418093295573*^9, - 3.622465549025391*^9, 3.622468035283638*^9, {3.6225047870996532`*^9, - 3.6225048107770977`*^9}, {3.622563745276939*^9, 3.622563771321702*^9}, { - 3.622761062765315*^9, 3.622761084509757*^9}, 3.6227807916223297`*^9, - 3.623554901932556*^9, 3.623554950009775*^9, 3.6320186342003508`*^9, - 3.632064107320895*^9, 3.632071956276132*^9, 3.6320953139520206`*^9, - 3.632147988585751*^9, {3.69146090198669*^9, 3.691460931829392*^9}, { - 3.698168620528748*^9, 3.698168648527787*^9}}] -}, Open ]], - -Cell["\<\ -One way to quantify the problem is to look at the sign of derivative at a \ -left far point & a right far point; say x=2000 and x=-2000 respectively. If \ -it is -1 we are in a good shape if it is +1 we have a problem\ -\>", "Text", - CellChangeTimes->{{3.6217953236814814`*^9, 3.6217953679670143`*^9}, { - 3.621795411796521*^9, 3.621795439759121*^9}, {3.621795577007971*^9, - 3.621795612495001*^9}, {3.6218586964110436`*^9, 3.621858731357093*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"xValue", "=", "2000"}], ";"}], "\n"}], "\n", - RowBox[{"Manipulate", "[", "\n", "\[IndentingNewLine]", "\t", - RowBox[{ - RowBox[{"Grid", "[", "\n", "\t\t", - RowBox[{ - RowBox[{"{", "\n", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", - "\t\t\t\t\t\t\t", - RowBox[{"Sign", "[", - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", - RowBox[{"-", "xValue"}]}], "]"}], "]"}]}], "]"}], "}"}], ",", - "\n", "\t\t", - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", "\t\t\t\t\t\t\t", - RowBox[{"Sign", "[", - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "xValue"}], "]"}], "]"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", - "\t\t\t\t\t\t\t", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Function"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", - "\t\t\t\t\t\t\t", - RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Derivative"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}]}], "\n", - "\t\t", "}"}], "\n", "\t", ",", - RowBox[{"Frame", "\[Rule]", "All"}]}], "]"}], ",", "\n", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A1", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A2", ",", "0.5368628"}], "}"}], ",", "0", ",", "1", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1.454867"}], "}"}], ",", "0", ",", "2", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1.084971"}], "}"}], ",", "0.01", ",", "10", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "11.11337"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "8.529749"}], "}"}], ",", "0.01", ",", "10", ",", - "0.01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "1.13329"}], "}"}], ",", "0", ",", "10", ",", - "0.001"}], "}"}]}], "\n", "]"}]}], "Code", - CellChangeTimes->{{3.6217954732810383`*^9, 3.6217955592079525`*^9}, { - 3.6217956326201515`*^9, 3.6217956804618883`*^9}, {3.621796248988406*^9, - 3.6217962858265133`*^9}, {3.621796368141221*^9, 3.621796396985871*^9}, { - 3.6217964461576834`*^9, 3.621796452134025*^9}, {3.621796483115797*^9, - 3.621796490072195*^9}, {3.621796548507538*^9, 3.621796578026226*^9}, { - 3.6217966439499965`*^9, 3.6217966996571827`*^9}, {3.6217967321260395`*^9, - 3.62179673475219*^9}, {3.6217969050309296`*^9, 3.6217969554768147`*^9}, { - 3.6217969893267508`*^9, 3.6217971102486672`*^9}, {3.6217972738130226`*^9, - 3.621797324730935*^9}, {3.6217973806891356`*^9, 3.6217975094985027`*^9}, - 3.6217976300523987`*^9, 3.6217976777831287`*^9, {3.62179772781599*^9, - 3.6217977295090866`*^9}, {3.6218187523933787`*^9, 3.621818765991746*^9}, { - 3.6218188022564898`*^9, 3.6218188617714744`*^9}, {3.6218189815210667`*^9, - 3.6218190958871417`*^9}, {3.621859286401874*^9, 3.621859312774911*^9}, { - 3.6218642694494867`*^9, 3.621864274305765*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.5368628, $CellContext`B1$$ = 1.084971, $CellContext`B2$$ = - 8.529749, $CellContext`Ka$$ = 1.454867, $CellContext`L$$ = - 1.13329, $CellContext`M1$$ = 11.11337, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A1$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`A2$$], 0.5368628}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1.454867}, 0, 2, 0.01}, {{ - Hold[$CellContext`B1$$], 1.084971}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 11.11337}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 8.529749}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`L$$], 1.13329}, 0, 10, 0.001}}, Typeset`size$$ = { - 567., {370.03173828125, 377.96826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`A1$16646$$ = 0, $CellContext`A2$16647$$ = - 0, $CellContext`Ka$16648$$ = 0, $CellContext`B1$16649$$ = - 0, $CellContext`M1$16650$$ = 0, $CellContext`B2$16651$$ = - 0, $CellContext`L$16652$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.5368628, $CellContext`B1$$ = 1.084971, $CellContext`B2$$ = - 8.529749, $CellContext`Ka$$ = 1.454867, $CellContext`L$$ = - 1.13329, $CellContext`M1$$ = 11.11337}, "ControllerVariables" :> { - Hold[$CellContext`A1$$, $CellContext`A1$16646$$, 0], - Hold[$CellContext`A2$$, $CellContext`A2$16647$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$16648$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$16649$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$16650$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$16651$$, 0], - Hold[$CellContext`L$$, $CellContext`L$16652$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Grid[{{ - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[ - $CellContext`fDMultiplicationSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, -$CellContext`xValue]]]}, { - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \[Infinity]\)]\); it should be -1", - Sign[ - $CellContext`fDMultiplicationSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`xValue]]]}, { - Plot[ - $CellContext`fMultiplicationSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> {-0.2, 2}, PlotLabel -> Function, ImageSize -> - 350]}, { - Plot[ - $CellContext`fDMultiplicationSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> Full, PlotLabel -> Derivative, ImageSize -> 350]}}, - Frame -> All], - "Specifications" :> {{{$CellContext`A1$$, 0}, 0, 1, - 0.01}, {{$CellContext`A2$$, 0.5368628}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1.454867}, 0, 2, - 0.01}, {{$CellContext`B1$$, 1.084971}, 0.01, 10, - 0.01}, {{$CellContext`M1$$, 11.11337}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 8.529749}, 0.01, 10, - 0.01}, {{$CellContext`L$$, 1.13329}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{631., {558., 565.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{{3.621795537670721*^9, 3.621795559792986*^9}, { - 3.621795675461602*^9, 3.6217956822019873`*^9}, {3.6217958876507387`*^9, - 3.6217958957892036`*^9}, 3.6217962926219015`*^9, 3.6217964022451715`*^9, - 3.6217964526960573`*^9, {3.621796485684944*^9, 3.6217964905172205`*^9}, { - 3.6217965685946865`*^9, 3.621796578917277*^9}, {3.621796654968627*^9, - 3.6217967008632517`*^9}, 3.6217967355232344`*^9, {3.621796956202856*^9, - 3.6217969716117373`*^9}, {3.621797023146685*^9, 3.6217970773117833`*^9}, - 3.6217971110037107`*^9, 3.6217973257509933`*^9, 3.621797510937585*^9, - 3.621797631584486*^9, 3.621797678385163*^9, 3.62179773078216*^9, { - 3.6218185692506533`*^9, 3.6218185736013803`*^9}, 3.6218187674964137`*^9, - 3.621819000829402*^9, 3.621819043310712*^9, {3.621819073459128*^9, - 3.62181909738002*^9}, {3.6218268663517065`*^9, 3.621826871236382*^9}, - 3.6218271086622458`*^9, 3.621858434547675*^9, 3.6218593866450152`*^9, { - 3.621864070857128*^9, 3.621864092685377*^9}, 3.6218643315770407`*^9, { - 3.622164164093606*^9, 3.622164176150445*^9}, {3.622301013824079*^9, - 3.622301036731172*^9}, {3.622312269406065*^9, 3.622312292142892*^9}, { - 3.6223378632874813`*^9, 3.622337886019825*^9}, {3.622379939183263*^9, - 3.622379962451138*^9}, {3.622389226444807*^9, 3.6223892512797537`*^9}, - 3.6223916113420353`*^9, 3.6223917521256523`*^9, 3.622391799641592*^9, - 3.6224180933270817`*^9, 3.622465549083984*^9, 3.622468035310219*^9, { - 3.6225047871271048`*^9, 3.622504810831132*^9}, {3.62256374529639*^9, - 3.622563771375072*^9}, {3.622761062798894*^9, 3.62276108453791*^9}, - 3.622780791652108*^9, 3.623554901972143*^9, 3.623554950034528*^9, - 3.632018634230926*^9, 3.632064107365234*^9, 3.6320719563341093`*^9, - 3.632095314012886*^9, 3.632147988626649*^9, {3.6914609020506907`*^9, - 3.691460931867002*^9}, {3.6981686205607023`*^9, 3.698168648557181*^9}}] -}, Open ]], - -Cell["\<\ -After playing with variables for some time one will recognize that this value \ -is +1 almost half of the time. Even with good looking graphs the value might \ -be +1. Here is an example\ -\>", "Text", - CellChangeTimes->{{3.621795926034934*^9, 3.6217960280197673`*^9}, { - 3.621797138139262*^9, 3.621797139791357*^9}, {3.6217975273015213`*^9, - 3.621797564601655*^9}, {3.6218186633099422`*^9, 3.6218186644175444`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"xValue", "=", "2000"}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["A1", "0"], "=", "0"}], ";", " ", - RowBox[{ - SubscriptBox["A2", "0"], "=", "0.06"}], ";", " ", - RowBox[{ - SubscriptBox["Ka", "0"], "=", "2"}], ";", " ", - RowBox[{ - SubscriptBox["B1", "0"], "=", "1.08497"}], ";", " ", - RowBox[{ - SubscriptBox["M1", "0"], "=", "11.1134"}], ";", " ", - RowBox[{ - SubscriptBox["B2", "0"], "=", "2.14"}], ";", " ", - RowBox[{ - SubscriptBox["L", "0"], "=", "1.13329"}], ";"}], "\n"}], "\n", - RowBox[{"\t", - RowBox[{"Grid", "[", "\n", "\t\t", - RowBox[{ - RowBox[{"{", "\n", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", "\t\t\t", - RowBox[{"Sign", "[", - RowBox[{ - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", - RowBox[{"-", "xValue"}]}], "]"}], "/.", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{ - RowBox[{"A1", "->", - SubscriptBox["A1", "0"]}], ",", " ", - RowBox[{"A2", "->", - SubscriptBox["A2", "0"]}], ",", " ", - RowBox[{"Ka", "\[Rule]", - SubscriptBox["Ka", "0"]}], ",", " ", - RowBox[{"B1", "\[Rule]", - SubscriptBox["B1", "0"]}], ",", " ", - RowBox[{"M1", "->", - SubscriptBox["M1", "0"]}], ",", " ", - RowBox[{"B2", "->", - SubscriptBox["B2", "0"]}], ",", - RowBox[{"L", "->", - SubscriptBox["L", "0"]}]}], "}"}]}], "]"}]}], "]"}], "}"}], ",", - "\n", "\t\t", - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", "\t\t\t", - RowBox[{"Sign", "[", - RowBox[{ - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "xValue"}], "]"}], "/.", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{ - RowBox[{"A1", "->", - SubscriptBox["A1", "0"]}], ",", " ", - RowBox[{"A2", "->", - SubscriptBox["A2", "0"]}], ",", " ", - RowBox[{"Ka", "\[Rule]", - SubscriptBox["Ka", "0"]}], ",", " ", - RowBox[{"B1", "\[Rule]", - SubscriptBox["B1", "0"]}], ",", " ", - RowBox[{"M1", "->", - SubscriptBox["M1", "0"]}], ",", " ", - RowBox[{"B2", "->", - SubscriptBox["B2", "0"]}], ",", - RowBox[{"L", "->", - SubscriptBox["L", "0"]}]}], "}"}]}], "]"}]}], "]"}], "}"}], ",", - "\n", "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{ - RowBox[{"fMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], "/.", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{ - RowBox[{"A1", "->", - SubscriptBox["A1", "0"]}], ",", " ", - RowBox[{"A2", "->", - SubscriptBox["A2", "0"]}], ",", " ", - RowBox[{"Ka", "\[Rule]", - SubscriptBox["Ka", "0"]}], ",", " ", - RowBox[{"B1", "\[Rule]", - SubscriptBox["B1", "0"]}], ",", " ", - RowBox[{"M1", "->", - SubscriptBox["M1", "0"]}], ",", " ", - RowBox[{"B2", "->", - SubscriptBox["B2", "0"]}], ",", - RowBox[{"L", "->", - SubscriptBox["L", "0"]}]}], "}"}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", "\t\t\t\t\t", - - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Function"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{ - RowBox[{"fDMultiplicationSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], "/.", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{ - RowBox[{"A1", "->", - SubscriptBox["A1", "0"]}], ",", " ", - RowBox[{"A2", "->", - SubscriptBox["A2", "0"]}], ",", " ", - RowBox[{"Ka", "\[Rule]", - SubscriptBox["Ka", "0"]}], ",", " ", - RowBox[{"B1", "\[Rule]", - SubscriptBox["B1", "0"]}], ",", " ", - RowBox[{"M1", "->", - SubscriptBox["M1", "0"]}], ",", " ", - RowBox[{"B2", "->", - SubscriptBox["B2", "0"]}], ",", - RowBox[{"L", "->", - SubscriptBox["L", "0"]}]}], "}"}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", "\t\t\t\t\t", - - RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Derivative"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}]}], "\n", - "\t\t", "}"}], "\n", "\t", ",", - RowBox[{"Frame", "\[Rule]", "All"}]}], "]"}]}]}], "Code", - CellChangeTimes->{{3.621819152030977*^9, 3.6218191780424924`*^9}, { - 3.621819215207567*^9, 3.621819232834406*^9}, {3.6218193312713675`*^9, - 3.62181938683164*^9}, {3.621819435541301*^9, 3.6218197724401674`*^9}, { - 3.6218198879212008`*^9, 3.621819932708973*^9}, {3.621864287742533*^9, - 3.621864301380313*^9}}], - -Cell[BoxData[ - TagBox[GridBox[{ - { - InterpretationBox["\<\"Sign of derivative is \\!\\(1\\) at \ -\\!\\(\\*SubscriptBox[\\(Lim\\), \\(x \[Rule] \\(-\[Infinity]\\)\\)]\\); it \ -should be +1\"\>", - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \ -\(-\[Infinity]\)\)]\); it should be +1", 1], - Editable->False]}, - { - InterpretationBox["\<\"Sign of derivative is \\!\\(1\\) at \ -\\!\\(\\*SubscriptBox[\\(Lim\\), \\(x \[Rule] \[Infinity]\\)]\\); it should \ -be -1\"\>", - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \ -\[Infinity]\)]\); it should be -1", 1], - Editable->False]}, - { - GraphicsBox[{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], - CapForm["Butt"], LineBox[CompressedData[" -1:eJwd1nc8Ve8fAHAZEdmy97r2vda17/MRskdWRr6VqDQQklGSVAilEklSZqFB -IeMa2SskZJSsKFu2+J37++u83q9zzud8ns/neZ7ziLn72HpSU1FRSdJQUVGu -q9+b6yTvZJKeqPwmHbGbIm0YKJ/X749A1TN7rbsSpkieZb8cePvvo7wx769/ -OqdIT1ZqW2j6XyBb7vKPDIenScQHhJsbfYVIMN91k9X5N4nW/bT7375adMBw -0fZL9AyJ3eiEoz9dHcqPDbIS+TJDEpZxNVtSqUd3+qxicEKzJM05K5WFuEaU -5PXeIaBolnQhhEg9Y9CGIj7bHVafniOda6buWuzrRpX9iRx3KhdIS2W7Zu+8 -vyB1s7Af0VMLpKD87Tpfuh407BbHt8a5SLp1d7V0XuUr0n3ueUjs/CIp3eF3 -+mxcH+J+9E23R2yJ1POzy3faYAgxxV6VqchYJglftYla6BtFFcxPNAIZ10hU -Y1O2ObJjiKV84n2m2Rpp1OS60H+hY8io5/3GzTtrpCyuwsJW4XGU06uVc4Z1 -naSQzzmc7TmBuO1Y3CdFNkjag73Kbsu/kPelGwEPPbdIgvo+25xGU6jlqqPo -xLst0k42fWPLoymUPt5yjHF3i1Tjp3lUU3saPR+KGBl8sk0yYUy5xXn9N7IK -tDs0/OMfyVHLbbCZZRap8qY51phSIc1nK1nhxzGX0/0nepkK8dPF+2oUzqLE -v2yN/zKp0HAnmS7LYQ7F8+/qa1HvQR5nRAnhqfOoN/y29UDtHvSx9eJBgQOL -KPv3kQfM/9Ggxk21pK4Xywj3+a/DcXp6dFZKYmitaRkxd52yBAN6xGLDLiY8 -v4zyhl8slF+jR45Zs6/O6vxF2zf8E2I36dG4dTaZpucvEsjvuFm9xoCosngm -1elWEbnhy6M/7Ewo8zOd/FH5VXSEkWRh6cSEjDeXfSIOryJWa7Tj+YwJxVt3 -bnQ8XUW9jrWtn/D7keBmFPMZ4hqSbFE2OeXMjDStN9VSTq+jYvd4hT3drGgo -eCq4Om4dRcnGmf/HwYauZfaSJ4vWUZjPSixOlw01bBSaqFJtoGu3PQ7sSWBD -9pnnjrYlb6Aw++Gb84gdXdwYurHTvIleMP6erCziQK8yqrrdFf6h57iLPpNb -B9Bf/v8imw//Q++792nOqXIjdH9bnXD5Hzr4+W9b5Hlu1BOu9fhfzT/kh9tm -8fjBjXbcio4lH9lBL3QNcjjbeNBh3pyZ9ohd5NgUJRNdy4dS7xqlqeXuovfr -I8EEWn40uXfc+kn7LroW7St07RA/qgy556y2nwoslrcY+Nr5ka1Xe8WeI1SQ -elFZ3GdUAF05ZHwjdYYK/iXhPQl4YSQWwT1kvUsFdPWLVsJXhFFD5YQaDcce -6JwqONTZLIzY1SMnvTT2wAlfT9Wo0yIoW6LGVCNiDzxLEl5EjqKok0qHrZuH -GhquvLHEvxFDEuVKT+kNaMDZwDi9slQSsfl5fLQ5QgMf44btmJck0bZMytfH -52ggklR9a0teCvU+omNReEgDV8SUTcqeS6EYv6EwmwkaME9kdlx6KI0WZGOO -P75NC5d7I6omnsig4ZGqK6NPaKExKe7eyg8Z1JK0kiz/lhbo9WNTaiRlUSbd -ia7KfloQpX4f/uitLDryU+PgqCwdxLWOTl7okkPk5AkJ+TY66GD7O1eqpYjy -rAUgYIQOcgXu/4uNUUTJew8frfxLBzMT5gkwpIj8AioeWgvtBfXnL1atI5SQ -lM0DugDvvaAUdXbd/hsexdLr/6pgo4eBVvb/Ul2UkXNg6isrBwZQ41AmbD1R -Q6KyGUS9MwyQa3noPq5LDU0OvqyVD2WAW/MPRIb3qiM//ZIBhucMQDp95NC0 -vzqK2d/N+GmGAaJnTx0psCeiihf05zQi94HKbT1rRRVNFOHAsiaVtA/8Ir/q -p/hqIhOGAze4Xu2DagVvndw3mujrBfEni5/3QV7uq7oCvBaa09RrzRNghOm+ -5RdxGtpI5LOfvGgRIzAyvwwWP6OLJq8Hl7A0MML1ydiFc+90Ub5auMG/fka4 -eiTHx29LF2mmxLkO7DBC7n/fZMgJesjGM/fOQzMmKPu1l/l2IwlFbA3/YRhl -gtcGO81d+YAmcKb5i2zM4PLmwovsBwZoyaF465IUMxANioJPtxggqkgJ800t -ZlippjlTs8cQCY78m6Y+yQx3OWP0jP0MkX1yIY7rAzPEP4knt7gYoVoGwQyi -MwvkTO68AXNj1EmMXiq7wAJFgm6sp2KN0XePVX0UwQJN2jp39TuM0UZ154hx -Hgv41RGmxe1NECH4prDzPxbAP1zY33TGFKVNzz0Ofc4KVNkdDpdLzFE+z9Hp -3Q+swNXzuX2D1gKVGTVrRrawQkP5oXl7Owv09XlGX+wyK5SKPH6ZtmSB9irm -M34WZ4Mxm7X2TzpWiDRx3GQkgA0IK4doja7aoHyHlk/UfOxgoWVV8DjNDg3t -5u89IMEOutY0p/177BDzq7umOEV2KPKp7xthtEfeO/afzfXZ4ev6LfWrwfZI -OefHwEMvdghrFtKcdnNAxet/F6XL2OHpRZFheqMjaPJFn5pWHTsUkFJujEce -QTyWZZfNO9ihtFzD0rf+CAp6fu2fzyg7ZOw71p5q4oR0zBj3fWTkgNYvV3Su -HXFG1U9ERM1dOUCIyVxB9rErWjCiPunmyQG4xtdnx8ddkdjCeJaPD/Z8BIu5 -j/JRFGH4Sv7hDQ7wU5vt3247ioxm1TSG8zhgmXOri8jyH2ohmVn5bHNAFsFG -PNXtOPryM+DKg6eckCBQoFd45iRa2AeX17M5webpySNHUk4iFhUmP7e3nBDB -fcsotO0kMol4fhr3iRPWw+XeGKp4ILJ4h235FCccvl83vIfWE+WexMmOqXKB -+oUbzYdrTqH6O0sSJnpcwDH4eipi6xQaLaoULjjEBeEmhi9MiKeREK0912Vn -Llgepu5OKjiN7meG7zJe44IOl08BPhln0JWJb19VWrigdHue72TBWfSYOasz -6QsXvLkqVZS0eBYVq/u2bg9xgdaa1ckQ4jm0eHNvTcM8F/R2WKzb1J5Dp6RV -810OHIDDO59CAkbPI5vTsRERxw/AQN5LKsIhHyQ1TcJ3rx4A3R5Bqlx7PzRp -VclEvYcbZE9YKl6+7Ydy3+tMKTNxg0uC+XB3mR+SC9d8niDCDeuWv3vUJfyR -Eo8K52ETbvgReSLw66Y/IhpJrX1+zA3nsbUz3nAJrb3K+LKbwQ1RVM+1tGkC -USmb+Fv8a27wdLn0mwiBSHtI2OtuLTekLDekylcEIuTPO2j1hxsIcrsP1Csu -I5PnTFXtujywm/d1JfB7MNpHH/Pk3yEeuPxAh4tfOgS1nGcIUjzMA36mBvMR -3iHIQpNOOc6TBwru9Tq/3hOKDn/eeWERzwOHCA/Kc5WvIJd/i7daf/CAbnyX -tFRZGDrn3G/VHMELUs5VN+VRBOLVQ2PmsbwgoJrlbOAdgRpEsy93JPKCup2U -XM/TCCQ+5Z/+JZcXfnwqfeC5E4EGAlmXhjt44R3OYtWr/gYyeXgocYmfD05P -Fj3nPn8TrV4ukL0kyQcq/Lz/OWTcRJmuXOQ1RT44JPeuQ2zwJtoVH53cBj4Q -7N664GVxCxW/u6pJf5oPOvZz9wyq30aSn98PChTxwXjgs6QUqWjUXSjgm1bB -B9ru+X89TkWj8EcRtGINfDA/o67yNScaDbrZKEp/44Mzv9J+FCjEoPszf8II -u3yg6xUx7E26g6gYJcSNzPkhct19tuhGHBoyTDjjPcYPVRdenZc/nIDe60jy -1szww1ODQaX2KwnojkpJI+cqPxxbfPN7MDcBaYsOS39kEIDX3NthhtT3UfKW -zASNkgCgacflY2X3kX1h9YnHQQJQ/qNdvQQeIoWXduwz1wVAfPHR2Tz/h4gm -fbKadEcAROY/XBfOeYgK4/aLjj8VgGslHPhbrImIzcvpu9InAVgkrDCHTSai -NpEFlzpmQfim25qj+DoJZXLfYOThEQTRDSO7nOkkFMrMXeYlKgjDdHyJ76WS -kdyWDh+rqiBURRT7332WjKJ6b/c5OwmC44P2IO+Ux8gwTsR+/oUgTKoUOQu8 -foLKN60s+TWFwLTqDTO/Qjoi4hO/axwUAvk9WWW7R9JR4clBHwcLIVAJuZvk -EpmOcttO3793XAjC9vmkBnxPR4/Swvv2RgvBpp3sXdfk58j3YOGJ5W9C0PR0 -5MZ+yQz0J3B9iW1cCBx9eHi/HclAp/JIkUpzQvBuiEYAH5uB3Lhas72ohUHh -0dvJK6sZyGxy7M8POWHIqed80tCViSRjDgS2hQpDVcm0mUNmNnpGdqX/fVMY -6n6JV5z8mY34l58n098ThgN2ZdscIjmI/ahS+cFMYZi4KqvtkpqDdhSNqT62 -CcPfnr640rRc9K0rKCZLSARiF+UScXWvUDzfUFpYlQhQfwswkk17g1ZbGafm -mkTA5uwT89WZN+i/MC3lY90i4CUQkg7Cb5Hi2KNPaEIEZgKyOv94v0WnemUC -wulE4Tl/D3mA6x3amz6WrC8vCjGHr+4Z9i9E2hshlRt4UVi/e4s55Xkh8rbl -GH2nJgrO3ycP1H0uRL20+vLiJFEAh50v7opFKNsrrZL6sCjs/bBwZmK2CB1S -dR79FCgKCQPlln2RH1BI7MLeK6Gi4KpPt7fv4wf0euK2vFq4KJgSduzt5j8g -7uTigMxoUWijOfu13rUYTW5z0t9MFQWOoN9xb7RL0K2GDvlDtaKwx688MJL9 -I2pwNrzUxCwGEiSpyQ25StR2+APjJIcYjLmJyD67XIm6TaXTaXjFwGk9l3tP -fSX6rsXQShIXg/6PEpJ73Mloha9N9ANRDNy8vT8LZVUhyQG7tufHxACfaPTw -kUwNkuuuO1HlIQaazCQTRYcaRGhRXxvyEgPXvek8+IgapFvGI84bIAatZGR/ -ebgG2aUMXo6Pwt4/mB+k/LgWRbiclAh9JwbX8Exd9NJ1KMq2pzS5WAySNNnR -e+c6FG9mZFVcLgaqZy+ofourQynauODFejE4siHBc2+tDr3j/9NxekAMDI9z -5jd31qORAb8Qexpx+MOaZCr/pBEh14guRQdxID2P0khObEUDR6MDVF3Ewe+S -4GRpfysK+O8ej9YxcdjeuvzstGAbenUizc3QSxwcGYtV/bLa0IEzZdMuV8Uh -gSr8hQ25Hf0JWNoTlSUO//Z0DE3TdaKkeHeV0RVxCDtxtM48rhup3PP6+mtT -HKy/lQ+fKu1GbQm+QbO74mBxx0Ppy1g3ok4MI6/vk4CxwMPH03W+oAtPUsxY -hSXAdreMnnP+CzLI7XbXPSQB7woi3kR4fkXzNQcfPHokAVSZ7RecEvpRODXp -vtETCdhvNFto8KkfcRhoJfx9JgEBzMAYtNKP1Orwd21fSkBsqMCjcpdvKKhB -8A5LhQT0QDJ7nswAompdjbj1UwI0mBvV9nUPIo6eV36BCpIgJfSmicr5B1Kb -5LB1rJWEN8nGBc7xYyip/lfN2UZJGHJc2Cx7N4Y2MyuUr7VJQkf0qyXlr2Oo -+uQp9txeSQi9PkJ2ExxHFj8/dm78loTyeKXRxLxx5DF03PoppxS81jMqrmmb -QA+7X1uMe0iBusyxGx0cU2jt3Y2KdS8pcLXmbqHTmEIuCU4KzD5S0LYSeYjg -OoVEbaj3E4OlIF5xR845Ywrltzu03o6TgifPvnh1qUyjuqZtU/liKXBS/b20 -Y/EbLZPNjP3opWFj5uY+ovsMshjm5CTsl4YGontH7LUZlL019H2WTRqS6NmU -clJnkJOmT6AXvzRo2aZ2iPTOIPK7B1nHFaXhLV+T9rzRLOLpPHpRWEUadEQ3 -kpRPzCLfOSm9IaI0SJY028lemUUS8qU9R0AaPknyRCu/m0VRmUM01nbSoN8s -+M6XZw6N1mZ93u8kDTfHiT9lCXNI56f3k5aj0sAeLnA22mQOzQntUT10ShpI -i0o9qkFzyC5Jyl0vWBqWGE/X7HbPofwPc4pbV7H8Ms+Ef5iaQ3t7SjZKI6Qh -4RI/A/XOHHbeMEtQi5WG8PuX7h/BzSPhGO9q+WfSIKikdLIyYB5dztWInc6Q -hlkuQEu35lFnA5VTTi42/gt64q+T59ENmgfz4oXSUOXuLVVUNo+GxI6WjxRL -A57O1m29ZR4RQep2Wrk08PzY31YxMI+mrpQI89dLwynnp/fL1+fRwSfhv/ua -pUEsMHJfMM0CevLRtDixQxrYDPex2DAuIKvVQUv2fmmIWal8qsizgHK4svg+ -D0mD9nCEmYrQAqJS9Z6I/SkNr9MP7M6JL6AiH6qrDH+k4cKy9GCs4gLaH99s -0jAvDVLfO4nnVRbQqfz7XJF/pSF3d5OaSmMBVbW4juhvSIPxwN/jxjoLiHda -Mn/3nzT0HDC+pI8WkB/93OVKahwwb4+dnj24gFqlSgxC6XFgkuXkYXZoAUka -hrNq7cfBROvO4yOmCyjM3XRwlQ0HWrp4XS6LBdQXzpHz/gAOuHoDIq5ZLSDC -s0E/P34cOHJV5ybbLKCYykwSQQQH4ixP5v+zXUBjgxcY5yRwcH/cLbXLbgHp -bhJ782RwoH735Ma8/QJ6xEv1wksRB8XrJMePDgtonth8AaeCA4OjC/SKjgvI -xOG+1gQRBztf+L3MMPtzqAcy6OIgZA3PzYA57XNfobw+Dppq/878h73fEhsy -b3UIB1n8cqpWWPwVUyEFP3McVHnHaHzF8hGlrz6TaIMDUhSf7TKWr0Wde1ap -Aw74/viP52DjuXydbnTQBcs3S8hlyXwBvSDlCu8ew0Hq6U6ZbpMF1L5l5iru -iYND5U2dh4wW0HrpbJLRWRwwETmGrfWx+gXe6znjg4PJ4O6xGd0FZK2qyh4b -gIOgofu3hDQXUMjCV8s3wTiIiY7y+4n1L7sgKKY7DAd3VgaOa2L93caRafii -cXCpKepUmugCwk0cx86uOGC9YqlUwLeAbF/QXD32AAeJA1XOVhwL6KWg6WrW -UxyEmjO1GVMvoJ5vf1SaX+CgQq/AGZbnEVVSvM9MDg6SlbXMuX/OI0f2nimV -Qhycm0s/oorN7+sdgVKOJTjQTwy4FZo1j/Lv8LkHV+DAOr6R+c/deUSz99hg -VQMOIrNuxRm4z6O3m9PtFoM4gKu0L9a359BgSSyj7wgO+D8u8j7+ia3HS3jj -BxNYPy9/qjxbP4fc5gOqv83jIFzE+0NuzBxiHN8tPEUrA+pv7o41Ms0h9ecv -5qP3yUAIaguV/T2Ljv9npFDAIgNBerFx7Y2zqKQ/JmuZVwa8vVJ//wqfRR7t -B5LDFWXAjemhQsnvGXQ3prQnQ0UG3veZn776aQaVGbuyN2rIwPgzJ7+0JzOI -vTY9hvmgDJyL52LYNcX2s2L5qymOMlBGNIt9/uwP4knXd39/TQbQnVCbKeXf -qP9USH5VpAwY7hcxYaL5jZIVi1ZbomXAw9ziQfuXacRbLnnn5wMZKHg+7KQf -gLmX/j1LLpZfL/31Y++mEO/+DjqvThnoeMAlYSP6C/EHubwUEpOFYl/fM3rz -Y2iA9GBZRloWCoRwKRkVYyiFrk1PTV4WijiqjZRixhD/A71uM3VZGLxd/ZIs -NYYEXotuXTaVhaW4onLpY6NIcHzSovuiLHQV5ti+HB5BQjb+C7dqZeHpOQ3h -C6pDqMch/ZFOoyzMxqTUzE0OohjXdt2FVllwri3NwD0ZRKuncNHOX2Xh4eZH -5zq6QdR5dVBMYUoWyhfCdxrHvqHIPAO7LmY5eBw9Mv7oUx/Sfue7cZNDDka/ -O55eiuhDi8VPn2nzyMGaSJ8fi0Ef+q927U+GqBzsLD04ebu+F2l8y4sMVJWD -/rfch/2/fEW/93IVCzjLwR5yZOQ7jh6Uvl//aKebHHDasFgPDn9BRzi8qW+6 -y0G8X698+csvqE6oyWrunBzoWwZkJxt8QWlqV35Vh8nBm4o7Oi+vdSN77Zdx -l27IQdlJ/RvuNt2ICXpV5aLkgNY35V+jWDcKMieEP0jA8sk9t5vQ0IUOu4/z -nsqUA/VEPMMmTxdiOMNexf9SDqjZb/+eme1E5Askz88FcjAnkWYTXteJ5IKT -32mWyIHPsnhAhH8nor1nYcbUIgfRHza/3333GZVWvg99Oy8HuWwqcsNX2xG4 -l99v+SsHV/ofjw8S21HT3tqX4xtycJ2Zb4l7sQ19s/7cx0srD9bUoabKXm1o -8+e06nVeeciVGdKMON2KIm4tmD0RkoefejJ9c7KtiEl+7cQHcXmofzX8KHC2 -BQkG0N6bVpAHplup+MbLLUhvr8jMYX15SGwVpN1ObkYNr6Rozh+Sh63GjObO -k83IylqB/5a5PHzlDian45vRf8laJmUO8lB6ULpevKUJhcvZZ4qflYcfFotU -RoxNqNYq+ujyfXlw1Fi2bS9qQGbLd/2Zk+Vh8mXVSlJsA/qS9CgG91Qe9P/4 -c0ueakDjIxmlrjny0EEj9NFfoAHR+ZO56srlISawmjspvh7F89TLf6+WB4/Y -3r+cF+oRd0XrwfV6eci44yqvZVGPpOm++Sp0yoN/CtsX3/31yCRpue3huDzo -hPPlGD6sQ506m2Ovp+Vhu2bpcdHlOuQ0QrXVNCcPRjYZtu9d65CXLIvsv3V5 -kGtSijsuVYdiymVuejIrwK82zceCVZ9Q+w83PSJRATbOnbu1l/ETsvjk9HZD -WwE2e8wq61ZrUUu2nUQlUoC7m1J6P8dqUdMF032GpgpgcJf7glJVLardUvt6 -+KgCVD8D25ngWqT/A29y4IQCSL7Z9PTxqkXVtXLl/Z4K8F981QFD51pUGS36 -/JgP9j39q2eHtGpRKc/+CxciFGCFjUX0+U4NIm7tHSHcVgDr4SmR6IUa9OH7 -Hru/dxRAzzI/qWS0BhVmrWmGJipA6/Xw5tHGGlSgOkYbnasAcke/HrNOrEEv -rMtSMzuw+A1ceaE6NUhU9QPrmS8KIKU580JHuQY9434bId+vACY1/N14XA1K -Hc46U/hTAXb/i5h9y1mDks4lqFX/VYAfbDZ5W3PViNs6NufGhgIcLJHoOjhZ -jR6q3OY33lGAF4bPW4qHq9H9jStUHfSKoFks2CPWXo1ib59pG+RXhFpbdGS2 -oBoxnTuJnokowquTj7kis6tRjNV/he6SihDpspek/6wa3T5gnzytqAiXua5O -yCdUo4gM5LEGiiDJefrD68BqdLmKe5vjtCKclW4g9Rpj7+fnXCGfU4QzoV/7 -Uw9Wo7THmv+8fBWhcpIpOEyvGjX4u+xUBytC2HRqxT3VasQlk0blE6sIcqOv -vcZEq5HMAfx1/gRFULoypxsgWI10qKv3NCQqgvIIp5ogbzVyH/pJLfRMEdh/ -HWh8w1qN3t6Tomt9pwiXmPzpinarUN3V4puBxYpAEPTvUlqvQn1njfeKlysC -nflDle6FKrRj6EUfXKcIbvoWmbGjVchiI38frk8RnKcFn5U3VqGpE2osN7YV -wdOl9efp5Cq0bVUfr7RHCfY7XTzI8KAKseo6sg7QKQFDj0NYfVwVInIHsSmz -KgF7lKvhwxtVKLKlnOOHmBLQ50w2+vtWoeQSiwcx0kpwzE+u4M+5KpSXOcxJ -lFcCYrOb/JXTVag7bJcrTk0JEju09kz8V4XNBwMeHWMlWGQf2mqyqkJqoj1J -k+ZKQIoMC183q0LGzJ68922UYJK7ZFXXuAp5/7rFN+2sBC+O32amgSpU8aRF -IOm8EqRcuJcfpFKFOqNcUw9eVIKq96uBhvgqNHZpRnDukhLMLR1nF1eoQow2 -LMJG15SAhYnTlF26CjnR2oouJyjB8JePMsX8VYh0r4KdNkkJFFPT5Nt5qpCE -II7mQKoS2PG+XVnhqkJzqtsTxGwl8Ga8dziUFRv/yey8kDIl8PCcLTOjq0Jn -59me3qlSgqwXaSET1FXIOjQ0PrVOCUS5ZfjvUlVh/0ebi+QOJUiL0XvJvE1G -b2o3idRjSuDGHqn7ZpmMHlp5ynBOKcHHq5wSpYtkFDLwmU9yVgmSRmsD2+fJ -yHApc9toTQlsZ9vMBGfIaEDMujaaCQ+SYZf0DCbIqLrgY1EKGx6Cwub5csfI -KEtLMivvAB4OZb2z4xklI9/DG7fbRfAw2sO/yPmDjPZez7BkV8NDeN920rVv -ZDSznwWJa+FBq32CT7mfjLqSgwiqJDzEdv7T/dNLRqlvLTkdTPCQP5WbFtRD -Rsoja/3JR/FgmFJzf+kzGXGfd295eQIPpAC+b2MdZLS91lZedgoPjCLu5kPt -ZNTA+iJtyBcPHwvLmUZbyegosvAQvYkHIe9zibpNZHSwtdhBOQYPJ65d7XBv -JCPcETHjg3fxYMkkvRnfQEZL3quyHo/xoHoSpa7XkVFUWvp8TgEeIroZXJlr -ychbjulnaSEeuMKy/I7VkJFd8aXu5hI8eDxmDyyuJiPhDrMPf2rwwOmu2uJX -RUZF//6G4HvxcPukzT2xSjKKb7Jrmh7Aw7X8D1vpFWR09kHhgcwfeGw+7SxK -YBaX9X3LO42H+bGXSmrlZHTf/s/Enm08SP2yaQ39SEbFrFl8/1ERwKS15MIB -zJKX7KGcmgCsm4a0haVkRAVFcZfoCRD1Pad5uYSMSr/6yvxmI8Dk7syfpGIy -ktYRtTbmJMBUl+VJY8wP0z9fyjxAgCLto9YbH7D+nVP69B8/ARJ2f5l7YP7e -OTxdLkiAkkwnEMJsQYxj4xMhQPUJl4v977H67Zlx+yJBAPoHkvYOmB+eehJJ -kCZAJa3MDDdm6jazvDgZAlwqwscNFGHxHr1cN1YkgKXfm4+nMT9SOP2ggkiA -U4csApMLyYj2PncZnxYBLuK9Wbww+63VjwTqEEDHqN5eB7NVraSSMhCgN13g -0/g7MqrA9djHH8TuK8r1lWOWi7sR+seQAGHEmIsPMdM5jTZlmRIg6WMupxlm -v8qEeWoLArwhCe7DYR4R1+c+bkWAz0amx+ko8WafneS3w/IxPsLe8BaLZ2cd -c9mBAPlrF11yMSeX7rztOYLVJ79k7A7mgBtuO/FHCRBuJ5fkiHl0ar/UzH8E -eM2+9k4Ps41VhbnpCQKwv1SYk8KswCfwmOYUASLODxdsvCGjlLCWquNnCJCt -e1BiAjPDePBk5VkCMMf9fNqFeex1v2qQDwEKuc2iCjDbcEW5fL1IgJZihT+p -mMnBGtdVArB+SIRqxWFW+DGZczeQAOO/+C+EUeIbPuqYCSKAbTNnuC8l/iuj -FdNQAuhx3z1/EnMg64pAzlXseyu9Ckcw2w7YeZ2IwOqrksihj1mW1ddkMZIA -ezWenSBipjKMxV2/TYDttLt3FTD3BeXuZY8hQOLt34kSmF8X1E2kx2L9nnH1 -FsB8c3SkjnCXAKp1xRxcmI/y/MuoTiCAr9jfK8yYVSz4btg8JECbk0oOPeZ9 -19XdRx4RwE3+/R1qzCMfDuv7PibAzsoPyZ3X2Pz/fUGUKhWbv+OkC5uY40Ri -du+mEeCH/JVja5g97LO/izzH5v9Bj9W/mHWiayvfZBBAVGpcYRkzB/l7Ksom -gMZjhp1FzNNLm6GfcwlwI/CfB8XVOB7XY3kE+LC8343ipKOq2vMFBGBbS/tJ -sXeCNd+1twRYOKs5t4TZsOHcOksRAZYTQ8Io3xPYut2X9oEATYHi8auYl/CZ -xUqlWH0kGPg2MDd5VCeSywjQoSAssI352eOhAKtKAtymuXhvF3Ngx7rd9yoC -7DspfYkGG78lzQFV71oCfKy8Uk+pj6SmMsdOHQGUClqu7se8dd5yMa6RAKc9 -w1LYMXc/9+oUaiGAkLwQLw/ml7033xS0EYCq/eCyIOZwphfxep8JsCnyXIbS -L8VLAxZuPQQwNtVOJGCmfbUqP9tLgKPeBxs0MA9852C6+o0AXHOCRghzlIl5 -c+p3AvikkUWtMY8LVBgNTREgbZSWxg9zuU2/5Pk/2P35kw6hmO/f/EuzPUsA -6HQZicSM5hVqBZYJ4ORa+iiZMj9rn5Jc/xGw85GKcS3mi2sfhf7sEsAocVCk -HbOJQu92CLUyvHFfFenHvJrIUp5Crwxqh7fi5zAf9rqmMcCuDHsiz68KYuuL -ge0EwVlaGej3udwIw/zS1IR7WEYZxu2XP8dgNruB3z4urwycqFwuCXPc6r/G -MwRlGOO13fsWM8dwyrEgbWXwT6/RGMUs+KonPslKGXTePiwwxvYHgqHJ7NdA -ZTj/OD6GHduPuq7ivzgHK8PXk5cWhSj7VQn3x+FQZXAp27WSw/xBbiJyIlwZ -moNPzhzErM0eIbgSowwtg3+z/DEbfi8353qmDOcie1q7MTsH4V/ZNiqDJH2h -xi1sfwzsYiPlNSvDq5lK/D3M9+WWumjalKHe05UvBXPL0PuN953KIJNCX1OA -WVdf25RnQBn+dMQf78Esymg0NTijDL6Dqn3C2H7864mLtCeHCsjQ1UTnYqZd -0Smr5FIBGkfl7LeYRa2ErLh5VLDz23BRKWYnqpFLjQIqoM7GmtGEucXDs15W -SgUYfH92/cL8WtHXY05DBSyLhEMlsP/DpaqbLy67qUCbyf6j9zBv/voyR31c -BVrYViAJczibuE68uwqkPr3LnYY55gT5S+ZpFfhjoPYwD3M6zRpt90UVCLGr -GKzH3GZ85rTCLRX4t0R8u4bZ1re4qCRKBah/cef9w9yXTEtlcEcFTDpFkmmw -/9nodHqy8z0VIFIzm7JiXrvzrflWigoEj24wSGMW7zRT+PlaBfroLbgPY85d -Tw46/w6L95sNOWJWFPtVt1akAq42111dMWv63XBj+agCCeF1Pp6YLbkq4nU+ -qcCsoy9DMOYgJ8XFxD4VuMVPz5qGuWOEtdiMShU+2MpxjFAs4/T2FbUq2PYI -Ph3D/Nk3/RUjnSr8rGoW+YW5k0r5Wcs+VTiIkvbPYe4WtY0y41SF9+kDN7cw -9x1/6GImrQoqahF0B7D/eX/ukP0rGVX47DjHyUvxgqQ1o7wqcGYLCAhgHgj/ -YNCCVwUPoXVOMcxD6b0KZlqqkK92+p0C5pER3l1TC1UQj9HPPUixzImNl1aq -oMAxYGqE+afvy+V9h1WB9aXYhDHmUSrtqWYHVVBlXGWwxDwu6tplekwVNK2I -9EcwTx9/mmHqpwqkpv5pL8xLI2ImpsmqgDckp9/BXKmobvo0BctnpO12HOao -EBOzxVRVEDYzP3sXszCXj8Xj56qQQVUj9gCzmXGFzfQrLH57gWsK5hcFjs7R -laqQ90GTNhfzhU0vl+EqVfihuZr9ErOm8VVX5VpVKD5YbZRXQql/htu3BlV4 -eyrt8mvMm5yLJ2Q7VWGYEFbwHrNtyJ2zzaOqYNl5xqsas1Bj2jmhCVX49YKl -qwbzFGfh+Yu/VKEoykz9E+awgn5vvhlV+H41c7ke86sRKX+vFVWo/16BHcGw -841xdeg+BjU4sCzt+hXzO86VWFNFNfjo3mn7i1Iv/KVDnXg1uNkyenEKM6/F -yq6jihoUhG/ETWMOj1zx89BQg88ltpV/MNusrDhd01eD/sNRG/OYF3pXJT84 -qEGvoMfcGmbJ5cDvOk5qsHtJ9ec6ZifWtaRaFzU45hLStYG52niNsfOYGsSp -RL/awnyvdG3ht5cauMQcR7uY8SnrFaJhajDVfX6DDjsvuhcHBeaEq4FKWH7D -XsyPutfxSjfUoE6nIYEe8w7jxgudKDWQCksT24e5I3QjyvG+GhDWrsjsx+zt -tmkfm60Go/JP+tgxF4huz6x1qIFn6tawAOajRwPt7brUgMki75Qg5v3JC+Wv -v6gBvz/NHMVnWSdiPPvV4JFf2boQZumddpkvP9Xg0M20HRHMaYPPPF7/xcaz -vNshgdmSh79t3xr2fMkHA0nM27YPVT031KDpmVEJxS4tUdSCO2rgeGg3RQoz -z8eL6dH06vDdQsYBh/neI4MhD351KEevH8lhRt2VBtWC6vDzpdUmxXPMmnkC -IuoQ3798VB6zxU2FkG4JdeCxdBRRwLwv4AAvKKqDTRM5WRFzxOFfdgKgDo6F -kscJmAP232nt8lQHibsuNuqYY3n8/hw7ow4mb9fSKM4Ud2aaO6sOb4MrZyju -0cSZM/qqwxVc200iZjXPTy0HQ7Dno9Vea2BeqdxqLopXB84xjgEtzCzNo9P6 -CerQqweC2pR69TTv63ygDki81I1ix99JpjPJ6nCYdPc7xcXcas2SGerQncba -r4M50Od8U2KJOtQFzefpYY4PsZuSKFOHq8dejFGcfVObobBCHc56VfCTMPc+ -YTDpqFGHX2cUblNMbMps3NumDl/fyDgjzGuiww2XR9Rh0HR6FDAHdVvWO+8j -wt6Ji0kGmJn+KT2oYCLC9C3TCorTcGwnRFiIYJxYO0Jx/ZXu7XEOIuyrTJUx -xMyBO6LmK0gEd36m9xTnhx7PuIUnwvnopDIjSr+y9S9OKxPhttnSN4q7O8WR -hRoR/CO31ynekJoYYNciQt5jceIhzIc6vTieHiTCZafWfIpHJP2vFzkQYRSn -FWuM2d/a3prbiQiPWn5lU7w3RF0o2IUIHd8P11Cs+HmtlHSMCL95XVcoDgm+ -stB8BhvfM3sXE8xcHTePjYQS4VJTAK8pZuPLyXrML4gwq/vUy4zS72xDDo9M -IlhcjL9CMXXvwmRZNhHUJqzvUkxWM713Jo8IEueM3lOstrQx+uk9Ed630G9T -LH7BNSqkkQh3/lncMMccnkrv1tVMBHGqoAcUD7cWKcu0EWFJLySD4mS5/YNf -O4nwlXbvJ4pZpyoUlQeIsFJmRGVBWS/uwl9+zRDh9OUyf4pd7rfkkOaJoCl7 -+zrFJTWBVxIXiaDArHyXYj/Rz1IGq0Q40iz0iuLp4WtBabtEyPX3+E5xr9NP -IQcODQganQNLzO+sMs/UamhA1yT7AsVBlpUr5toaUPR3bZNikkVvxFddDTBR -qaazwtxmyvB0Sl8Dkq+v81M8aXi+i8VCA/gl2Q0p5tdR03Y9rgHHnaUSKB7R -smwcd9cAc7JtCsU5mqfsvT01wJP+dAbFasRk7+tnNYDWyegDxdbK2y9yAjRA -23ikj+JIXB3T3ygN2Chq5LXGbCY9nHz1jgasbl8XpZhdalWKPl4DPoviZChO -E5cB/gca8PGHigbFH4ViA+CpBkyfcrSneI7Tfjj2nQYQWP/FUOxENf5aakAD -3nrh/lA8pMsoNfpdA37957BC8bFgwpO0MQ3Yk2C9S/GppSu3eWY1gP5TPocN -Zf8YP3B8H5UmZP+U0qB4XVS3t55WEyxPdyGKQ93cLSL2aQJTr40JxRG9rzW3 -ODThx+8OJ4oTmozZZ6U0YfPEj8sUc9F5334ppwm91frXKE7Wf/jPE68JzPfD -blGcXjYy/V1TE7xvxDyk+HV+cG2nuSYIPt59TXHLvTz/9xc1wad/aZhi0fN5 -Lr2BmrAQXzVG8SXjPP31UE2QdDg//f/7O69YdW9pgkHbmb8UB557lfcpRROM -SnYZDmMWE38VTJ+lCQ8lMjkobut/aWz+RhM2rv0QoFj80Mux7k+aEFCmoEhx -+3buO+4OTUjdOKROcVBR7jWXfiz/eQY9ijtEcwVGZzTBZPC+OcXBW9l2iwe0 -IE5b2PP/8e7uSPHJaYGopIjv/78n7rgOJC0ovagVQvGl4oKWM7ZaMEwTfoNi -YTO6p/dOacFDPG0sxY3DR31KQ7Sg6vvXBxT7XnyvPxKvBV0FNE8o/pR8chJf -ogWtOrk5FDeVvD/bMqQF+ZE57/6fXy/dvAe1NrxqUSyj+MuKo/8uThv6HvnV -UNzPlbv22FIb1A2zGineA+PM0s+0IWRItJtiuXOikoUL2vDWPPYbxaU30ze+ -6OrAI/7r3yk2Thf9vBKlA9tUvKMUS9jvCUv+ogNT/2WPU7xLP6qgI6wLq2Y3 -JinezD06reajC3S5a78o/mval6VUrQtl33anKLYfSBQjM+mBa97baYrfn7V/ -anlED2T3Kf+mWPb87ebsPD1ohqT/O+1C2crurh44VX3/v/8H/mhIhg== - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - ImageSize->350, - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - Method->{ - "DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotLabel->FormBox["Function", TraditionalForm], - PlotRange->{{0., 29.999999387755103`}, {-0.2, 2}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, {0, 0}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]}, - { - GraphicsBox[{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], - CapForm["Butt"], LineBox[CompressedData[" -1:eJwVWnc4V+8blj2y98ze4/Ox1+e8j4ZNUsoukkhCyS4jIqmkQZTICKmvKCs5 -kpE9skIyC8nMzPh9fn+d676e536e+37e91zve67riLn6WJ+jpKCgGKOioPj/ -c22kqU7ydjb2ypniuK/bLLZ5iHjRYCAK0atYqOnkzWLnKn/Z8A0koU1OQ4Wi -uVksbbW2mWrgBXr2V/Hsf4G/Mc0HhJjN/mK0zCu4Lvl4DqN2Pe/6t78Wlbd+ -VEhYm8fYj7icvEJTh1LmJYHDcAETkXUwXVatR1Ppx5LcHi9g2vOWqot3GlHw -vRLOD0KLmHeIJuXcoVYUfZFp7HPdIubVRNm11N+NFPgNuHLllrHlyj3Tt5e+ -onT2uwtmtstYUOF2nS9NDxJh3f/EM3YZu3lvrXxBtRdVifnIsv9axjJsZjP+ -3OlHGkg9W61wBesZ6/KdOTSM5s/x/ZuwXMVErlnFLfaPo+BhwcuP9jYwiolp -65dyE0iduj9L68gmNm4cKewcOoECo/GWtNubWA5XcXGLyCSidV/3LxbYwhQL -Ob/nnptCV4r6K2wO/sN0h/qITiu/UGDcvuyLFTuYkIHPNueRaZSqp96kvX8X -282la2x+PI2kGFfu/j69i326rO2orTuDruIx+1kZ9zBjxtSbnJGzqP6G3a9m -dQp0UsdpqInlD7pxtUh159U+pP18NSfizB+0xy79WfP7PiRAc9dXq/gPsooR -891koUTfO6tpcmzmUdywk6CoPyVy8xAlRDxdQHd96KKFj1Chiha/g4LcS4hF -s8mMREWDGrfUk7terKB+kbNh8tv06IKUxPD6lxVEuVIqLkpiQCxW7GIiCyuI -9qzaq+rrDOhkzp+CC3p/kfIlrUM7VIxo8mhuNVXPX7Qsd/e/tzxMiCKH96cG -zRoa/tD/8Z4zM8ruoFFwVFhD+vei3X8XMCOjrRWfqGNraCrlexLzBjO6e7Rz -s/3ZGnq8s3n79UMWJLQVx+yhuY7U1imrH/WzIu2jW+qp5zeQqkNI5MpBdjQc -PB1cc2cDTc4wWff4sKPw7L7qnyUbiKn/WrvcM3bUsFlsrEaxifwSVG9rbbKj -E9lejq0pm6i04xQVRRkH8tscvrHbtEXWy7nqbMqFCrLwblfFHcSerd0w8I0X -/RVwjm46toMY7zxleMHDh1DStgYhcAfNRLao057gQz0ROk92Pu0ge01tv5xO -PrTrVHI65dQuCtuTfunVxY+O8b2ca4vaQ7zFEc9ilgXR03tH0tXz9pCP4BbC -dYTQT9rJo2ltZNzFdvZNpBD6GJJop76fAgp+nPN8xymMrD3bqvadogD9CWaV -ByCCwgyNbjydowDVaxr3sk+LIrEonuGjexTwL7B60/mWKGr4OKVOxbEPlFwM -Km6UiCJ2jeifnlr74PirwKtsDGIoV+KTiVbUPvBQ+qFsUyGGOin02Lp5KYFv -xwTFqkggiQ/Kz+gOUYEy5VoSXag0YrvsVmF1igqoW+3c1Sqk0bZsau8TLyow -eZwrzrQhjfoe07AoPqSCqSvjjfWBMij+8vB1qykqcA0Lon4WLosW5eLPPIml -BmmL6O93i+XR91E8bDyNGkYKLz07uy2PmpNXUxSKqGGP+kMEtZECyqZx6fo4 -QA1mph5xJSMK6NSY1sFxORroeS/TS8OnhKpTpiQUWmkA+TlwxL9TQa+OCoL/ -KA0kvnbNFaQloBTaY44f/9JAxQQh0EuVgC77Vz08KkwL3Fary6EJBCRl9YDG -/xIt1J4WHooxJKIEOoNfVWx0EBj8gCvgqyqyC3haYGlDDyEpZ1NcHDSRqFyW -JsmDHh4/t//L/EgT/RzKr1UIpYfzVhxMRzs00WWDskH6THowzejyfHREC8Xv -72b8PEcPtP/NtTnpaKOqF3ReWtEM4I2PeBkgXRRlw7IulcwA4yH7+lajdJEx -PfcNrgIGqLIK77Ft1EW93uJpSx0MIOBgm0q01kPz2qSWV4KMMBxbn3bGVx8d -6LisIFrCCAx1IhEnOzH0MzK4jKWBETjnhQ52HUCoUD3i0M4AI1Qaas/z+SKk -nXrHYXCXEfwjy7NvMwCyOpd3+6EpE1wq0U2IeQso6t/33/TjTLCFT3Q68hxE -UzImhUtszMDz26Dnu94RtGxT+u+qFDM00IXc1g88giiiJcy2dJiBVe+irEHJ -ESQ0ujNDeZYZlh7fOHFIyRCdSCmW4XrPDG2cOXan5YxQLb1QlqYdC3xtXo3K -PWSCOjVvLVd6s0A/WwatcbwJGnFbM0BRLEAR9HHoTZcJ2qzpHDV6xQKVqjQC -va6miBAcI2K3wwI0S5rJn+6aofSZ+SehmawwL7c/Q4jVEhXyOs7svWeFiwbU -reJnLVHlkSbt6GZW2C11zeIst0S9mVn9CSus4P8y8CHudhTRKhUydoizAZ4U -OFPnZoWwqTPGo/5skDnm6ZgzdgwV2jR/puRnh+t3m6IFDW3Q8F4hLbcEOyz0 -XkgLiLBBzAX3TGSU2KHDbyTJ74MNurR7osPMgB0m7mdsW6idRMSXPwYferLD -ud/LhV3yp1Dpxt8l6Up2cHh3bS1N1w79fNGvrlPHDmov+i62htshXovKQLN2 -dkDZ6o6V9XYoKDN8x2ecHTgoBmv6jtsjPVNGhgpGDrAQlXpoFuyAatIOiJo5 -cMDJVbE6ut9OaPEI5VmncxyQnHa7lIXkjMQWJ3N8fDjASPCX/No9ZxR1uEDh -4Q0OeK5yiOirfRod+aOu9f0VB4zenMyWNz2DmjFTS59tDvg7aniY9aML+jrm -H/bgGSeEsezLD6c/hxYZIHAjlxPaetfa9bBziEWV6bJTESe0/Of+K8L/HDKO -yjwv85kTFiJszrwaP4eqxdutP0xzwmVhL6O8eneUd1ZGbkKNC9yGFDSiX3qg -+tvLEsYkLrhuWbEX/NMDjZd8FHltyAWBd0CYTdoTCVOf4Aq044LwtfZCiZee -KCk7Yo8xnAvaVdXCud9eQGFT33pVm7mAoTkx9unURfSEOacz+SsXhDq9rXBW -8UalGr4t28NcMPmX+d5wsDdaiqH91LDABb+uRCdysF9C7tJqhfbc3LBIuDH/ -1NgHWZ1PiIo6ww1vUw9dXJr3RVIzmEr3GjeEpQQ57fZfQT8tPzJR7uOB9OO5 -2j9Y/FHeO71pIhMPMFlpSZ0y9EfyEdqZ9w/wQHDei1yOMn+kzKvKecyYB8rq -xy78fH4VaR6RWu94wgPf7v73LiIxEK0XZH3dy+IBmScJIc+6AlE5m3iRyhse -aGa3UPbmDEK6wyKe92p5YJ7fYkfxSRBCV/iGLH/zwFMbxZdur4ORcSYT3qbP -CxLO+/qCtkIRA1182o4hL8xHNdaVGIWh5ov0QUrHeEEom+167aMwZK5NQ7xz -jhfuHAdTN/Vr6FjH7gvzu7xwqfDWxc3Q68h+Z+lmyw9ewE0n4lBaBPKyG7Bs -iuKDKSnsSej7G4iPhCbMEvjg7vWwOJHpG6hBNDew/REfhOq/djwoGI3Ep69k -fM3jA+LGyWr2G9FoMIB1+Xs7H1giGvsV2xhk/NDw0bIAP5zquNP8WyQWrQW+ -lrsqyQ+Z59je6NrHomwHrup1JX6gOW6/X/RxLNoTH/+5DfzQrvyA/R1rHCp9 -e02b7jw/2Osx/JZnvIUkO94NCZbwQy2j11yh8G3UXSzom17FD0VrB+UEzt5G -EY+jqMUa+OHAO8sxzfzbaMjJSkn6Gz9o0H2LidFKQElzv68T9vhB/qJW10vH -O4iCUUL8iJkACFzuVr/XfA8NH77vcWlCALZD/WtEMpPQOz1Jvk9zAjAbXi39 -siMJ3VYta+RcEwC6ya3SzN0kpCv6XbqCXhCoT2zeWXJ6gFL+yU5RKQtCvoOW -hID4Q3SiuMblSZAgELkwythPj5Bi/nH2uUhBCCxNv/5+/RGiyvhZg90WhMhN -Iz4P5ceo+M5+0clngvDP5eRV52ePEZun7YjyZ0EwDbQWK45MRq0HFu3rmIWg -480oM9u5Jyib5wYjL68Q7EW+M+LJfoJCmXkqPUWFQOGaD8f7iSdI/p8eP6ua -EEjmV/Z8cktFcX2x/Xa2QtD2fHsHu5SGDt85cGLhhRDwsl1Jp894hj5sWVoI -aAtDhHXIvg+HM5GmyqMRrYPC0HTp1LO+y5mo+OyQj425MOR7Wot6ZmaivNbz -SYlnhCH+A4X5+l4mepwe0U97SxhCuXbr+mtfIN+DxS4r34TBgtEjr/BMNvod -sLHMNikM9bXmp2oeZyP3V1i08rwwmEWR8p3aspETV0uuJ6UIXLmAiLr6Ocj0 -58TvH/IiEHvnimy6aC6SjOcOaA0VASMiZYwaTR56Xu1ANxsjAqQHqmahh/OQ -wEpmCl2iCAz2aaS5ROchdkflDwezRYCqWNKJlTYf7SoZUVS0isDv34fCeNgL -0LeuoPgc4QOQPtMeyGFUiO7yD6dfxw8Ai5RET2J6EVprYZye/3IAuq7k02Y1 -FCHn6zrE090HwOZ38D7WhSKkNPH4M5o6AGBSNbsGb5F7n6x/BI0oMHjDON/M -W0SbMZFioCAK02om0TpmJUh3M+TjpoooHKqpN9EKLkGXrDnG36qLwl8bwytP -XpagPmoDBXFMFOQE/bPv0LxDuZ7pHymPiYKok4qHccM7ZKhmN/45QBTCfrcx -PHcoRSEJi7RhoaJwkVdcQT2xFL2ZilVQjxCF7PsVkdr1pYgnpdQ/+5YoVOi4 -RNwnlKGf25x0MU9FoZ1P+F7y/nJ0s6FdwbBWFDajtzfiBitQg93hq1+YxWD6 -xZH4m90fUeux94w/OcRgXZrj2LZgNeo2kc6g4hODs5a0ufvdq9GIDn0LJi4G -rz3TO/b+VaNV/lbR95piEJiUX5zJW4MkB4+3Zp4Wg/mzZdzTdp9QlP1ZidC3 -YnD0k0D2WaE6FGfdU55SKgYvbL/unTKrQ3dNj1iWfhADKauQmMyQOpSqKxO8 -VC8GQjsObuqDdeitwO/284NiEPV+m8nhWT0aHbwccoJKHCQVBGYK1RoRcojq -UrIRhzEnAdY7z5vRoOMtfzV7cQhSK59Y729G/s6JvDqnxeEhBVf+f2wtqMAl -3emwpzioi1jwUt9oQdwelTP218ShMkIlm+jVin77L++LyxEH7oW79pwm7Sj5 -rqvq+Ko40Fw78vG2QBda+HTwwePHEtCPN3L7GfSiCEos6UiaBKAE2aP5Z3oR -xyGd+3+fS8AAtfzYQHgvUq9TuWedLwEPHilb8Ff3oqAGodssVRIgWqnXua3T -hyha1qJujklAlqkFp5xyP7rPtByp8VMCDmmpbuib9yNx8z8Rk7MSMNnxrVT1 -Qj863DZx/eBfCcifepH2Macf3eroDNmllYRv9PlvJAUHEEdPweUARUnwHCmM -/rQzgLK4cv2kiJIg5bghqcz/DanbZPr2aEjC5kPc2EX9GzrZl3xJFUnC4vbn -C5wXvqHUgegL88ck4dShaz98ur+Rv7sjPJ+dlIS+Eu57335/Q1V2oR7mDpLw -iFRYsUk9iEYG/dwL3CQh95743gnNQSTx3dnVPVASNuY0rHUfDaJ3wvYu3GGS -IMExzCJYOIgMnW3O1EVIgv3LT8kZtYPI44eZs3i8JOhrnyhLnB9EhWPa9iNP -JeF8zKVjtQZDiCSubncnUxIuHhH9fNNmCLW7qtjq50oC84HSF8MeQ2hxQupk -6n+SwOHEE6p6dwip/+SwPlkrCcM+n3DS1yGUXP/r04VGSdALy5ZOnRxCW9lV -xPBWcpxmwsthdQjVnHVnz+sjz4OzLGCXaxhJHNKLrBqShIMJz3m/SQyjm+Js -S52jklBU+cSCUXUYmY9VdG7OSsLIi8dNLubD6L+au8CySJ53IE9mhO0w4sg4 -WyS+KgnelVWEX2eH0dVwbVGtLUmIv/Wk4P6lYTTgzJxoticJtD6NWmFBw0gP -G987TS0FVcvXNl5EDqN04TIffwYpmBiUoqaMH0b7dm7/iGORAgLRx/PR/WHk -Nnzm6DNOKaAW91S2SxlGjR808Ld8UvCqJc3KJH0YyacxqjQIS4E7t2S9S9Yw -uhPyI31QXAp0c7uC0l8Oo0W7dywLMlKwymVk9a9gGB3XuXWdSkkKrnsJyfq/ -HkalfM7zvKpSwMZP3Uv93zDi31B1VtSSAsxnWSKfjMP66dpBXwriG40GHcn4 -R+kwycZACr777LwXfDOMDj5++9rTUArOXOv1Hns1jHKu3hS+biYFabl33ubn -DSN6G4c7SVZkfYbc8r7Zw8hLnbCTayMFxQUNwYTnw6idk8b7gz1Z79cs/Z9k -f8SVb8Mdp6XAv/4x/R2y/4fdb8wn3aTgftp7b9Fbw2j97Y2qDU8paA+IX0sL -H0b2920VmX2kgOLaadl//sPoo6/SUzF/KbjAdO+GjucwErWi3K8ZLAXTJgM3 -rB2H0Q2V/lDT61IwaFKeYWA5jH6yFP52vkHWN9JoQYmGUWGbTUvsHSmo867g -/ik0jFhfy+s9TSLXU52lo2AcRpcT9gqKksn5HY0638j7SdssP/5bJrl/Strf -0qYhlCZ/fetPrhScG1o1LH47hHYZjl+gLCT7rf560T5lCNV92TZRKCWv//nl -+nSXISST11WBPkjBR4v0euLhIRQfmyt3okYK8mWmVU9LDSErQyuGa81SoJpj -yxg4MYhKpKSC73dIgSlRz9a2ZhDx0GxN5/RIQd5YyfCntEE0/DnrS/uIFHil -oQRBy0GEsoK0JyakIPibdzOl1CB6EWWRtz4tBS8lFc+f2fqGPAzWY0VXpCA8 -u+OQd8Y3tFJtanSZThrk3JI+2nwbQObfOTkJ+6XhroXvlODLAZT7b3jkD5s0 -tKnO0l+6MoBstX0CPAWkoaXtQHg+3QCqfvsg54ySNLy1faknI9KPeDsd/URU -pcn3wctbaz/6kO+8FGlYUxoypJjHdTP6kIRCec8pkIbR2dD3XEJ9KC57mOro -cWnIfpUX1ErRi8Zrczr220rDbFfZ5sb7HqQ3dimt2VEavN9VWsZ69qB54X1q -hu7SUFIzeam25Ss6nizlSgom6587PBUX1o1E4i/VKDyXhlsOxyk4hTtQYJ5W -wkyWNCR/GBBNt25HnQ0Uti/zpIEv0HpjILoN3aB6sCBeLA3O+fc3zv1oQdNh -ZSIC9dJgn2mGEby/oBIfimv0v6Whas1Do3ahBu2/22TcsCANbIEPBKMnceRe -mMQV/VcaioJlz6VOfER8M5KFezvSYMt17caZzgp03dVkaI1NBoxLbQ6vuL9F -xjZJOlOaMkARfzCu7Mkp/AqHRgC9vgyceXSysnzyJp7e0V+sYCADRRlDmQXX -HuGrJsKKl81kwNYi0FZ/Mht/geWJ7J2WgdbU8Sbd+nf4tkw1Ff8tGZidV5YV -+1uHy0ydAf27MlDtN+J31qQBt35Bde30AxmQ9Uyn7UpvxPOFTNZynsnAmmXj -vViTZvwke8+0arEM9H1qZnj7pAMv2pppMx+SAZ7S81yTuz34UFkCo++oDFxs -e+h2P6MXp72qYvRgSgZ2uj87zkEf7rTgX/NtQQbyRjq+Wlzrxxkn94rdqWWh -eueXnub4N1wj88XCLQZZqA2ulP4SMIifcT6i+JpFFi5+PmljxTCElw3E56zw -yULE6Ont3zLDuFsbd0qEkiycd1P9uGc8gt+LL+/JUpWF4T8rsNQ8glcaObA3 -asnCT/M3iuqmP3D22ox45oOy4K+q4q4qOorrhx9qJBjJgqGU9rNkh1HcQ/8n -1QlzWQjoPWoS9WgUry5VuJZ6UhZOGvirfqEew2eutFd8dJCFtXonVy7dMZyL -6Lc2ekYW+qjnlhu9x/ALr0p9ZLxkwfwjxmfWOYbzZhi4vguXhbznio6ikeP4 -gHtIIR4tCy39i9SWeeN4ilLJWvMtWbiLHK82tY3jfB8kb489kAXaTQ70jHMC -H4h06p1LkQWxi7sui2oTeIrx4wMbz2Th1uel0ZvWEzhfH907ljxZULoSsxkY -T85/Crv8r2UhIZcmtTOLnH822FiqWBbOtoxmeXyYwG3li5MIZbJwqqlLCLrI -/KXZYb0qWZA8N+B7aorML5OQMfokC20U9n7/rZP51x39rBtk4fMfzhMm9JO4 -7ZFHH5xaZKHddfStNO8kzre/ncazk8w3PRpjIjmJD3TTWvn3ysIjfS65dyqT -eMoTlBo+KAvvhc1OeuqQ+WeCJuN/yILi7EPxiwZkvsxb5ceTsqDtxrKLG5H5 -f2aCMmfI8z8r/tbDnMx/J/65cF4WOrN07C8cJfNDHZjLV2RBhNrUq8lqEuc/ -+PDU5w3y+moavYwn40H6tsz2HXJ8I+BAieUkntpBM/eNUg6KfhUQjM0mcfvH -mOYUnRwsq7lGHDWcxAWcAiMW98sBu3HvZjsi8yWKmv+xy8G58j/NrVpk/uw0 -Fx2vHMwVKLocVSbz34qd5hCSg6p/ke5OEmR+kH2+sJgcBDjyVO/wkPnYgxVZ -aTkweMUYqcVA5tO0ktQV5CCxXPkf+9YEbt9KHYcIcmBU+Pblw5kJXOABqdtU -Qw6aiO1Kjf0T+KBdgNBJXTmIjvV3els3gaeK/ufuguTgZNRfBYeiCVzwjei/ -QBOyXq8CMZboCXzY3+7IDUs5SBAL75S5OIE/1Uu6d/c4mb/zXVr8+AQu1EQl -meMkB+Xjr/sGhcl48qd5t58c5CXad1i8HMeHCw4kfw+QA7evGRlOseP4Uz/b -selQOXippm/zwH0cF9pruroXIwcVz1yOPBAnY4HX6YqpcrCk2pHQf38MF7a6 -snizltyP711C14lRvMcm47Feoxw0+lVV0iqP4vEObfqLLXKwQSVzb5F2FF9z -l7ll1ysHu4r/Kf/1+YF3XhsSU5yWg01uyVP7VUbw6FeHjncxy8M7aRru0y+G -8FlarlJBO3kwXc/6XZPWh2fsN3DsdJIHMYcfrJKWffgpjkuUMa7yoLuRJbJD -0YfXCX+xnPeSh+z9j2bFPXrxdPWwXzXX5SEhSF7nP/0e/JjrJJ97tjwkzr4e -K9vXjdN7sOMC+fLA28EVqPCxC6/2xs51vJYHTq+sW4bBXbh8cMpb7TJ5kLEn -pQevdOLUieamTM3yoO/T3730owMv//gutGhBHh7O91/Q4mrFwfVDUvNfebD+ -spnhltyCf6GtzZ/clIcvm3/kNIVa8G9HO/r5qBXg7P3F35/lm/GtsRm1SD4F -OJauPOXt8AWPurlomiasAEV8XZJZvxtxJoV1l/fiCsCoGVR++VojLuRPnTij -qAC35vc7D+Q04CTaA3PHDBTAd3FuJpihHm8okKK6aKgA8xkZh1FuHW55VFHg -ppkCnNQ2d4g/XIc7p+gYV9ooQPaXKuWcmM94hPyJbPELCnCZVB6eyF+L11re -clxJUgAP1rgKdUYcN125d4U5RQFaTEXX1P2q8a/Jj+NlnilAQpO5eevgR3xy -NKvc4aUCRMYnkzLeV+E0V6q56j4owPvQJ1f/xVXid3nrFUZqFKBGwYfrK1Ul -zlPVcnCjnty/57L2vsgKXJrmm69ipwIIG7qUQFQ5bpy80vpwUgE6vFYXLjwv -xTv1tibezCjAXmSiPLdiKW47SvHvy7wClOWXNvdWvsc95VjkdjYUQKPsWWfI -yDs8/oNszDlmReDxNSkPIZXgbT+cSJqainDOcuJ22fEi3PyzbdGmriJQ3bjp -10tVhDfnHpf4iBRhms4678OF//Av3iYMh00UYSIjMVhF5w1e+0+995ijIhza -5yWkvPYKN/ihYsztoggb/2K/jni9wmtq5T8MnFMEoeFojGWyAP94SzTztI8i -/I1YsawZysfLefd7e0cpQnrPnzW7Xy9xzX+0o4RYRRA/kMIx7fMSfz+y7/jf -24rwzaziSO5WLl6cs64d+ogcv5CydIcnF3+tNkF9K08Rsj8+52c5Tz7Pj1Y+ -zW5XhH8vw4KOn83ERdXes3p8VYRol0DVVsZM/DlPUZTCgCLg79xq5ksy8Kff -czyKx8j9fxe2cTJl4Mle99Vr/irCD2tJBvmUZzjP0YSXNzYV4Wkob78UxTP8 -oWqsgNGuIqyXv/5M7fUUT9oMo2inUwLdzKOlWiZpeEKsR+uQgBLwmFnfYJV+ -gjN5nUXPDyjBSL2UdU1WCh5v6VzsKqkEqlWjvxclUvBY7hMpM0pKUG6fGp2l -kIxHZSG3dVCCAUNxnOfUIzwQ59nmOK8EO4kve5i5k/D4wpdh1V5KUKDhdeZ+ -2X08/Yn2jqevErTS3/k64nAfb7hiv1sTTK5/9aJ5aX4iziWbTuGToATe94bi -5ovv4rLcKpEC95Ug4RhLQhfHXVyPsmZfwyMlUOJq+9Z89Q7uOjxGKfxcCVy6 -UmIaDifgRYlSNC1vlUAhgkLegSYer7tWGhNQqgQiPR2158Nu4f0XjGjFPyjB -Sdt+E+G1OHz3sCddcJ0SbKWWD1gtxeLmm4UMMv1KYHWTju8mzU182kWd5ca2 -EqwFVyKttCh827L+rvI+ZTCGuHJHrSicVf8k6yCNMuhvLxUE90bimjxBbERW -ZSi6oUzw543Eo5s/cPwQU4bDLMNM31zD8ZQy8wfx0srwQvXbu9Ty6/ir7O+c -mgrKYO+eWFDFfh3vvr7HdUddmXw/IoqNtoWR98MhXj0jZXiJAiTmvEJwddGe -5J9mytC2FrDydzAYN2I+x5dkpQyWTp5d4+bB+KVfN/ln7JSh7nq3hYZOEF6V -1iyYfFEZyvwb3mqrBuC21NaiK/eVwWQj5sjz1Ms4lljFTp2sDDlmnixccpdx -CSEZKu6nykDg/EVFV+mHz6ttT2nmKoMvG4e86oQvHn0291VIJdnP/PMLl15c -wi8ssD27jSvDZE9n2IVJb/xoaOjdp3XKMEdtTEqT9yafh1Z+1e3KsHvHwwo+ -e+H/1W5pUk4owx2LuBFtCU/8oeU5Wc5pZfCz9JIKjPbAQwY7+CX/kOvFNpbA -zHn88HL29pF1ZYA27xXZj+74oNjR2ltMKmDdm/zFNMENr3ldUZLKpgLLX9w1 -v9O54Tk6kjmvuFVgo3LGyevmWdz32GZs2wEVoM+tndJJcMVpI7Ms2NVV4MH5 -rZe/y8/gc/tZkLiOCuSd3EI5pmfwrpQgghqmAl0F3AK1H0/jT4ssOG2MVaDb -LTXXStgZJ46uD6Q4qgCDmLc5A5cDznPRtTnfRQVGf1i0Vzja49vrrR8q3VWA -q/u2ema+Hd7A+iJ92FcFHv672Vp21BZ3ROZuojEqYL5d+OFhsw1+sKXUhhiv -AuXWxe63VG1wmVNiRgfvqcDT9qrjdOkn8OVLa3JuT1TA92flTavw43hcesbC -y9cqID3nScPoeQy/JM80Vl6sArm/H17R+m2FHy+92t1UpgIe6cYPHXytcJF2 -0/e/P6nA9u3A2Nu0R/GSnb8hKn0qUH/k4GzLAzP87pfjX2YGVcD95K8LbV2m -+IUHxdzZP1SAcMqmXJzLFBeX8y3im1GBzSGlIe8cYzzpxO+pfdsqsHaMZ1d8 -4wheyprD70xBgMffsu0dTx7BJa+egA+UBMgR+74flR/GKaDkzlU6Arw8n0Bf -cvMQXt7rKzvLRgBXfYtSc3MDXFpP9KgRJwFu/e42ra8H/GFGx9VsbgLwM9bT -njwIuK+X8mdnAQLwNFQJbcdhuMy+OaevEgSgjpDxs+/TxR+6p0UTpAnQPl31 -z3pdB6dsNX11R5YAc+EtFdHCOvjI4/wNIyUCcHyvLZYI1sIfK55/UKVJgJBE -ul6nC+o4dRJPJb8OAeJHjIXli9Xwy+v1owF6BMj7eTrAaVcVt6yVVCYCATYY -LVhTs4g4je34lxwTAoStyqT1kJTxyx/vL1CaE+DS4cN8fSxK+Ki4Ac8ZSwJU -H95NhV8KeNWf52cFjhOAntja/ea1HO5/w2n3riMBxv2+axclSOHj0/ul5pwJ -IFDKyfnuoSRuZVllZuJCgL+dYZ+WXkjgivyCT6jcCbAs3YPd7xLDJ94MqAX5 -EKAmtivr9i8h3Iorzr7XjwBVH24lLh4XxKuDtSJV/QngS0PxqaGZH089/Lh9 -LogABN0QypE+Htx68LinSxQBJrEV7zRXdlyO1dd4KZoAtjO5Av772HCKwwky -kbEEMGZK/MZrw4y/eV03lZFArtfNQtxRp8djxkfrCPcIIJo96Id/osEdeXey -au6T470UW3wuVDhDpIbr6GMCRLRffJ34aqd69P0xA98nZL0axonhJzarS2e9 -RSmeknE4O0niwGq124nckQOZ5Hovti/FK85W18jwOpx+RQCKze/XSenlWLKj -mu7Ca3K+CM1x8Zyv2KX7R/nDiwiQoaRYyW0/ign+i+1Pf0/GjXlbNV/msGWV -7FLlcrLfi1d0De2WsC9uNY+qKwnABozByhp/sYD2jeMjOAHOPL87EZm9iVlQ -catdqiXA4p1/9WI625ikNpFjt46s36y/WqlsF+vO9OwUbibAw7zEjz/L9yGl -q4PmTj3k9WTicpHZoEHUBWsKf/rI8zS8J1i/QIsGRziYrn0jrwdJgaA2Qofi -jM2ano4QoO50tZxfBgM6fe18nuIY2e+I+/Z7f0akWXwjtmqCAEK/qLjeAxOa -FKw6MjxNAPO4xbMfa/ajD1YDkhd/E8BfvEOIeJUZJcX8pdr+Q9b/aVZOXZwF -oQXFWsEVAjwNCv/7nzsr4pE0yXy1SoDtT0p5t3ZZ0ZztuQi9DQJgQzUnBo3Y -UGrtM8xhh7z/knbk7TvYkN96hfDvPfL+cw9P92VhR8aKfdshlEQoCny5FWvK -jtYesXxIpSPCC8M13v2V7KitWT5VnpEIYRcObmb8YUfZe4bBlfuJ4C6/Rh8r -woGOeYZrDbITgXZxdfh+EAeSTU/jucBFBNnnnIJDmRxot7tsdZOHCPFXsYjq -Lxyol66n5xY/EQ6Kvdax+MOBCvUXS/iFiPB4UXd/CisnuuG3/0G+CBEaf1Wc -/E+FE9nnyl7WESPCPyZtriwLTkTP5kKwkyaS77Mj8043OFG+iTHPd1ki9IQ+ -+tGfyolMb6hsn1EgQvjOVl9oESeaq+IZn1Qiwt9letKpOk50Z22n0YNABGH2 -MtnAPk6kTJh6PadKBE7pWpfpn5yo07P1ga8GEZpXPV3LVjmRX1ZJ8F8tsv7n -UnaLlFyI43vq6SBdIkRVW8o/Z+FCJTxRR7b1iaAa+Nmvg48LnbDyVIhARLDJ -DI9OEONCa7es2KkPEkENU7o8JsuFkj9rrcceJkK/ZyHtN2UupL0j8p3JiAgs -f5NarqlxoUFN2s/3TIgg1J7FMKjJhUJ9/+RxmhPhTRDWvK7NhYQKeu4mWxLh -5tOGgVEdLvRx4oO/4DEimG9Q1aWTsbNwlv3z40Sobwn5oUvOpzgVDxIniZA7 -XXW4WoMLZSb6Sb+0JYLn/ZIeoioXOthsu1/BgQhZpuPa6UpcaJIKlt84kfMb -XkwykfXGkGQGVM8QgYnVnucG2Y90IEt1qSsR7rK9HGAS4EKNRatZuueIwP46 -nuoNOxfymB2+VX2eCNoBt0h+9FyIUbLO5+AFIlioNm477nKiV06vbBouEuGk -hVBc0AonMk9O0jP1IYL/SamN5l+caL4zWKzdjwiJ+ebaDkOciHDY+E9vABF0 -m0q3jtZwoq5rKl/tgsn6RIdCPr3lRJfLeCq+hxLhmkXbl/gXnOi9/FT0VAQR -+s69oCNFcSJd9iih1XgiaBjGanzS5URDpp6UwXeIIPIv0OOBDCcKi7aa3r5H -BPFPU0yznJwIXxd5R/2ICFL/RZzU/s2BDo98MON6ToT1N3/6hh5yoCneLGJK -JhEGDP6zs7nOgW4ei+cVyiaCUat5TOB5DtRUZzshkU9+n/6eq6/X5kCWr1ZD -1ErIJ8pq2pOVfnZkF6RSYN1IBK6Wa78TmdhRQBcb9qqJCEGSc4o0K2woSX65 -i6qVCPifawIOg2yoefjd5rtOIiiKeJu9y2ND+ga6JryDRKhhTFI/fpgNiTIe -mR6aIwKryPaZ7CUW9CvNXvochyrMO2i83fjEhKhX9So/cqmC5EaH9f17TEjU -UtiSh1cVsOqAWkMnJmRLMXq1UVAVDNnXY1g2GVGz27l6OSlVMO6/yKCvyoje -KPm6zWupQtEfvWadQvr//9f4ItBJFe6V2jBP1dOgrV9f5ynPqMLroLbdjEc0 -KIJNXO+uqyrcNGkNyjpHg+Jdqr9mn1eFu2eLlK7T0qAMqnXqbj9VeBjzdSTZ -jBq1GnmcV7ypCtei7795PUGJrH1LS8riVKGAhQ+nLKdE/SnUFIduq4JgxuCj -rARKND6TkWKXqApPDt6mbdKkROu3vzXdTFUF6/THv7Lv7kPinaaKY29UoeRM -3kqGOQXK20gJuvhWFfget715L0WBlMR+1a2XqELrCZsqhd09TPvyDSeWClUY -mx7953NuD7Pgqrqr91kVxtdjC7d1d7EgW6WlR/2qcHstx7Jh3zbWPspaakqh -Bq9Z14lqW+tYu6xtUQGlGkSOpM9jtetYh29GASONGhQvrThUx69jnRTE580M -asC1++4rt/A61i1qHWfKqQaHG/41cButYf1nHtqbSqvBzryTbst/f7GBvOET -BbJqcGiszKrhOhkvSh5lVFCDkIPd3+Ut/2KDEe8PNauogWeSSIXS/Ao2nNGn -aKqjBnsP6Rfo1Faw0VG+PRNzNfA5nlIR3LGEjcq6bOZbqkE/7/inquwlbMw3 -f4XhmBp08RJynUOWsHEK3ekmGzUQPGnnXCW9hE2KOnSZnFaDZT4jobYbi9jM -mWdZJpfVYNrg1FfXZ/PY8qiYsUmKGsx/D/fhNpzFPippmDxLVYOshNRFLrpZ -LC7E2HTpqRq0cFJ0Zn2ZwUS4fMyfZKqBqLw70ctiBjM1qrKaKVCDRG35G5FO -09iL1yftbn1UAwdeHfj2+CfmveVp/x1XgwCl+BtmZ35i2kbXHIi1aqBJ++S3 -nvxP8vyznL41qIF86QjrA3wK2+JccpHrVIMDlxeNdxcmMeuQ2xeaxtXg+IzP -41n3CUy4Md1LeEoNAjvaLRq1JrBpzuKLfr/UwLmHPYCDYQK7/nrgEv8cef7x -UmcXC8exglGpK56ranCW/sX+t5tjGKVRTSgDvTooHA/Ov5Y7ir3lXE0wUVIH -ge6RlFd3h7FJlauGnSrq8PLBgf/eHxzG+MxX906qqsPlX9YV0etDWET06mU3 -LXWYbSkWv3B2CLNaXbUNN1CHV1lPg0QOD2KLfWuS723U4btvTEKazAAmuRIw -omdLjtuL6Qv+6sdsWdeTa+3VIc5089ahl/1YjdE6Y+dpdZicWPOJlevHEsvX -F2c9yfrG5rH/NPowldSNKtHr6vBZgjZQzKsHcy0NCngZoQ7vx8/d91bvwR53 -b6go31AHSkHhXJPdr9gu4+YLvTh10PWXYil88BVrD92MO5mkDgWiJR+X67qx -S05bJxJy1eGv0ICFHXRhr0W359bb1UHD2enHFYk2zNEx4MTxLnWY8VdT0Rls -xfanLH5481UdKOp2DN7db8UusE7FnxtQh+m0ut46ylZMerdN9usYeT7d1x+J -/mnG0oeeu735qw4ylNS/bMa+YBa8Aq0M6+oQfsv0v7cvvmDb1g/Vzm2qQw4c -u5nv9gWzb46jFNpVh9B3rpfPzzZivBV+GbfoNKDHber6ynYDlvj40LCbgAYo -mYEBO6keQ90fD9UIaUD/atNeFF09Ns+s/UrwgAb4JaU/Cumuw8xjFEO6JTRA -4OtD2TXPOozBn5sPlDTgiC3+8V/6Zyzq2K/jgkDOlzvaQhCtxfz3327pOqcB -Kj9drQrmq7EE3su/T3togEhU8NjCk2osW9yOaf6CBrRcCKYTMqzGerRlzBh9 -NSA1Vt1LJPMjpn7uc/PBEA1gkj1y+pZLFbb68V9TyV0NGB//cXyLoRJjaRqf -MbivAUbPiOYPaysw6Z4mhs4HGvBIGt9cDK3ATs4mm8ylaICkJHZkdrEcK+VR -b5LM0oDQ4JTr2RNlWIDPxS+PyjRAb8n3Vuzse+xuyPFpiUoN0M7IF3F98x7L -jdGlL67SgAN14ZRjl99jfWn0xu2fNODCn1eNdTvvMM0v2Y20rRowL3fl81+B -d9i66PeGwFFy/l/nsTi/Yiyo26LejkET3FOlDEcY/sOYdpQfVDFpgswQvRix -8g2WLsPmcoBFE3yjtgaOer3B6sO6tyc5NCGWX6V1uuM1xiFzSt1XSBNeiqRb -HntRiBWGnsm6qaIJ104q6h+7UIChXAO/GaImjP389SlYugDr7hRH5uqacPMe -N73VRD62KTU1yK6jCdwPlxd2nfMxw05PjmcHNcGA261P0zkPG5W8Elliowm5 -dC7bmSG52JWjJ47y2GpCplHM8VHIxWhDNISD7TWh3kK4tJguF1PqWC/HTmuC -VuvTSubkHCwkOGyxyUMTFpyt7P2rsjGu9pjTo6GaQD3oEd4qmoUZBaaQmF9o -AqXe+5pnhhlYdu5hDrdsTei50CH6WDgDo+xb/FmZqwlUNok3fs88x6rVTRI9 -XmmCYzNbSJvJc0x9eXP88ztNSODqafjFkY6JezvEhTRqAj3HY6/mL2lYxFM6 -p64mTfhx2Vb1Q1Qa9r2lhCjbqgnN6hXOjqQ0LEV+/1BvpybEeJnvy3+XirFO -VykRBzVhpvcPk/6rJ9i2q8jXX3OaEH0p7fNQaTJmn9T8ElvQhOAn5wP3hyZj -ZZ8Cwh4tacLBoF/dX1Eydlm0Q+rQmibs+3UnVbTlMTbzPTwofY/c3+fo3K3p -R1if7ZiwDYcWBGUbYmdJD7G3ltketVpawJ2JnRA2vI8FWXxcNdPVAo+q4phh -nvsYZt4X1auvBQEmT4aEphOxVhP6Z9MGWnCpzShQMCER+3n4YheLuRbkHPJL -7y25hwnoqes6nNEC9qaJey68d7BRHYvGSVctoMmLY2xuTMBearufuHROC2pc -ogT3Bydg6poplyIvaMFxPl6cc+Q2dpS4/eKlvxbcf7M/c+ltPBYtU8f0N04L -Yhq8D1GEx2Gm0t9Trt3WgrBpTp5NvTiMXWpNiu6uFixFfiXmb8Zi6eKyIPBA -C+YWOgJlAmOxCuEEf3imBbGOSi3uITexec4T3xPeasHMhkCxTUY0Zksx+UZq -kFw/CaT5nCOxVJH1mRvDWvBkhDWijBiJDeszSo2PaEGoThvhC00kdjqYkJY+ -oQWyV2S5df6LwNyXw2J5/2jBlcGYfzp0EZj/JPcZBgptyBfLr3rw6BpWSimX -dp5SGyKa/ju9ZXIN2xDV76un1gbMrldYfC8MC3VyNY9i0IabUgv6r73CsKi+ -N9r/OLQhtzLK6ppFKHb/ixH7HyltkN81u3dJNRjr/mlvbiarDbuzFgaMy0EY -F82l2Hx5bTAvnrlsWhyEpRg83Dmnok2e97Gmt+pBWEbl6MyItjYszofYLUAg -9qYwuLbTTBs8BmKnWq5exZoTX11556cNUyvsFXuGl7Gr1xXOH/HXhvK1ZAl3 -rsuY6MVX9n0BZD9D51Ntx/2wq0avDDZCtaGq6UzWULgfJrpbwKp/Uxsk97U1 -Ej75YgFeBa8+p2qD5rjRwZKyS5iYnfzzE8+0gXicgTfP9RLWaliQNPVcG0Js -2o/FsZDj4gXBdDnaQDLV+Erh6Y21DuQbmf2nDc+7h8ITZC9i4ob5E92ftUF7 -2NR1o8MTa1OT6z/boA3+slwykXGeWJBYfvPfL+T4SeqaDgNyfDvvLU+7Npho -3Pn5vtQDCyrJC7cf0IbUHYNkr/zzWLtonuD4nDZk7LuQ+qHoHBb8L/f4ErcO -mNFNum3ruGLzf5YsAvh0wJfn1GkfelfMbVTf+J+ADpyeYWLy7HfBLOu79WlE -dWCQev3TbIALJn5vV4pfXgfCX8gnU1SdwVrFT24ApgMbUoffJVU6Ywbcmcv1 -oAOfh6S46M87Y6V0c3Omh3Sg6uZkwhkuZyxjLnLshLEO7Lx4L//Wzwm7Wvq6 -2cOajCM/KN/TdMRETGmeJbqT63FrPj/0yw57oG+VzO2pA7qvJbj7M+wwepW0 -+6leOhD2m3VHzsEOW+Yk3sz21YFHVxnpaLttscbvjj7lITow/Cbp8ukvpzBf -v3cGo3d1QGxW5+pcrw32OeXsT5UyHRBoV3Hk97DG3hXk3b1VoQPnjXtOuutY -Y9lVfzQnPujAbLZ3sxyTNRY9Ghj7uEYH5F09vFmLjmGGsgmyO006IKu+eE1j -zwr7UvbuQvOwDvAunqCbPXsUK2/a5JD8oQPZ1YXbR7iOYvlD2IdrYzpgwjS1 -41VvicXvfWEi/tSB3zF/pFnkLTEzo++FyQs6EPc828B/2xxr76NZcKPUhb4f -R+nE6kyx6mnT5GpqXfgud4ikHWGKvdm6h/jodMHYNq/qn74pdk9EILGFSRco -VX41RpSbYFbuykRVbl0YOCJ97ESZMfZ19eSVPRldCHIx7C/vNsQGuPLWn1jo -QuwBLXHKgEMYcc3OVtpKF8YpPnNfh0NYfD9TRbG1LrzpaCHeYTqEkVJ9QlpO -6cLIMblHzlkHsRcHtHa2XXRBcyan78U3A+yifAPlmQBdWMwJsT53GrB6pqCz -c0G6EEXFf+w0+TNN5I9cXVCoLrhcdxTppQGs6787MfcjdME3N+a1kyPCNDVs -6D/H6wJ6crJ9jh7D9sEks/RzXagsM7l+LUEPsxd7fKk4Uxd+HEp7+gH0sHeU -xh1Yti6EZl1lbl7VxdzrXyWeyteFfOPUTUtXXazV9ArnrRJdYPY51vPhsA72 -2IaSf65RF05nUOaYKWlh8l6iksWLumDUyX/ofbgatuvVqsq5QvaHVHQzLdSw -rxeDDPxXdaFTYb6NWUgNC7vU6ay5pQv8pXdyzlaqYu1+EU8qqfTgygRd3cg2 -EfMLGmX5zKMHtQbfn1OmEDDD4ARhSX49WCL1Jbl5EzCBEG3FGEE94D3jtKl2 -iIDVhiaaGInqwanzguFKoyoYVzhEt8jpgZ+PyOGnz5Sx8piMza/6epC5d+mk -DqaIJdw0p9dAenBbOlqgaFUBc4nd4HlsoAfMpkuyY68VMMZbVuq2hnrQ9G/2 -vwuiCphjAoXP8FE9CPPmwqaZ5TGKB2cmJ131oBNXU6VikMWMMkQ7VuP04LR3 -hbmpvyT2Myd50vS2HiTXL7A3gSQW/Ypl6/kdPdAp/B7bxCyJ1ZZuS5om6cEB -2uFLpvkSGNY2EJKepgdd/md05X6KYxpbidJGb/QgtMT4okWAGNazR6f/tEgP -LlClbZwwFcMu04QfWyrWgwgSNalFRAwrYvMOSyvTg5ilokd7X0QxRRmT7oUa -PYi2TC7xFBfFJE7su57yVQ8KPtbZfegUxmrtgh786dWDUgJl2csYYezM6YW8 -gwN6oPRj98AxPWEs/cL3r3PDevDVtDv/a54QJhBZIWfwUw/KbzYWuSUIYuxv -/HpnNvRA0m98WsmfH9ujG1fUE9GHKOXqmdVKboz2e/1Wrag+NE6nXksP58ZY -ivO/mEroQx+rnsjMYW5MxNHPzV5WHxqYPDKcurgwrIjiabCqPlzmvuTxcIkT -C7M9wFRuqA865ef72iw4sGglqm/IRB9Wopc/dQlyYAmUv3IbzfQhrEdAyXmW -HXta+OZgv5U+TGlACeMtduwDBRayZq8P+7+xFse3smFbeY4z6j76MH9rmX+m -lwWjvA5lVX76EPtjE72LZMEYj0vGHPbXh+jNV3bnlFkw/p3foieC9YHu+Fq6 -Tzwzpn0s1PbKDX1Q5rjjNma+HwvcfNL4NlkfHvAYh2puMmB/TfpzlGv0YTHs -bEXDKA0WiL0Xu12rD0ERU2/25dNgW6oPnv2q0wdaWsX2Zj8ajELo6KOMJn2Y -IXFP7qOhwfbPN0RzfNWHmBudr4aJ1JhkUunZtSl9CKDJ3eTPpsRe3nz4w3pa -H5opPh175E+JyYdedvhvVh/azJebbx2hxAhuysc9FvQh/sUjq2/T+zB9zdyD -gxv6UPraKGtJfR92YvCRWDUTCW7X7rSy1+2R+tuvPBNgIYH8cr4S35U9kv3n -Y/yBbCQ40hi7MSe+RzpTyMxO4CbBRze3J5vRu6SL12MoXoiQ84dWPrlb75Ci -xa/+iCGSoGSpb2eE7R/p3YUTzyxOkQB1PKx4y7pOqqEsdV+0I0F/6ca2YPsa -qSWVl/DAkQQCn6Ee7qyRxpsHawdcSCBYnpLxlnmNxK7gMn32IgmqCZF/1nlW -SZd+e6uFRJJALNT5tZvJCinkRse2UDQJOh46MNzmWCHdFCQ24DfJ/SsHXS2G -l0nPzP7a0iSQYLSqVfK53zKp9VXI9cTHJAi97J1EngBJ7mJsU+4rEuSMKK+A -2CJJnXomyeQNCaLFpTU//1wgwVNTx7kiEvzzTvRlSFgg2bYyLxBLSeC44MX9 -5Ns86abiQ66PNeR5vCjcuBrxhzQ5l3H6ay8JWIvSPjVszZIWoynlAgZIYDi/ -z3L/m1nSPyG3Zb4hEijkmLEpus6SOCxkYpxHSbBUIXp7sXWGZPD6dcHMLAmG -6T7JmBVOk8yPsPon/CGB9P7JvQPu0yTb774klUUSZLcJuVeJTpN8mdU7/VdJ -cHydjuZQyi9SWM6jJ7wbJPDPiB2TtflFiiWtu1ZukWDzx4MHbRy/SEm9topO -OyRoCfXfVu76SUr3rlzd2yPbfBNEZZb4k/Q/3DpYYg== - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - ImageSize->350, - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - Method->{ - "DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotLabel->FormBox["Derivative", TraditionalForm], - PlotRange->{{0, 30}, {-0.6348616691103677, 0.44822147856188}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.02], - Scaled[0.02]}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]} - }, - AutoDelete->False, - GridBoxFrame->{"Columns" -> {{True}}, "Rows" -> {{True}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], - "Grid"]], "Output", - CellChangeTimes->{ - 3.6218197767172604`*^9, 3.6218199360216236`*^9, {3.6218268665797195`*^9, - 3.621826871430992*^9}, 3.621827108877258*^9, 3.621858435037676*^9, - 3.621859387065016*^9, {3.6218640713301554`*^9, 3.6218640930944*^9}, - 3.621864331958062*^9, {3.6221641643120065`*^9, 3.6221641763376455`*^9}, { - 3.622301014121069*^9, 3.622301037061865*^9}, {3.622312269687956*^9, - 3.622312292426001*^9}, {3.62233786361287*^9, 3.622337886301251*^9}, { - 3.622379939476603*^9, 3.622379962748437*^9}, {3.62238922674583*^9, - 3.62238925158289*^9}, 3.6223916116500387`*^9, 3.622391752414504*^9, - 3.6223917999355927`*^9, 3.6224180936418467`*^9, 3.622465549397994*^9, - 3.622468035594721*^9, {3.6225047874062853`*^9, 3.622504811113818*^9}, { - 3.622563745582025*^9, 3.622563771658589*^9}, {3.622761063106062*^9, - 3.622761084831884*^9}, 3.6227807919335127`*^9, 3.62355490231734*^9, - 3.6235549503245068`*^9, 3.632018634574313*^9, 3.63206410767843*^9, - 3.632071956640524*^9, 3.6320953143065042`*^9, 3.6321479889455757`*^9, { - 3.6914609026335373`*^9, 3.6914609322138767`*^9}, {3.698168620923491*^9, - 3.698168648866424*^9}}] -}, Open ]], - -Cell[" ", "Text", - CellChangeTimes->{{3.621819951059374*^9, 3.6218199755421925`*^9}}], - -Cell["It seems like if B2>B1 then we have a problem", "Text", - CellChangeTimes->{{3.621819978722469*^9, 3.6218200197406693`*^9}, { - 3.6218222380408854`*^9, 3.621822238054886*^9}}], - -Cell["", "Text"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Better Candidate (additive sigmoidal)", "Subsubsection", - CellChangeTimes->{{3.621793218333062*^9, 3.621793238712228*^9}}], - -Cell[TextData[{ - "For generating a better candidate one can firstly start to simplify \ -multiplication sigmoidal function (", - - CounterBox["Item1Numbered", "multiplication sigmoidal"], - "). If we set A1 and A2 into 0 we will end up with " -}], "Text", - CellChangeTimes->{ - 3.621818932995361*^9, 3.6218200267721443`*^9, {3.621820057092312*^9, - 3.6218201096028323`*^9}, 3.621820440660839*^9, {3.621820566469471*^9, - 3.621820583889927*^9}, {3.6218206180020256`*^9, 3.621820764496542*^9}}], - -Cell[BoxData[ - FormBox[ - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.621820822992051*^9, 3.6218208257353973`*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.6218208480305977`*^9, 3.6218208480345984`*^9}}], - -Cell["\<\ -This function also have two different slopes B1 and B2 for increasing and \ -decreasing part, and it behaves as it should in the limit cases\ -\>", "Text", - CellChangeTimes->{{3.6218208548651257`*^9, 3.6218209217988653`*^9}, { - 3.6218209941956387`*^9, 3.621820994211239*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"xValue", "=", "2000"}], ";"}], "\n"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal", "[", - RowBox[{"Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], - "]"}], "=", - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]]}], - ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"fDProtoAdditiveSigmoidal", "[", - RowBox[{ - "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], "]"}], - "=", "\n", "\t\t\t\t\t\t\t\t\t", - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal", "[", - RowBox[{"Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}]}], ";"}], "\n"}], "\n", - RowBox[{"Manipulate", "[", "\n", "\[IndentingNewLine]", "\t", - RowBox[{ - RowBox[{"Grid", "[", "\n", "\t\t", - RowBox[{ - RowBox[{"{", "\n", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", - "\t\t\t\t\t\t\t\t", - RowBox[{"Sign", "[", - RowBox[{"fDProtoAdditiveSigmoidal", "[", - RowBox[{"Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", - RowBox[{"-", "xValue"}]}], "]"}], "]"}]}], "]"}], "}"}], ",", - "\n", "\t\t", - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", "\t\t\t\t\t\t\t\t", - RowBox[{"Sign", "[", - RowBox[{"fDProtoAdditiveSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "xValue"}], - "]"}], "]"}]}], "]"}], "}"}], ",", "\n", "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], "]"}], - ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", - "\t\t\t\t\t\t\t\t", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Function"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fDProtoAdditiveSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], "]"}], - ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", - "\t\t\t\t\t\t\t\t", - RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Derivative"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}]}], "\n", - "\t\t", "}"}], "\n", "\t", ",", - RowBox[{"Frame", "\[Rule]", "All"}]}], "]"}], ",", "\n", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "2", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0.01", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "6"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0.01", ",", "10", ",", "0.01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "\n", "]"}]}], "Code", - CellChangeTimes->{{3.621821020695196*^9, 3.6218211507901716`*^9}, { - 3.6218211904514933`*^9, 3.6218212233705716`*^9}, {3.6218217311432962`*^9, - 3.6218217330408015`*^9}, {3.6218217855341225`*^9, 3.6218219740096045`*^9}, { - 3.6218220184492755`*^9, 3.6218220190145063`*^9}, {3.621822084926569*^9, - 3.6218220991499596`*^9}, {3.621822129181229*^9, 3.6218221685176167`*^9}, { - 3.621859273699856*^9, 3.621859279550864*^9}, {3.6218643109538608`*^9, - 3.6218643147390776`*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 6, - Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`Ka$$], 1}, 0, 2, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 6}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 571., {367.53173828125, 375.46826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`Ka$16777$$ = 0, $CellContext`B1$16778$$ = - 0, $CellContext`M1$16779$$ = 0, $CellContext`B2$16780$$ = - 0, $CellContext`L$16781$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = - 6}, "ControllerVariables" :> { - Hold[$CellContext`Ka$$, $CellContext`Ka$16777$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$16778$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$16779$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$16780$$, 0], - Hold[$CellContext`L$$, $CellContext`L$16781$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Grid[{{ - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ --$CellContext`xValue]]]}, { - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \[Infinity]\)]\); it should be -1", - Sign[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`xValue]]]}, { - Plot[ - $CellContext`fProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], {$CellContext`x, 0, 30}, PlotRange -> {-0.2, 2}, PlotLabel -> - Function, ImageSize -> 350]}, { - Plot[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], {$CellContext`x, 0, 30}, PlotRange -> Full, PlotLabel -> - Derivative, ImageSize -> 350]}}, Frame -> All], - "Specifications" :> {{{$CellContext`Ka$$, 1}, 0, 2, - 0.01}, {{$CellContext`B1$$, 1}, 0.01, 10, - 0.01}, {{$CellContext`M1$$, 6}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0.01, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{635., {514., 522.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.6320641077067137`*^9, 3.6320719566980133`*^9, 3.632095314363471*^9, - 3.632147989000305*^9, {3.69146090282297*^9, 3.6914609323800783`*^9}, { - 3.698168620975445*^9, 3.698168648918008*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 6, - Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`Ka$$], 1}, 0, 2, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 6}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 571., {367.03173828125, 374.96826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`Ka$5724$$ = 0, $CellContext`B1$5725$$ = - 0, $CellContext`M1$5726$$ = 0, $CellContext`B2$5727$$ = - 0, $CellContext`L$5728$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = - 6}, "ControllerVariables" :> { - Hold[$CellContext`Ka$$, $CellContext`Ka$5724$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$5725$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$5726$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$5727$$, 0], - Hold[$CellContext`L$$, $CellContext`L$5728$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, - Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Grid[{{ - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ --$CellContext`xValue]]]}, { - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \[Infinity]\)]\); it should be -1", - Sign[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`xValue]]]}, { - Plot[ - $CellContext`fProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], {$CellContext`x, 0, 30}, PlotRange -> {-0.2, 2}, PlotLabel -> - Function, ImageSize -> 350]}, { - Plot[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], {$CellContext`x, 0, 30}, PlotRange -> Full, PlotLabel -> - Derivative, ImageSize -> 350]}}, Frame -> All], - "Specifications" :> {{{$CellContext`Ka$$, 1}, 0, 2, - 0.01}, {{$CellContext`B1$$, 1}, 0.01, 10, - 0.01}, {{$CellContext`M1$$, 6}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0.01, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{635., {514., 521.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]], "\[IndentingNewLine]"}]], "Input", - CellChangeTimes->{{3.63201890966866*^9, 3.632018909690508*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 6, - Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`Ka$$], 1}, 0, 2, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 6}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 571., {367.53173828125, 375.46826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`Ka$16918$$ = 0, $CellContext`B1$16919$$ = - 0, $CellContext`M1$16920$$ = 0, $CellContext`B2$16921$$ = - 0, $CellContext`L$16922$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = - 6}, "ControllerVariables" :> { - Hold[$CellContext`Ka$$, $CellContext`Ka$16918$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$16919$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$16920$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$16921$$, 0], - Hold[$CellContext`L$$, $CellContext`L$16922$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Grid[{{ - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ --$CellContext`xValue]]]}, { - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \[Infinity]\)]\); it should be -1", - Sign[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`xValue]]]}, { - Plot[ - $CellContext`fProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], {$CellContext`x, 0, 30}, PlotRange -> {-0.2, 2}, PlotLabel -> - Function, ImageSize -> 350]}, { - Plot[ - $CellContext`fDProtoAdditiveSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], {$CellContext`x, 0, 30}, PlotRange -> Full, PlotLabel -> - Derivative, ImageSize -> 350]}}, Frame -> All], - "Specifications" :> {{{$CellContext`Ka$$, 1}, 0, 2, - 0.01}, {{$CellContext`B1$$, 1}, 0.01, 10, - 0.01}, {{$CellContext`M1$$, 6}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0.01, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{635., {514., 522.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{3.6320641079237843`*^9, 3.691460932529002*^9, - 3.698168649090095*^9}] -}, Open ]], - -Cell["Now lets try to calculate the slope at the midpoint M1 ", "Text", - CellChangeTimes->{{3.621822311897592*^9, 3.6218223119065924`*^9}, { - 3.632018923599465*^9, 3.632018948685454*^9}, {3.6320189845235443`*^9, - 3.632018984527124*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"fDProtoAdditiveSigmoidal", "[", - RowBox[{"Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "M1"}], - "]"}]], "Code", - CellChangeTimes->{{3.621822311897592*^9, 3.6218223119065924`*^9}, { - 3.632018923599465*^9, 3.632018948685454*^9}, 3.6320189845235443`*^9, { - 3.632019055316029*^9, 3.632019055317256*^9}, {3.6320190886091022`*^9, - 3.632019109109489*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", "L"}]], " ", "Ka"}], - RowBox[{"2", " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", "L"}]]}], ")"}], "2"]}]]}], "+", - FractionBox[ - RowBox[{"B1", " ", "Ka"}], - RowBox[{"4", " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", "L"}]]}], ")"}]}]]}]], "Output", - CellChangeTimes->{ - 3.6320191110266647`*^9, 3.632064108047127*^9, 3.632071956848865*^9, - 3.632095314497805*^9, 3.632147989134951*^9, {3.6914609030653887`*^9, - 3.6914609327809668`*^9}, {3.69816862115565*^9, 3.698168649205041*^9}}] -}, Open ]], - -Cell[BoxData[""], "Input", - CellChangeTimes->{{3.622380625433791*^9, 3.62238062543795*^9}, { - 3.632018993405799*^9, 3.632018993409564*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Renormalizing the Proto Additive Sigmoidal (Not so good)", \ -"Subsubsection", - CellChangeTimes->{{3.622380625433791*^9, 3.622380669926261*^9}, { - 3.622465477429496*^9, 3.6224654819468117`*^9}}], - -Cell["\<\ -The main problem about proto additive sigmoidal is the height is not properly \ -working. So one needs to renormalize it. The problem about renormalization is \ -that; since the derivative of the function is NOT solvable algebrically one \ -needs to do it numerically.\ -\>", "Text", - CellChangeTimes->{{3.622380625433791*^9, 3.622380823319128*^9}, { - 3.62238806181771*^9, 3.622388080752541*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388040935865*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["B1", "0"], "=", "1"}], ";", " ", - RowBox[{ - SubscriptBox["M1", "0"], "=", "6"}], ";", " ", - RowBox[{ - SubscriptBox["B2", "0"], "=", "2"}], ";", " ", - RowBox[{ - SubscriptBox["L", "0"], "=", "10"}], ";"}], "\n"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal2", "[", - RowBox[{"B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], "]"}], ":=", - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]]}], - ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidalN", "[", - RowBox[{"B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], "]"}], ":=", - "\n", "\t", - FractionBox[ - RowBox[{"fProtoAdditiveSigmoidal2", "[", - RowBox[{"B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], "]"}], - RowBox[{"Round", "[", - RowBox[{ - RowBox[{ - RowBox[{"NMaximize", "[", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal2", "[", - RowBox[{"B1", ",", "M1", ",", "B2", ",", "L", ",", "x0"}], "]"}], - ",", "x0"}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}], ",", "0.000001"}], "]"}]]}], - "\n"}], "\n", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidalN", "[", - RowBox[{"1", ",", "6", ",", "2", ",", "10", ",", "x"}], "]"}], "\n", - "\t\t\t\t", "\n"}], "\n", - RowBox[{ - RowBox[{"(*", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidalN", "[", - RowBox[{"1", ",", "6", ",", "2", ",", "10", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}]}], "]"}], "*)"}]}]}], "Code", - CellChangeTimes->{{3.622388190560483*^9, 3.622388206352826*^9}, { - 3.622389672739951*^9, 3.622389679221387*^9}, {3.622389718347659*^9, - 3.622389787540347*^9}, {3.622389887121174*^9, 3.622389910103221*^9}, { - 3.622389971562072*^9, 3.622390040293817*^9}, {3.622390080749095*^9, - 3.622390127744275*^9}, {3.622390210781427*^9, 3.622390448053522*^9}, { - 3.622390634955853*^9, 3.62239070713627*^9}, {3.6223908559346447`*^9, - 3.622391204201098*^9}, 3.622391254697051*^9, {3.622391288984412*^9, - 3.62239134540841*^9}, {3.622391445053022*^9, 3.6223914574816427`*^9}, - 3.6223917328524942`*^9, {3.622391864469606*^9, 3.622391900463921*^9}, { - 3.622391942031148*^9, 3.622392086724534*^9}, {3.6223921496919813`*^9, - 3.622392156673443*^9}, {3.622392391953096*^9, 3.622392470743753*^9}, { - 3.6223925290289917`*^9, 3.622392567258202*^9}, {3.6223926586521397`*^9, - 3.622392703674461*^9}, 3.622392773903509*^9, {3.622392824170199*^9, - 3.622392886850217*^9}, {3.622393018487409*^9, 3.622393071698435*^9}, - 3.6223931087823277`*^9, {3.6223931487441063`*^9, 3.622393151284932*^9}, { - 3.622393182780506*^9, 3.6223932041780148`*^9}, {3.622393257464369*^9, - 3.6223932714628553`*^9}, {3.622393306984576*^9, 3.622393314228211*^9}, - 3.622393512339769*^9, 3.622393627114502*^9, {3.622467701906661*^9, - 3.6224677113994303`*^9}}], - -Cell[BoxData[ - FractionBox["1.0024067786756001`", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"6", "-", "x"}]]}], ")"}], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "16"}], "+", "x"}], ")"}]}]]}], ")"}]}]]], "Output", - CellChangeTimes->{ - 3.622390708203842*^9, 3.622390858268672*^9, {3.622390942145219*^9, - 3.6223909763574333`*^9}, {3.62239114043156*^9, 3.622391204867483*^9}, - 3.6223912560228157`*^9, 3.622391290530326*^9, {3.6223913360185137`*^9, - 3.6223913460659103`*^9}, 3.622391466210373*^9, 3.622391611831834*^9, - 3.6223917526225452`*^9, 3.622391800155725*^9, 3.6223918665533733`*^9, - 3.622391902663702*^9, {3.6223919544256067`*^9, 3.622392013342306*^9}, - 3.622392087323144*^9, {3.622392150785061*^9, 3.622392157343979*^9}, - 3.622392473464582*^9, {3.622392562722148*^9, 3.622392568678421*^9}, { - 3.6223926818253813`*^9, 3.6223927071416283`*^9}, 3.622392782485396*^9, { - 3.62239284623206*^9, 3.622392889308771*^9}, {3.62239302449166*^9, - 3.622393072454577*^9}, 3.622393109934016*^9, 3.622393154007371*^9, - 3.6223932061195803`*^9, 3.622393278652478*^9, 3.622393315603746*^9, - 3.622393514272229*^9, 3.622393628844054*^9, 3.6223951405006104`*^9, - 3.6224180938782177`*^9, 3.622422965345632*^9, 3.6224655495977507`*^9, - 3.622468035816257*^9, {3.62250478767452*^9, 3.62250481132791*^9}, - 3.622506498259469*^9, {3.622563745817655*^9, 3.622563771879093*^9}, { - 3.622761063349987*^9, 3.622761085020666*^9}, 3.622780792135112*^9, - 3.623554902536813*^9, 3.623554950536749*^9, 3.632018634858631*^9, - 3.632064108153576*^9, 3.6320719569441843`*^9, 3.63209531464403*^9, - 3.632147989291852*^9, {3.691460903241549*^9, 3.691460932993147*^9}, { - 3.698168621296165*^9, 3.698168649317273*^9}}] -}, Open ]], - -Cell["\<\ -So we can find the numerical maximum point of the proto additive sigmoidal \ -pretty easily; but finding it algebrically has many adventages, like \ -normalizing the function before additional parts. Althoug it can not work \ -exactly with some approximations one can find maximum point pretty closely. \ -To do this we firstly need to solve the equation f `(x)==0\ -\>", "Text", - CellChangeTimes->{{3.622422855288938*^9, 3.622422883330516*^9}, { - 3.6224231078465033`*^9, 3.622423107894555*^9}, {3.622462269230455*^9, - 3.622462385225312*^9}, {3.622462443630825*^9, 3.62246253147303*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal2", "[", - RowBox[{"B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], "]"}], ",", - "x"}], "]"}], "\[Equal]", "0"}]], "Code", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041069832*^9}, { - 3.622422912023753*^9, 3.6224229439439487`*^9}, {3.622423066063394*^9, - 3.6224230728607187`*^9}, {3.62242311298348*^9, 3.6224231140390987`*^9}, { - 3.622423386601569*^9, 3.62242339597544*^9}, {3.6224234460010157`*^9, - 3.622423635665012*^9}, {3.622423673399601*^9, 3.622423725358617*^9}, { - 3.622423763291058*^9, 3.622423831301971*^9}, {3.622423878232212*^9, - 3.6224239153239193`*^9}, {3.622424313737915*^9, 3.622424422828225*^9}, { - 3.6224244851440773`*^9, 3.622424580466672*^9}, {3.6224246172813253`*^9, - 3.622424621208189*^9}, {3.622425135737165*^9, 3.622425140857102*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]]}], "+", - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}]}]]}], - "\[Equal]", "0"}]], "Output", - CellChangeTimes->{ - 3.622422945343587*^9, {3.622423044096713*^9, 3.622423073934431*^9}, - 3.622423396655037*^9, 3.622423452800909*^9, 3.622423636318138*^9, { - 3.62242441343626*^9, 3.6224244240938807`*^9}, {3.622424551690323*^9, - 3.6224245813608913`*^9}, 3.6224246217891283`*^9, 3.622425141587974*^9, - 3.6224656326950493`*^9, 3.6224680358325663`*^9, {3.622504787691826*^9, - 3.622504811344878*^9}, {3.6225637458377666`*^9, 3.6225637719423923`*^9}, { - 3.6227610633701677`*^9, 3.622761085038213*^9}, 3.622780792155079*^9, - 3.623554902560788*^9, 3.623554950554554*^9, 3.632018634897684*^9, - 3.6320641081711607`*^9, 3.632071957162964*^9, 3.632095314696838*^9, - 3.632147989398325*^9, {3.691460903356736*^9, 3.691460933045067*^9}, { - 3.6981686213426437`*^9, 3.6981686494438133`*^9}}] -}, Open ]], - -Cell["Lets try to solve it by hand", "Text", - CellChangeTimes->{{3.622424553933249*^9, 3.6224245557875233`*^9}, { - 3.622425164674687*^9, 3.622425176500111*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.622424553933249*^9, 3.6224245557875233`*^9}, { - 3.622425164674687*^9, 3.622425176497817*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]]}], "+", - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}]}]]}], - "=", "0"}], TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.622425213951728*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]], "=", - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}]}]]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.6224252429515963`*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}]], "=", - - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " "}]]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.6224252837795*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}]}], " ", "=", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}]}]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.6224253628564997`*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - RowBox[{"(", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], ")"}]}]}], "=", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], - RowBox[{"(", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], ")"}]}]}]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.62242541555033*^9}, 3.62242545570511*^9}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], "+", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]}], "=", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "+", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]}]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.62242541555033*^9}, {3.62242545570511*^9, - 3.6224255247821836`*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], "+", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}], "-", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]}]]}]}], "=", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "+", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}], "-", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]}]]}]}]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.62242541555033*^9}, {3.62242545570511*^9, - 3.622425596889223*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", "-", "B1"}], ")"}], - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}], "-", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]}]]}], "=", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "-", - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}]}]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.62242541555033*^9}, {3.62242545570511*^9, - 3.622425596889223*^9}, {3.6224257096433773`*^9, 3.622425737660193*^9}, - 3.622426134082507*^9}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", "-", "B1"}], ")"}], - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "+", "x"}], ")"}]}], "-", - RowBox[{"B1", " ", - RowBox[{"(", "x", ")"}]}]}]]}], "=", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", "x", ")"}]}]]}], ")"}], "-", - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "+", "x"}], ")"}]}]]}], ")"}]}]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.62242541555033*^9}, {3.62242545570511*^9, - 3.622425596889223*^9}, {3.6224257096433773`*^9, 3.622425737660193*^9}, { - 3.622426134082507*^9, 3.622426163920561*^9}, 3.622426274408791*^9}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", "-", "B1"}], ")"}], - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", "*", "x"}], " ", "-", " ", - RowBox[{"B1", "*", "x"}], " ", "-", - RowBox[{"B2", "*", "L"}]}]]}], "=", - RowBox[{ - RowBox[{"(", - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", "x", ")"}]}]]}], ")"}], "-", - RowBox[{"(", - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "+", "x"}], ")"}]}]]}], ")"}]}]}], - TraditionalForm]], "Equation", - CellChangeTimes->{{3.6223880409341803`*^9, 3.622388041066642*^9}, { - 3.6224251941143723`*^9, 3.62242541555033*^9}, {3.62242545570511*^9, - 3.622425596889223*^9}, {3.6224257096433773`*^9, 3.622425737660193*^9}, { - 3.622426134082507*^9, 3.622426163920561*^9}, {3.622426274408791*^9, - 3.622426282883958*^9}, {3.622426319402308*^9, 3.62242635222948*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.622426732529182*^9, 3.6224267325310383`*^9}}], - -Cell["Now if we expand this around x=L/2 we will get", "Text", - CellChangeTimes->{{3.622426732529182*^9, 3.622426771399043*^9}, { - 3.6224625458078213`*^9, 3.622462547823908*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"NMaximize", "[", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal2", "[", - RowBox[{"B1", ",", "M1", ",", "B2", ",", "L", ",", "x0"}], "]"}], ",", - "x0"}], "]"}], "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", "\[Rule]", ".1"}], ",", - RowBox[{"M1", "\[Rule]", "6"}], ",", - RowBox[{"B2", "\[Rule]", "2"}], ",", - RowBox[{"L", "\[Rule]", "10"}]}], "}"}]}], "\n", - RowBox[{ - RowBox[{"u", "=", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"Normal", "[", - RowBox[{"Series", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", "-", "B1"}], ")"}], "*", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", "*", "x"}], "-", - RowBox[{"B1", "*", "x"}], "-", - RowBox[{"B2", "*", "L"}]}]]}], "-", - RowBox[{"B1", "*", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", "x"}]]}], "+", - RowBox[{"B2", "*", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", "*", "x"}], "-", - RowBox[{"B2", "*", "L"}]}]]}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", - RowBox[{"L", "/", "2"}], ",", "13"}], "}"}]}], "]"}], "]"}], - "\[Equal]", "0"}], ",", "x"}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}], "[", - RowBox[{"[", "2", "]"}], "]"}]}], ";"}], "\n", - RowBox[{"N", "[", - RowBox[{ - RowBox[{"u", "+", "M1"}], "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", "\[Rule]", "1"}], ",", - RowBox[{"M1", "\[Rule]", "6"}], ",", - RowBox[{"B2", "\[Rule]", "2"}], ",", - RowBox[{"L", "\[Rule]", "5"}]}], "}"}]}], "]"}]}], "Code", - CellChangeTimes->{{3.622426732529182*^9, 3.622426910499942*^9}, { - 3.622426996139024*^9, 3.622427017070472*^9}, {3.622427065261073*^9, - 3.622427068115822*^9}, {3.622427099162427*^9, 3.622427103873557*^9}, { - 3.622427193495357*^9, 3.622427193540977*^9}, {3.622427280190539*^9, - 3.62242729806421*^9}, {3.6224273481312437`*^9, 3.622427395128694*^9}, { - 3.622427428033461*^9, 3.622427441060711*^9}, {3.62242750064489*^9, - 3.6224275333613853`*^9}, {3.622427593294672*^9, 3.6224275946758957`*^9}, { - 3.622427641661358*^9, 3.622427684615883*^9}, {3.622427805780038*^9, - 3.6224278058558207`*^9}, {3.622427877245122*^9, 3.622427899449415*^9}, - 3.622427930051477*^9, {3.6224279757199287`*^9, 3.622428000870078*^9}, { - 3.622428062484435*^9, 3.622428089689844*^9}, 3.622428120662592*^9, { - 3.622428160023734*^9, 3.622428204975803*^9}, {3.62242857944188*^9, - 3.622428600232423*^9}, {3.622428633439546*^9, 3.622428658840817*^9}, { - 3.622428710626635*^9, 3.622428711554131*^9}, 3.622428788454096*^9, { - 3.622428953581224*^9, 3.6224289824629927`*^9}, 3.622462582964838*^9, - 3.622462622920178*^9, {3.62246273827107*^9, 3.622462814434724*^9}, { - 3.622465046818705*^9, 3.622465049093925*^9}, {3.6225143675279217`*^9, - 3.622514371837825*^9}, 3.622514440753384*^9}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"NMaximize", "::", "nnum"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"The function value \[NoBreak]\\!\\(-\\(\\(1\\/\\(\\(\\((1 \ -+ \[ExponentialE]\\^\\(\\(\\(-B1\\)\\)\\\\ \ -\\(\\((\\(\\(-0.8290525091498482`\\)\\) - M1)\\)\\)\\))\\)\\)\\\\ \\(\\((1 + \ -\[ExponentialE]\\^\\(B2\\\\ \\(\\((\\(\\(-0.8290525091498482`\\)\\) - L - M1)\ -\\)\\)\\))\\)\\)\\)\\)\\)\\)\[NoBreak] is not a number at \ -\[NoBreak]\\!\\({x0}\\)\[NoBreak] = \ -\[NoBreak]\\!\\({\\(-0.8290525091498482`\\)}\\)\[NoBreak]. \ -\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ -ButtonFrame->None, ButtonData:>\\\"paclet:ref/NMaximize\\\", ButtonNote -> \\\ -\"NMaximize::nnum\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.62242800235888*^9, {3.622428063838161*^9, 3.622428091100399*^9}, - 3.622428121784181*^9, {3.622428161777953*^9, 3.622428205755783*^9}, { - 3.622428582412545*^9, 3.622428601179813*^9}, {3.622428636365686*^9, - 3.622428660794471*^9}, 3.622428713103354*^9, 3.622428789657123*^9, { - 3.6224289602410307`*^9, 3.622428983542184*^9}, {3.622462558202667*^9, - 3.622462584015359*^9}, 3.622462623852138*^9, {3.622462743043038*^9, - 3.62246281526096*^9}, 3.622465049715312*^9, 3.6224656327550087`*^9, - 3.622468035896225*^9, {3.622504787746499*^9, 3.622504811395122*^9}, - 3.622514372660307*^9, 3.622514441484844*^9, {3.622563745897997*^9, - 3.622563772040855*^9}, {3.622761063426135*^9, 3.6227610850888977`*^9}, - 3.622780792206525*^9, 3.623554902619446*^9, 3.623554950608926*^9, - 3.632018634975151*^9, 3.632064108229374*^9, 3.632071957227729*^9, - 3.6320953147644243`*^9, 3.632147989482242*^9, {3.691460903442512*^9, - 3.691460933107592*^9}, {3.6981686215354757`*^9, 3.698168649505904*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"NMaximize", "::", "nnum"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"The function value \[NoBreak]\\!\\(-\\(\\(1\\/\\(\\(\\((1 \ -+ \[ExponentialE]\\^\\(\\(\\(-B1\\)\\)\\\\ \ -\\(\\((\\(\\(-0.8290525091498482`\\)\\) - M1)\\)\\)\\))\\)\\)\\\\ \\(\\((1 + \ -\[ExponentialE]\\^\\(B2\\\\ \\(\\((\\(\\(-0.8290525091498482`\\)\\) - L - M1)\ -\\)\\)\\))\\)\\)\\)\\)\\)\\)\[NoBreak] is not a number at \ -\[NoBreak]\\!\\({x0}\\)\[NoBreak] = \ -\[NoBreak]\\!\\({\\(-0.8290525091498482`\\)}\\)\[NoBreak]. \ -\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ -ButtonFrame->None, ButtonData:>\\\"paclet:ref/NMaximize\\\", ButtonNote -> \\\ -\"NMaximize::nnum\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.62242800235888*^9, {3.622428063838161*^9, 3.622428091100399*^9}, - 3.622428121784181*^9, {3.622428161777953*^9, 3.622428205755783*^9}, { - 3.622428582412545*^9, 3.622428601179813*^9}, {3.622428636365686*^9, - 3.622428660794471*^9}, 3.622428713103354*^9, 3.622428789657123*^9, { - 3.6224289602410307`*^9, 3.622428983542184*^9}, {3.622462558202667*^9, - 3.622462584015359*^9}, 3.622462623852138*^9, {3.622462743043038*^9, - 3.62246281526096*^9}, 3.622465049715312*^9, 3.6224656327550087`*^9, - 3.622468035896225*^9, {3.622504787746499*^9, 3.622504811395122*^9}, - 3.622514372660307*^9, 3.622514441484844*^9, {3.622563745897997*^9, - 3.622563772040855*^9}, {3.622761063426135*^9, 3.6227610850888977`*^9}, - 3.622780792206525*^9, 3.623554902619446*^9, 3.623554950608926*^9, - 3.632018634975151*^9, 3.632064108229374*^9, 3.632071957227729*^9, - 3.6320953147644243`*^9, 3.632147989482242*^9, {3.691460903442512*^9, - 3.691460933107592*^9}, {3.6981686215354757`*^9, 3.698168649552554*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"NMaximize", "::", "nnum"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"The function value \[NoBreak]\\!\\(-\\(\\(1\\/\\(\\(\\((1 \ -+ \[ExponentialE]\\^\\(\\(\\(-B1\\)\\)\\\\ \ -\\(\\((\\(\\(-0.8290525091498482`\\)\\) - M1)\\)\\)\\))\\)\\)\\\\ \\(\\((1 + \ -\[ExponentialE]\\^\\(B2\\\\ \\(\\((\\(\\(-0.8290525091498482`\\)\\) - L - M1)\ -\\)\\)\\))\\)\\)\\)\\)\\)\\)\[NoBreak] is not a number at \ -\[NoBreak]\\!\\({x0}\\)\[NoBreak] = \ -\[NoBreak]\\!\\({\\(-0.8290525091498482`\\)}\\)\[NoBreak]. \ -\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ -ButtonFrame->None, ButtonData:>\\\"paclet:ref/NMaximize\\\", ButtonNote -> \\\ -\"NMaximize::nnum\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.62242800235888*^9, {3.622428063838161*^9, 3.622428091100399*^9}, - 3.622428121784181*^9, {3.622428161777953*^9, 3.622428205755783*^9}, { - 3.622428582412545*^9, 3.622428601179813*^9}, {3.622428636365686*^9, - 3.622428660794471*^9}, 3.622428713103354*^9, 3.622428789657123*^9, { - 3.6224289602410307`*^9, 3.622428983542184*^9}, {3.622462558202667*^9, - 3.622462584015359*^9}, 3.622462623852138*^9, {3.622462743043038*^9, - 3.62246281526096*^9}, 3.622465049715312*^9, 3.6224656327550087`*^9, - 3.622468035896225*^9, {3.622504787746499*^9, 3.622504811395122*^9}, - 3.622514372660307*^9, 3.622514441484844*^9, {3.622563745897997*^9, - 3.622563772040855*^9}, {3.622761063426135*^9, 3.6227610850888977`*^9}, - 3.622780792206525*^9, 3.623554902619446*^9, 3.623554950608926*^9, - 3.632018634975151*^9, 3.632064108229374*^9, 3.632071957227729*^9, - 3.6320953147644243`*^9, 3.632147989482242*^9, {3.691460903442512*^9, - 3.691460933107592*^9}, {3.6981686215354757`*^9, 3.69816864960219*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"General", "::", "stop"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"Further output of \[NoBreak]\\!\\(\\*StyleBox[\\(NMaximize \ -:: nnum\\), \\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this \ -calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \ -\\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.62242800235888*^9, {3.622428063838161*^9, 3.622428091100399*^9}, - 3.622428121784181*^9, {3.622428161777953*^9, 3.622428205755783*^9}, { - 3.622428582412545*^9, 3.622428601179813*^9}, {3.622428636365686*^9, - 3.622428660794471*^9}, 3.622428713103354*^9, 3.622428789657123*^9, { - 3.6224289602410307`*^9, 3.622428983542184*^9}, {3.622462558202667*^9, - 3.622462584015359*^9}, 3.622462623852138*^9, {3.622462743043038*^9, - 3.62246281526096*^9}, 3.622465049715312*^9, 3.6224656327550087`*^9, - 3.622468035896225*^9, {3.622504787746499*^9, 3.622504811395122*^9}, - 3.622514372660307*^9, 3.622514441484844*^9, {3.622563745897997*^9, - 3.622563772040855*^9}, {3.622761063426135*^9, 3.6227610850888977`*^9}, - 3.622780792206525*^9, 3.623554902619446*^9, 3.623554950608926*^9, - 3.632018634975151*^9, 3.632064108229374*^9, 3.632071957227729*^9, - 3.6320953147644243`*^9, 3.632147989482242*^9, {3.691460903442512*^9, - 3.691460933107592*^9}, {3.6981686215354757`*^9, 3.698168649630445*^9}}], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{"0.6776846568054778`", ",", - RowBox[{"{", - RowBox[{"x0", "\[Rule]", "13.926951715904965`"}], "}"}]}], - "}"}]], "Output", - CellChangeTimes->{ - 3.622426911287828*^9, {3.622427001389915*^9, 3.62242701814703*^9}, - 3.622427104439516*^9, 3.6224271950175743`*^9, {3.622427284169092*^9, - 3.6224272992201223`*^9}, 3.6224273440176153`*^9, {3.622427390240271*^9, - 3.6224273958122883`*^9}, {3.622427428999559*^9, 3.622427442067955*^9}, { - 3.622427501624896*^9, 3.622427534267974*^9}, 3.6224275957189293`*^9, - 3.622427642545536*^9, {3.6224277890742693`*^9, 3.622427809334655*^9}, { - 3.622427902940287*^9, 3.62242793121246*^9}, 3.622428002547453*^9, { - 3.622428064023961*^9, 3.6224280912881927`*^9}, 3.6224281219888887`*^9, { - 3.622428161962384*^9, 3.6224282059433937`*^9}, {3.62242858260353*^9, - 3.622428601365802*^9}, {3.622428636551059*^9, 3.6224286609945717`*^9}, - 3.622428713288042*^9, 3.622428789862886*^9, {3.622428960421753*^9, - 3.6224289837245073`*^9}, {3.622462558490872*^9, 3.6224625841969347`*^9}, - 3.6224626240390797`*^9, {3.6224627432292128`*^9, 3.622462815463204*^9}, - 3.622465049905954*^9, 3.6224656329573717`*^9, 3.622468036070683*^9, { - 3.622504787923313*^9, 3.622504811596744*^9}, 3.62251437284774*^9, - 3.6225144416786013`*^9, {3.622563746087834*^9, 3.622563772224153*^9}, { - 3.622761063621941*^9, 3.6227610852795763`*^9}, 3.622780792389277*^9, - 3.623554902803454*^9, 3.6235549507988987`*^9, 3.632018635180855*^9, - 3.6320641084368*^9, 3.632071957439436*^9, 3.6320953149621964`*^9, - 3.63214798967839*^9, {3.691460903644422*^9, 3.69146093330646*^9}, { - 3.6981686217422237`*^9, 3.6981686497023993`*^9}}], - -Cell[BoxData["9.094821260726565`"], "Output", - CellChangeTimes->{ - 3.622426911287828*^9, {3.622427001389915*^9, 3.62242701814703*^9}, - 3.622427104439516*^9, 3.6224271950175743`*^9, {3.622427284169092*^9, - 3.6224272992201223`*^9}, 3.6224273440176153`*^9, {3.622427390240271*^9, - 3.6224273958122883`*^9}, {3.622427428999559*^9, 3.622427442067955*^9}, { - 3.622427501624896*^9, 3.622427534267974*^9}, 3.6224275957189293`*^9, - 3.622427642545536*^9, {3.6224277890742693`*^9, 3.622427809334655*^9}, { - 3.622427902940287*^9, 3.62242793121246*^9}, 3.622428002547453*^9, { - 3.622428064023961*^9, 3.6224280912881927`*^9}, 3.6224281219888887`*^9, { - 3.622428161962384*^9, 3.6224282059433937`*^9}, {3.62242858260353*^9, - 3.622428601365802*^9}, {3.622428636551059*^9, 3.6224286609945717`*^9}, - 3.622428713288042*^9, 3.622428789862886*^9, {3.622428960421753*^9, - 3.6224289837245073`*^9}, {3.622462558490872*^9, 3.6224625841969347`*^9}, - 3.6224626240390797`*^9, {3.6224627432292128`*^9, 3.622462815463204*^9}, - 3.622465049905954*^9, 3.6224656329573717`*^9, 3.622468036070683*^9, { - 3.622504787923313*^9, 3.622504811596744*^9}, 3.62251437284774*^9, - 3.6225144416786013`*^9, {3.622563746087834*^9, 3.622563772224153*^9}, { - 3.622761063621941*^9, 3.6227610852795763`*^9}, 3.622780792389277*^9, - 3.623554902803454*^9, 3.6235549507988987`*^9, 3.632018635180855*^9, - 3.6320641084368*^9, 3.632071957439436*^9, 3.6320953149621964`*^9, - 3.63214798967839*^9, {3.691460903644422*^9, 3.69146093330646*^9}, { - 3.6981686217422237`*^9, 3.6981686510343018`*^9}}] -}, Open ]], - -Cell["\<\ -Can we find a better starting candidate then L/2? One way is to look at the \ -intersection point of two lines that are passing through {M1,f(M1)} and {M1+L \ -, f(M1+L)} with solopes B1 and -B2. The equation of a line with a known slope \ -and a point is;\ -\>", "Text", - CellChangeTimes->{{3.6224626516911383`*^9, 3.62246265704171*^9}, { - 3.622462692975429*^9, 3.622462703558938*^9}, {3.6224628275433893`*^9, - 3.622462910874601*^9}, {3.6224633933271027`*^9, 3.622463419216878*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{" ", - RowBox[{"y", "=", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"x", "-", - SubscriptBox["x", "0"]}], ")"}], "*", "m"}], "+", - SubscriptBox["y", "0"]}]}]}], TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.6224626516911383`*^9, 3.62246265704171*^9}, { - 3.622462692975429*^9, 3.622462703558938*^9}, {3.6224628275433893`*^9, - 3.622462910874601*^9}, {3.6224633933271027`*^9, 3.62246341921387*^9}, { - 3.622463646439189*^9, 3.622463687937168*^9}, {3.622463744753924*^9, - 3.622463748214075*^9}}], - -Cell["Lets wite the line equations for these two lines", "Text", - CellChangeTimes->{{3.622463750409494*^9, 3.6224637770915337`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - SubscriptBox["y", "line1"], "=", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"x", "-", "x0"}], ")"}], "*", - SubscriptBox["m", "line1"]}], "+", "y0"}], "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"x0", "\[Rule]", "0"}], ",", " ", - RowBox[{ - SubscriptBox["m", "line1"], "\[Rule]", - RowBox[{"B1", "/", "4"}]}], ",", " ", - RowBox[{"y0", "\[Rule]", - RowBox[{"1", "/", "2"}]}]}], "}"}]}]}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{ - SubscriptBox["y", "line2"], "=", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"x", "-", "x0"}], ")"}], "*", - SubscriptBox["m", "line2"]}], "+", "y0"}], "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"x0", "\[Rule]", "L"}], ",", " ", - RowBox[{ - SubscriptBox["m", "line2"], "\[Rule]", - RowBox[{ - RowBox[{"-", "B2"}], "/", "4"}]}], ",", " ", - RowBox[{"y0", "\[Rule]", - RowBox[{"1", "/", "2"}]}]}], "}"}]}]}], ";"}], "\n"}], "\n", - RowBox[{"slope1", "=", - RowBox[{"Coefficient", "[", - RowBox[{ - SubscriptBox["y", "line1"], ",", "x", ",", "1"}], "]"}]}], "\n", - RowBox[{"intersection1", "=", - RowBox[{"Coefficient", "[", - RowBox[{ - SubscriptBox["y", "line1"], ",", "x", ",", "0"}], "]"}]}], "\n", - RowBox[{"slope2", "=", - RowBox[{"Coefficient", "[", - RowBox[{ - SubscriptBox["y", "line2"], ",", "x", ",", "1"}], "]"}]}], "\n", - RowBox[{"intersection2", "=", - RowBox[{"Coefficient", "[", - RowBox[{ - SubscriptBox["y", "line2"], ",", "x", ",", "0"}], "]"}]}]}], "Code", - CellChangeTimes->{{3.622463750409494*^9, 3.622463777088664*^9}, { - 3.622464019851111*^9, 3.6224641081103287`*^9}, {3.62246418802456*^9, - 3.622464259597413*^9}, {3.622464293339402*^9, 3.622464294993491*^9}, { - 3.62246434484651*^9, 3.622464353525865*^9}, {3.622464421314558*^9, - 3.622464556149577*^9}}], - -Cell[BoxData[ - FractionBox["B1", "4"]], "Output", - CellChangeTimes->{ - 3.6224643033518257`*^9, 3.622464453033614*^9, {3.622464520384294*^9, - 3.6224645631380796`*^9}, 3.622465633093464*^9, 3.622468036456122*^9, { - 3.622504788356288*^9, 3.622504811842134*^9}, {3.622563747380024*^9, - 3.622563773658927*^9}, {3.622761065000098*^9, 3.622761086666521*^9}, - 3.622780793636251*^9, 3.623554904141904*^9, 3.62355495213437*^9, - 3.632018636643152*^9, 3.632064109928142*^9, 3.6320719588404818`*^9, - 3.632095316288043*^9, 3.632147991030884*^9, {3.69146090521406*^9, - 3.691460934685499*^9}, {3.6981686232499733`*^9, 3.698168651085353*^9}}], - -Cell[BoxData[ - FractionBox["1", "2"]], "Output", - CellChangeTimes->{ - 3.6224643033518257`*^9, 3.622464453033614*^9, {3.622464520384294*^9, - 3.6224645631380796`*^9}, 3.622465633093464*^9, 3.622468036456122*^9, { - 3.622504788356288*^9, 3.622504811842134*^9}, {3.622563747380024*^9, - 3.622563773658927*^9}, {3.622761065000098*^9, 3.622761086666521*^9}, - 3.622780793636251*^9, 3.623554904141904*^9, 3.62355495213437*^9, - 3.632018636643152*^9, 3.632064109928142*^9, 3.6320719588404818`*^9, - 3.632095316288043*^9, 3.632147991030884*^9, {3.69146090521406*^9, - 3.691460934685499*^9}, {3.6981686232499733`*^9, 3.698168651093568*^9}}], - -Cell[BoxData[ - RowBox[{"-", - FractionBox["B2", "4"]}]], "Output", - CellChangeTimes->{ - 3.6224643033518257`*^9, 3.622464453033614*^9, {3.622464520384294*^9, - 3.6224645631380796`*^9}, 3.622465633093464*^9, 3.622468036456122*^9, { - 3.622504788356288*^9, 3.622504811842134*^9}, {3.622563747380024*^9, - 3.622563773658927*^9}, {3.622761065000098*^9, 3.622761086666521*^9}, - 3.622780793636251*^9, 3.623554904141904*^9, 3.62355495213437*^9, - 3.632018636643152*^9, 3.632064109928142*^9, 3.6320719588404818`*^9, - 3.632095316288043*^9, 3.632147991030884*^9, {3.69146090521406*^9, - 3.691460934685499*^9}, {3.6981686232499733`*^9, 3.698168651098598*^9}}], - -Cell[BoxData[ - RowBox[{ - FractionBox["1", "2"], "+", - FractionBox[ - RowBox[{"B2", " ", "L"}], "4"]}]], "Output", - CellChangeTimes->{ - 3.6224643033518257`*^9, 3.622464453033614*^9, {3.622464520384294*^9, - 3.6224645631380796`*^9}, 3.622465633093464*^9, 3.622468036456122*^9, { - 3.622504788356288*^9, 3.622504811842134*^9}, {3.622563747380024*^9, - 3.622563773658927*^9}, {3.622761065000098*^9, 3.622761086666521*^9}, - 3.622780793636251*^9, 3.623554904141904*^9, 3.62355495213437*^9, - 3.632018636643152*^9, 3.632064109928142*^9, 3.6320719588404818`*^9, - 3.632095316288043*^9, 3.632147991030884*^9, {3.69146090521406*^9, - 3.691460934685499*^9}, {3.6981686232499733`*^9, 3.6981686511037188`*^9}}] -}, Open ]], - -Cell["Intersection point of two lines is defined by", "Text", - CellChangeTimes->{{3.622464592209201*^9, 3.622464606460444*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{"P", "(", - RowBox[{ - FractionBox[ - RowBox[{"int2", "-", "int1"}], - RowBox[{"m1", "-", "m2"}]], ",", - FractionBox[ - RowBox[{ - RowBox[{"m1", "*", "int2"}], " ", "-", " ", - RowBox[{"m2", "*", "int1"}]}], - RowBox[{"m1", "-", "m2"}]]}], ")"}], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.622464592209201*^9, 3.622464691817204*^9}}], - -Cell["If we put this into our equations we get", "Text", - CellChangeTimes->{{3.622464592209201*^9, 3.6224647157234907`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"xIntersection", "=", - RowBox[{"Simplify", "[", - FractionBox[ - RowBox[{"intersection2", "-", "intersection1"}], - RowBox[{"slope1", "-", "slope2"}]], "]"}]}]], "Code", - CellChangeTimes->{{3.622464592209201*^9, 3.6224647157195807`*^9}, { - 3.622464772510139*^9, 3.622464816906365*^9}, {3.622464900855323*^9, - 3.62246490544678*^9}}], - -Cell[BoxData[ - FractionBox[ - RowBox[{"B2", " ", "L"}], - RowBox[{"B1", "+", "B2"}]]], "Output", - CellChangeTimes->{ - 3.622464821500045*^9, 3.622464905893346*^9, 3.622465633144106*^9, - 3.6224680365017357`*^9, {3.622504788380899*^9, 3.622504811897163*^9}, { - 3.6225637474073887`*^9, 3.622563773708067*^9}, {3.622761065039523*^9, - 3.622761086693143*^9}, 3.622780793660717*^9, 3.623554904177415*^9, - 3.623554952179575*^9, 3.632018636675611*^9, 3.6320641099793377`*^9, - 3.6320719589005623`*^9, 3.632095316347973*^9, 3.63214799108549*^9, { - 3.691460905290537*^9, 3.6914609347621317`*^9}, {3.698168623299918*^9, - 3.698168651134899*^9}}] -}, Open ]], - -Cell["If we put this result to our expansion we get", "Text", - CellChangeTimes->{{3.622464836404117*^9, 3.622464851787621*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"NMaximize", "[", - RowBox[{ - RowBox[{"fProtoAdditiveSigmoidal2", "[", - RowBox[{"B1", ",", "M1", ",", "B2", ",", "L", ",", "x0"}], "]"}], ",", - "x0"}], "]"}], "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", "\[Rule]", "0.02"}], ",", - RowBox[{"M1", "\[Rule]", "6"}], ",", - RowBox[{"B2", "\[Rule]", "2"}], ",", - RowBox[{"L", "\[Rule]", "2"}]}], "}"}]}], "\n", - RowBox[{ - RowBox[{"u", "=", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"Normal", "[", - RowBox[{"Series", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"B2", "-", "B1"}], ")"}], "*", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", "*", "x"}], "-", - RowBox[{"B1", "*", "x"}], "-", - RowBox[{"B2", "*", "L"}]}]]}], "-", - RowBox[{"B1", "*", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", "x"}]]}], "+", - RowBox[{"B2", "*", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"B2", "*", "x"}], "-", - RowBox[{"B2", "*", "L"}]}]]}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", - FractionBox[ - RowBox[{ - RowBox[{"(", - RowBox[{"B1", "+", - RowBox[{"3", " ", "B2"}]}], ")"}], " ", "L"}], - RowBox[{"4", " ", - RowBox[{"(", - RowBox[{"B1", "+", "B2"}], ")"}]}]], ",", "3"}], "}"}]}], - "]"}], "]"}], "\[Equal]", "0"}], ",", "x"}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}], "[", - RowBox[{"[", "2", "]"}], "]"}]}], ";"}], "\n", - RowBox[{"N", "[", - RowBox[{ - RowBox[{"u", "+", "M1"}], "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", "\[Rule]", "0.02"}], ",", - RowBox[{"M1", "\[Rule]", "6"}], ",", - RowBox[{"B2", "\[Rule]", "2"}], ",", - RowBox[{"L", "\[Rule]", "2"}]}], "}"}]}], "]"}], "\n", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{"L", "/", "2"}], "+", "M1"}], ",", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{ - RowBox[{"(", - RowBox[{"B1", "+", - RowBox[{"3", " ", "B2"}]}], ")"}], " ", "L"}], - RowBox[{"4", " ", - RowBox[{"(", - RowBox[{"B1", "+", "B2"}], ")"}]}]], "+", "M1"}], ")"}]}], "}"}], "/.", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", "\[Rule]", "0.02"}], ",", - RowBox[{"M1", "\[Rule]", "6"}], ",", - RowBox[{"B2", "\[Rule]", "2"}], ",", - RowBox[{"L", "\[Rule]", "2"}]}], "}"}]}]}], "Code", - CellChangeTimes->{{3.622464836404117*^9, 3.622464929044949*^9}, - 3.6224649607401237`*^9, {3.622465007764759*^9, 3.6224650253678207`*^9}, - 3.6224650902776613`*^9, {3.622465260818079*^9, 3.622465346875457*^9}, { - 3.622514387721182*^9, 3.62251441953998*^9}, {3.622514730568836*^9, - 3.6225147381523533`*^9}, {3.622514793765977*^9, 3.622514845842053*^9}, { - 3.6225149148669977`*^9, 3.622514914933023*^9}, {3.622514970853339*^9, - 3.622514970897992*^9}, 3.622515078441533*^9, {3.622515111938532*^9, - 3.622515131700639*^9}, 3.6225152032453547`*^9, {3.622515641411702*^9, - 3.62251564745844*^9}, {3.6225159927865887`*^9, 3.622516001336432*^9}, { - 3.622516159279319*^9, 3.622516163967024*^9}, {3.6225162037140083`*^9, - 3.622516213488435*^9}, {3.622516266665058*^9, 3.62251626671047*^9}, { - 3.622516303804315*^9, 3.6225163806709538`*^9}, 3.622516612230541*^9, { - 3.62251665517828*^9, 3.6225166746771383`*^9}, {3.622516948648333*^9, - 3.622516959069813*^9}, {3.622517470255715*^9, 3.62251747884625*^9}, { - 3.622517548794248*^9, 3.62251756433224*^9}, 3.622518971276635*^9}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"NMaximize", "::", "nnum"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"The function value \[NoBreak]\\!\\(-\\(\\(1\\/\\(\\(\\((1 \ -+ \[ExponentialE]\\^\\(\\(\\(-B1\\)\\)\\\\ \ -\\(\\((\\(\\(-0.8290525091498482`\\)\\) - M1)\\)\\)\\))\\)\\)\\\\ \\(\\((1 + \ -\[ExponentialE]\\^\\(B2\\\\ \\(\\((\\(\\(-0.8290525091498482`\\)\\) - L - M1)\ -\\)\\)\\))\\)\\)\\)\\)\\)\\)\[NoBreak] is not a number at \ -\[NoBreak]\\!\\({x0}\\)\[NoBreak] = \ -\[NoBreak]\\!\\({\\(-0.8290525091498482`\\)}\\)\[NoBreak]. \ -\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ -ButtonFrame->None, ButtonData:>\\\"paclet:ref/NMaximize\\\", ButtonNote -> \\\ -\"NMaximize::nnum\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.622464931409343*^9, 3.622464961541956*^9, {3.622465008644998*^9, - 3.622465026009954*^9}, 3.622465090999189*^9, {3.6224652617535963`*^9, - 3.622465268996367*^9}, {3.622465322567473*^9, 3.622465347545494*^9}, - 3.622465633203986*^9, 3.6224680365543957`*^9, {3.622504788430375*^9, - 3.622504811950733*^9}, {3.6225143888949947`*^9, 3.6225144205118732`*^9}, { - 3.622514731459333*^9, 3.622514739370112*^9}, {3.622514799224141*^9, - 3.622514847357888*^9}, 3.6225149163896093`*^9, 3.6225149727142963`*^9, - 3.6225150795906153`*^9, {3.6225151182696123`*^9, 3.622515132559277*^9}, - 3.622515203966259*^9, 3.622515648294159*^9, 3.62251600355759*^9, - 3.622516165168294*^9, 3.622516214286015*^9, 3.622516267724238*^9, - 3.622516330558943*^9, {3.622516365216852*^9, 3.622516381908901*^9}, { - 3.622516607397814*^9, 3.622516615078137*^9}, {3.622516656435843*^9, - 3.622516675915434*^9}, 3.622516960373784*^9, {3.622517551422418*^9, - 3.622517567095763*^9}, 3.62251897181511*^9, {3.6225637474607573`*^9, - 3.6225637737612658`*^9}, {3.622761065093937*^9, 3.6227610867446547`*^9}, - 3.622780793710943*^9, 3.623554904238442*^9, 3.623554952235738*^9, - 3.632018636738831*^9, 3.632064110038138*^9, 3.632071958963956*^9, - 3.6320953164045467`*^9, 3.632147991159115*^9, {3.691460905356474*^9, - 3.691460934827508*^9}, {3.69816862336411*^9, 3.698168651195616*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"NMaximize", "::", "nnum"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"The function value \[NoBreak]\\!\\(-\\(\\(1\\/\\(\\(\\((1 \ -+ \[ExponentialE]\\^\\(\\(\\(-B1\\)\\)\\\\ \ -\\(\\((\\(\\(-0.8290525091498482`\\)\\) - M1)\\)\\)\\))\\)\\)\\\\ \\(\\((1 + \ -\[ExponentialE]\\^\\(B2\\\\ \\(\\((\\(\\(-0.8290525091498482`\\)\\) - L - M1)\ -\\)\\)\\))\\)\\)\\)\\)\\)\\)\[NoBreak] is not a number at \ -\[NoBreak]\\!\\({x0}\\)\[NoBreak] = \ -\[NoBreak]\\!\\({\\(-0.8290525091498482`\\)}\\)\[NoBreak]. \ -\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ -ButtonFrame->None, ButtonData:>\\\"paclet:ref/NMaximize\\\", ButtonNote -> \\\ -\"NMaximize::nnum\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.622464931409343*^9, 3.622464961541956*^9, {3.622465008644998*^9, - 3.622465026009954*^9}, 3.622465090999189*^9, {3.6224652617535963`*^9, - 3.622465268996367*^9}, {3.622465322567473*^9, 3.622465347545494*^9}, - 3.622465633203986*^9, 3.6224680365543957`*^9, {3.622504788430375*^9, - 3.622504811950733*^9}, {3.6225143888949947`*^9, 3.6225144205118732`*^9}, { - 3.622514731459333*^9, 3.622514739370112*^9}, {3.622514799224141*^9, - 3.622514847357888*^9}, 3.6225149163896093`*^9, 3.6225149727142963`*^9, - 3.6225150795906153`*^9, {3.6225151182696123`*^9, 3.622515132559277*^9}, - 3.622515203966259*^9, 3.622515648294159*^9, 3.62251600355759*^9, - 3.622516165168294*^9, 3.622516214286015*^9, 3.622516267724238*^9, - 3.622516330558943*^9, {3.622516365216852*^9, 3.622516381908901*^9}, { - 3.622516607397814*^9, 3.622516615078137*^9}, {3.622516656435843*^9, - 3.622516675915434*^9}, 3.622516960373784*^9, {3.622517551422418*^9, - 3.622517567095763*^9}, 3.62251897181511*^9, {3.6225637474607573`*^9, - 3.6225637737612658`*^9}, {3.622761065093937*^9, 3.6227610867446547`*^9}, - 3.622780793710943*^9, 3.623554904238442*^9, 3.623554952235738*^9, - 3.632018636738831*^9, 3.632064110038138*^9, 3.632071958963956*^9, - 3.6320953164045467`*^9, 3.632147991159115*^9, {3.691460905356474*^9, - 3.691460934827508*^9}, {3.69816862336411*^9, 3.698168651244179*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"NMaximize", "::", "nnum"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"The function value \[NoBreak]\\!\\(-\\(\\(1\\/\\(\\(\\((1 \ -+ \[ExponentialE]\\^\\(\\(\\(-B1\\)\\)\\\\ \ -\\(\\((\\(\\(-0.8290525091498482`\\)\\) - M1)\\)\\)\\))\\)\\)\\\\ \\(\\((1 + \ -\[ExponentialE]\\^\\(B2\\\\ \\(\\((\\(\\(-0.8290525091498482`\\)\\) - L - M1)\ -\\)\\)\\))\\)\\)\\)\\)\\)\\)\[NoBreak] is not a number at \ -\[NoBreak]\\!\\({x0}\\)\[NoBreak] = \ -\[NoBreak]\\!\\({\\(-0.8290525091498482`\\)}\\)\[NoBreak]. \ -\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \ -ButtonFrame->None, ButtonData:>\\\"paclet:ref/NMaximize\\\", ButtonNote -> \\\ -\"NMaximize::nnum\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.622464931409343*^9, 3.622464961541956*^9, {3.622465008644998*^9, - 3.622465026009954*^9}, 3.622465090999189*^9, {3.6224652617535963`*^9, - 3.622465268996367*^9}, {3.622465322567473*^9, 3.622465347545494*^9}, - 3.622465633203986*^9, 3.6224680365543957`*^9, {3.622504788430375*^9, - 3.622504811950733*^9}, {3.6225143888949947`*^9, 3.6225144205118732`*^9}, { - 3.622514731459333*^9, 3.622514739370112*^9}, {3.622514799224141*^9, - 3.622514847357888*^9}, 3.6225149163896093`*^9, 3.6225149727142963`*^9, - 3.6225150795906153`*^9, {3.6225151182696123`*^9, 3.622515132559277*^9}, - 3.622515203966259*^9, 3.622515648294159*^9, 3.62251600355759*^9, - 3.622516165168294*^9, 3.622516214286015*^9, 3.622516267724238*^9, - 3.622516330558943*^9, {3.622516365216852*^9, 3.622516381908901*^9}, { - 3.622516607397814*^9, 3.622516615078137*^9}, {3.622516656435843*^9, - 3.622516675915434*^9}, 3.622516960373784*^9, {3.622517551422418*^9, - 3.622517567095763*^9}, 3.62251897181511*^9, {3.6225637474607573`*^9, - 3.6225637737612658`*^9}, {3.622761065093937*^9, 3.6227610867446547`*^9}, - 3.622780793710943*^9, 3.623554904238442*^9, 3.623554952235738*^9, - 3.632018636738831*^9, 3.632064110038138*^9, 3.632071958963956*^9, - 3.6320953164045467`*^9, 3.632147991159115*^9, {3.691460905356474*^9, - 3.691460934827508*^9}, {3.69816862336411*^9, 3.698168651291827*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"General", "::", "stop"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"Further output of \[NoBreak]\\!\\(\\*StyleBox[\\(NMaximize \ -:: nnum\\), \\\"MessageName\\\"]\\)\[NoBreak] will be suppressed during this \ -calculation. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/message/General/stop\\\", ButtonNote -> \ -\\\"General::stop\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.622464931409343*^9, 3.622464961541956*^9, {3.622465008644998*^9, - 3.622465026009954*^9}, 3.622465090999189*^9, {3.6224652617535963`*^9, - 3.622465268996367*^9}, {3.622465322567473*^9, 3.622465347545494*^9}, - 3.622465633203986*^9, 3.6224680365543957`*^9, {3.622504788430375*^9, - 3.622504811950733*^9}, {3.6225143888949947`*^9, 3.6225144205118732`*^9}, { - 3.622514731459333*^9, 3.622514739370112*^9}, {3.622514799224141*^9, - 3.622514847357888*^9}, 3.6225149163896093`*^9, 3.6225149727142963`*^9, - 3.6225150795906153`*^9, {3.6225151182696123`*^9, 3.622515132559277*^9}, - 3.622515203966259*^9, 3.622515648294159*^9, 3.62251600355759*^9, - 3.622516165168294*^9, 3.622516214286015*^9, 3.622516267724238*^9, - 3.622516330558943*^9, {3.622516365216852*^9, 3.622516381908901*^9}, { - 3.622516607397814*^9, 3.622516615078137*^9}, {3.622516656435843*^9, - 3.622516675915434*^9}, 3.622516960373784*^9, {3.622517551422418*^9, - 3.622517567095763*^9}, 3.62251897181511*^9, {3.6225637474607573`*^9, - 3.6225637737612658`*^9}, {3.622761065093937*^9, 3.6227610867446547`*^9}, - 3.622780793710943*^9, 3.623554904238442*^9, 3.623554952235738*^9, - 3.632018636738831*^9, 3.632064110038138*^9, 3.632071958963956*^9, - 3.6320953164045467`*^9, 3.632147991159115*^9, {3.691460905356474*^9, - 3.691460934827508*^9}, {3.69816862336411*^9, 3.698168651319538*^9}}], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{"0.49428300065117253`", ",", - RowBox[{"{", - RowBox[{"x0", "\[Rule]", "5.356570454508177`"}], "}"}]}], "}"}]], "Output",\ - - CellChangeTimes->{ - 3.622464931589023*^9, 3.622464961731037*^9, {3.622465008828323*^9, - 3.622465026203549*^9}, 3.622465091182706*^9, {3.622465261940299*^9, - 3.622465269179666*^9}, {3.622465322769462*^9, 3.622465347738352*^9}, - 3.6224656334129744`*^9, 3.622468036740841*^9, {3.6225047886162567`*^9, - 3.622504812141405*^9}, {3.622514389092499*^9, 3.622514420700561*^9}, { - 3.6225147316823597`*^9, 3.622514739594613*^9}, {3.622514799447555*^9, - 3.6225148475883913`*^9}, 3.622514916616047*^9, 3.6225149729407873`*^9, - 3.622515079816078*^9, {3.622515118495513*^9, 3.6225151327861567`*^9}, - 3.622515204191296*^9, 3.622515648482431*^9, 3.622516003750676*^9, - 3.622516165360956*^9, 3.622516214512356*^9, 3.6225162679559603`*^9, - 3.62251633073251*^9, {3.622516365385435*^9, 3.6225163821119823`*^9}, { - 3.6225166075688543`*^9, 3.622516615251617*^9}, {3.6225166566029463`*^9, - 3.6225166761220284`*^9}, 3.622516960575285*^9, {3.622517551624404*^9, - 3.6225175672932034`*^9}, 3.6225189719790297`*^9, {3.6225637476543694`*^9, - 3.622563773957727*^9}, {3.622761065264596*^9, 3.622761086907008*^9}, - 3.622780793868052*^9, 3.623554904405271*^9, 3.623554952392146*^9, - 3.632018636907317*^9, 3.63206411022025*^9, 3.632071959141148*^9, - 3.632095316575859*^9, 3.632147991317294*^9, {3.6914609055227137`*^9, - 3.6914609350106792`*^9}, {3.6981686235210752`*^9, 3.698168651361011*^9}}], - -Cell[BoxData["6.69857961511061`"], "Output", - CellChangeTimes->{ - 3.622464931589023*^9, 3.622464961731037*^9, {3.622465008828323*^9, - 3.622465026203549*^9}, 3.622465091182706*^9, {3.622465261940299*^9, - 3.622465269179666*^9}, {3.622465322769462*^9, 3.622465347738352*^9}, - 3.6224656334129744`*^9, 3.622468036740841*^9, {3.6225047886162567`*^9, - 3.622504812141405*^9}, {3.622514389092499*^9, 3.622514420700561*^9}, { - 3.6225147316823597`*^9, 3.622514739594613*^9}, {3.622514799447555*^9, - 3.6225148475883913`*^9}, 3.622514916616047*^9, 3.6225149729407873`*^9, - 3.622515079816078*^9, {3.622515118495513*^9, 3.6225151327861567`*^9}, - 3.622515204191296*^9, 3.622515648482431*^9, 3.622516003750676*^9, - 3.622516165360956*^9, 3.622516214512356*^9, 3.6225162679559603`*^9, - 3.62251633073251*^9, {3.622516365385435*^9, 3.6225163821119823`*^9}, { - 3.6225166075688543`*^9, 3.622516615251617*^9}, {3.6225166566029463`*^9, - 3.6225166761220284`*^9}, 3.622516960575285*^9, {3.622517551624404*^9, - 3.6225175672932034`*^9}, 3.6225189719790297`*^9, {3.6225637476543694`*^9, - 3.622563773957727*^9}, {3.622761065264596*^9, 3.622761086907008*^9}, - 3.622780793868052*^9, 3.623554904405271*^9, 3.623554952392146*^9, - 3.632018636907317*^9, 3.63206411022025*^9, 3.632071959141148*^9, - 3.632095316575859*^9, 3.632147991317294*^9, {3.6914609055227137`*^9, - 3.6914609350106792`*^9}, {3.6981686235210752`*^9, 3.6981686515713778`*^9}}], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{"7", ",", "7.49009900990099`"}], "}"}]], "Output", - CellChangeTimes->{ - 3.622464931589023*^9, 3.622464961731037*^9, {3.622465008828323*^9, - 3.622465026203549*^9}, 3.622465091182706*^9, {3.622465261940299*^9, - 3.622465269179666*^9}, {3.622465322769462*^9, 3.622465347738352*^9}, - 3.6224656334129744`*^9, 3.622468036740841*^9, {3.6225047886162567`*^9, - 3.622504812141405*^9}, {3.622514389092499*^9, 3.622514420700561*^9}, { - 3.6225147316823597`*^9, 3.622514739594613*^9}, {3.622514799447555*^9, - 3.6225148475883913`*^9}, 3.622514916616047*^9, 3.6225149729407873`*^9, - 3.622515079816078*^9, {3.622515118495513*^9, 3.6225151327861567`*^9}, - 3.622515204191296*^9, 3.622515648482431*^9, 3.622516003750676*^9, - 3.622516165360956*^9, 3.622516214512356*^9, 3.6225162679559603`*^9, - 3.62251633073251*^9, {3.622516365385435*^9, 3.6225163821119823`*^9}, { - 3.6225166075688543`*^9, 3.622516615251617*^9}, {3.6225166566029463`*^9, - 3.6225166761220284`*^9}, 3.622516960575285*^9, {3.622517551624404*^9, - 3.6225175672932034`*^9}, 3.6225189719790297`*^9, {3.6225637476543694`*^9, - 3.622563773957727*^9}, {3.622761065264596*^9, 3.622761086907008*^9}, - 3.622780793868052*^9, 3.623554904405271*^9, 3.623554952392146*^9, - 3.632018636907317*^9, 3.63206411022025*^9, 3.632071959141148*^9, - 3.632095316575859*^9, 3.632147991317294*^9, {3.6914609055227137`*^9, - 3.6914609350106792`*^9}, {3.6981686235210752`*^9, 3.6981686515791063`*^9}}] -}, Open ]] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["A simple observation", "Subsubsection", - CellChangeTimes->{{3.6218223266882143`*^9, 3.621822339761341*^9}}], - -Cell["\<\ -If one tries to change the sign of the B parameter in simple sigmoidal \ -function one will end up with the exact mirror image of the function; where \ -the sum of these two will be a constant value equal to A+Ka\ -\>", "Text", - CellChangeTimes->{{3.621822350943963*^9, 3.6218224888302536`*^9}, { - 3.6218225918219247`*^9, 3.621822592555126*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Simplify", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], "+", - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", - RowBox[{"-", "B"}], ",", "M", ",", "x"}], "]"}]}], "]"}]], "Code", - CellChangeTimes->{{3.6218225298393803`*^9, 3.6218225434613523`*^9}, { - 3.621822575892911*^9, 3.6218225829634447`*^9}}], - -Cell[BoxData[ - RowBox[{"A", "+", "Ka"}]], "Output", - CellChangeTimes->{ - 3.6218225442303963`*^9, 3.6218225835424776`*^9, {3.6218268667037263`*^9, - 3.6218268715149975`*^9}, 3.6218271089912643`*^9, 3.6218584353076763`*^9, - 3.6218593872550163`*^9, {3.6218640715231667`*^9, 3.6218640932794104`*^9}, - 3.6218643321730747`*^9, {3.622164164442807*^9, 3.6221641764156456`*^9}, { - 3.622301014280013*^9, 3.622301037337345*^9}, {3.622312269873337*^9, - 3.6223122926133337`*^9}, {3.622337863801478*^9, 3.622337886487557*^9}, { - 3.622379939664551*^9, 3.622379962939267*^9}, {3.622389226878784*^9, - 3.622389251711224*^9}, 3.622391612110671*^9, 3.6223917528413067`*^9, - 3.6223918003455667`*^9, 3.622418171040967*^9, 3.6224656335597143`*^9, - 3.622468036950849*^9, {3.622504788866302*^9, 3.622504812264494*^9}, { - 3.622563748980281*^9, 3.622563774126636*^9}, {3.6227610668392067`*^9, - 3.6227610871214943`*^9}, 3.622780795182817*^9, 3.6235549047715673`*^9, - 3.623554952599042*^9, 3.632018638438436*^9, 3.63206411046255*^9, - 3.632071959368883*^9, 3.632095317959629*^9, 3.632147992701179*^9, { - 3.691460907164802*^9, 3.691460935240254*^9}, {3.698168624907734*^9, - 3.698168651611055*^9}}] -}, Open ]], - -Cell["\<\ -The result is independent of all remaining parameters B and M. One can see \ -this clearly in the figures below\ -\>", "Text", - CellChangeTimes->{{3.6218227206148677`*^9, 3.6218227376801434`*^9}, { - 3.6218227803885098`*^9, 3.6218227803885098`*^9}, {3.6218232917578335`*^9, - 3.621823293493079*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Manipulate", "[", "\n", "\t", - RowBox[{ - RowBox[{"Grid", "[", "\n", "\t\t", - RowBox[{"{", "\[IndentingNewLine]", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "1.2"}], "}"}]}], ",", "\n", - "\t\t\t\t", - RowBox[{"PlotLabel", "\[Rule]", "Function"}], ",", - RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", - RowBox[{"-", "B"}], ",", "M", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "1.2"}], "}"}]}], ",", "\n", - "\t\t\t\t", - RowBox[{"PlotLabel", "\[Rule]", "Function"}], ",", - RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{ - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], "+", - RowBox[{"fSigmoidal", "[", - RowBox[{"A", ",", "Ka", ",", - RowBox[{"-", "B"}], ",", "M", ",", "x"}], "]"}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "1.2"}], "}"}]}], ",", "\n", - "\t\t\t\t", - RowBox[{"PlotLabel", "\[Rule]", "Function"}], ",", - RowBox[{"ImageSize", "\[Rule]", "200"}]}], "]"}], "}"}]}], "\n", - "\t\t", "}"}], "\n", "\t", "]"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], "}"}], - ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B", ",", "1"}], "}"}], ",", "0", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M", ",", "8"}], "}"}], ",", "0", ",", "15", ",", ".01"}], - "}"}]}], "\n", "]"}]], "Code", - CellChangeTimes->{{3.621822790449675*^9, 3.621822979408722*^9}, { - 3.6218230104330626`*^9, 3.621823093861389*^9}, {3.621823152942565*^9, - 3.6218231809917355`*^9}, {3.6218232145323973`*^9, 3.621823217900529*^9}, { - 3.621823266406497*^9, 3.6218232786986003`*^9}, {3.621864430130677*^9, - 3.6218644329168367`*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A$$ = 0, $CellContext`B$$ = - 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = 8, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B$$], 1}, 0, 10, 0.01}, {{ - Hold[$CellContext`M$$], 8}, 0, 15, 0.01}}, Typeset`size$$ = { - 300., {303.03173828125, 310.96826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`A$20082$$ = 0, $CellContext`Ka$20083$$ = - 0, $CellContext`B$20084$$ = 0, $CellContext`M$20085$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A$$ = 0, $CellContext`B$$ = - 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = 8}, - "ControllerVariables" :> { - Hold[$CellContext`A$$, $CellContext`A$20082$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$20083$$, 0], - Hold[$CellContext`B$$, $CellContext`B$20084$$, 0], - Hold[$CellContext`M$$, $CellContext`M$20085$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Grid[{{ - Plot[ - $CellContext`fSigmoidal[$CellContext`A$$, $CellContext`Ka$$, \ -$CellContext`B$$, $CellContext`M$$, $CellContext`x], {$CellContext`x, 0, 15}, - PlotRange -> {-0.2, 1.2}, PlotLabel -> Function, ImageSize -> - 200]}, { - Plot[ - $CellContext`fSigmoidal[$CellContext`A$$, $CellContext`Ka$$, \ --$CellContext`B$$, $CellContext`M$$, $CellContext`x], {$CellContext`x, 0, 15}, - PlotRange -> {-0.2, 1.2}, PlotLabel -> Function, ImageSize -> - 200]}, { - - Plot[$CellContext`fSigmoidal[$CellContext`A$$, $CellContext`Ka$$, \ -$CellContext`B$$, $CellContext`M$$, $CellContext`x] + \ -$CellContext`fSigmoidal[$CellContext`A$$, $CellContext`Ka$$, \ --$CellContext`B$$, $CellContext`M$$, $CellContext`x], {$CellContext`x, 0, 15}, - PlotRange -> {-0.2, 1.2}, PlotLabel -> Function, ImageSize -> - 200]}}], - "Specifications" :> {{{$CellContext`A$$, 0}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1}, 0, 1, 0.01}, {{$CellContext`B$$, 1}, - 0, 10, 0.01}, {{$CellContext`M$$, 8}, 0, 15, 0.01}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{377., {429., 437.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.6218231012180815`*^9, 3.621823156024862*^9, 3.621823186914897*^9, - 3.621823218705144*^9, 3.621823279444643*^9, {3.621826866734728*^9, - 3.621826871530998*^9}, 3.6218271090224648`*^9, 3.6218584353576765`*^9, - 3.621859387275016*^9, {3.6218640715441675`*^9, 3.621864093304412*^9}, - 3.621864332197076*^9, {3.6221641644740067`*^9, 3.622164176431246*^9}, { - 3.6223010143303137`*^9, 3.6223010373873577`*^9}, {3.6223122699230022`*^9, - 3.622312292663885*^9}, {3.622337863850841*^9, 3.622337886537139*^9}, { - 3.622379939715871*^9, 3.622379962997941*^9}, {3.6223892269001513`*^9, - 3.622389251729616*^9}, 3.6223916122151537`*^9, 3.622391752891636*^9, - 3.6223918004989367`*^9, 3.6224181710828238`*^9, 3.622465633653631*^9, - 3.622468036988264*^9, {3.62250478891564*^9, 3.6225048123174553`*^9}, { - 3.6225637490401363`*^9, 3.622563774175622*^9}, {3.622761066861698*^9, - 3.622761087144309*^9}, 3.6227807952066174`*^9, 3.6235549048507977`*^9, - 3.6235549526428413`*^9, 3.632018638481227*^9, 3.632064110495344*^9, - 3.632071959417384*^9, 3.632095318013484*^9, 3.632147992753365*^9, { - 3.691460907240631*^9, 3.6914609352966547`*^9}, {3.6981686249507732`*^9, - 3.698168651648196*^9}}] -}, Open ]], - -Cell["\<\ -So if we turn into our proto additive sigmoidal function and add invese of \ -the increasing parts we obtain something vey close to decreasing sigmoidal \ -function; if the slopes are not smaller than say 0.2 and L>1\ -\>", "Text", - CellChangeTimes->{{3.621823329032789*^9, 3.621823437364584*^9}, { - 3.621823494713149*^9, 3.6218234957854085`*^9}, {3.621823541038915*^9, - 3.6218235545202494`*^9}, {3.621823744628765*^9, 3.6218237464383683`*^9}, { - 3.621825385277582*^9, 3.621825412268031*^9}, 3.6218255006025057`*^9, - 3.62182568169938*^9, {3.621826094337756*^9, 3.621826098006759*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], "+", - FractionBox["Ka", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}]]}], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.6218234421637506`*^9, 3.621823467868478*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"fLeftAdditionSigmoidal", "[", - RowBox[{ - "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], "]"}], - "=", - RowBox[{ - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], "+", - FractionBox["Ka", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}]]}]}], ";"}], " ", "\n", - RowBox[{"(*", " ", - RowBox[{ - "Not", " ", "the", " ", "sign", " ", "change", " ", "in", " ", "B1", " ", - "terms"}], "*)"}]}], "\n", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"fRightSigmoidal", "[", - RowBox[{ - "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], "]"}], - "=", - FractionBox["Ka", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]]}], ";"}], - "\n"}], "\n", - RowBox[{"Manipulate", "[", "\n", "\t", - RowBox[{ - RowBox[{"Grid", "[", "\n", "\t\t", - RowBox[{"{", "\[IndentingNewLine]", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"fLeftAdditionSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}], ",", - RowBox[{"fRightSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}]}], "}"}], ",", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "1.2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "\"\\""}], ",", - RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"fLeftAdditionSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}], "-", - RowBox[{"fRightSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}]}], "}"}], ",", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "1.2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "\"\\""}], ",", - RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}], "}"}]}], "\n", - "\t\t", "}"}], "\n", "\t", "]"}], ",", "\n", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0.01", ",", "10", ",", ".001"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "15"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0.01", ",", "10", ",", "0.001"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "1"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "\n", "]"}]}], "Code", - CellChangeTimes->{{3.621823632856536*^9, 3.6218236836074133`*^9}, { - 3.621823792869559*^9, 3.621824125387149*^9}, {3.621824176330244*^9, - 3.6218241928101654`*^9}, {3.621824244408654*^9, 3.621824405189953*^9}, { - 3.621824690434209*^9, 3.621824826811817*^9}, {3.621824861826265*^9, - 3.6218248649345455`*^9}, {3.6218249212484508`*^9, 3.621824931431576*^9}, { - 3.621825003376095*^9, 3.62182508292962*^9}, {3.621825113794939*^9, - 3.621825147391883*^9}, {3.6218253158787165`*^9, 3.6218253500780177`*^9}, { - 3.6218254330203857`*^9, 3.621825434988697*^9}, 3.6218254955732265`*^9, { - 3.6218258715638895`*^9, 3.6218258745956573`*^9}, 3.621825934373496*^9, { - 3.6218260372464533`*^9, 3.6218260373184576`*^9}, {3.6218261284068513`*^9, - 3.6218261400240974`*^9}, {3.6218261938448496`*^9, - 3.6218261958521585`*^9}, {3.621858517617792*^9, 3.6218585207887964`*^9}, { - 3.621859259407836*^9, 3.6218592626878405`*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 1, $CellContext`M1$$ = 15, - Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0.01, 10, 0.001}, {{ - Hold[$CellContext`M1$$], 15}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0.01, 10, 0.001}, {{ - Hold[$CellContext`L$$], 1}, 0, 10, 0.001}}, Typeset`size$$ = { - 450., {294.53173828125, 302.46826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`Ka$20177$$ = 0, $CellContext`B1$20178$$ = - 0, $CellContext`M1$20179$$ = 0, $CellContext`B2$20180$$ = - 0, $CellContext`L$20181$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 1, $CellContext`M1$$ = - 15}, "ControllerVariables" :> { - Hold[$CellContext`Ka$$, $CellContext`Ka$20177$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$20178$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$20179$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$20180$$, 0], - Hold[$CellContext`L$$, $CellContext`L$20181$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Grid[{{ - Plot[{ - $CellContext`fLeftAdditionSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], - $CellContext`fRightSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x]}, {$CellContext`x, 0, 30}, PlotRange -> {-0.2, 1.2}, - PlotLabel -> "Added Function", ImageSize -> 300]}, { - - Plot[{$CellContext`fLeftAdditionSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x] - $CellContext`fRightSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x]}, {$CellContext`x, 0, 30}, PlotRange -> {-0.2, 1.2}, - PlotLabel -> "Difference Function", ImageSize -> 300]}}], - "Specifications" :> {{{$CellContext`Ka$$, 1}, 0, 1, - 0.01}, {{$CellContext`B1$$, 1}, 0.01, 10, - 0.001}, {{$CellContext`M1$$, 15}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0.01, 10, - 0.001}, {{$CellContext`L$$, 1}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{514., {441., 449.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.62182588773459*^9, 3.6218260397549763`*^9, {3.6218261333771267`*^9, - 3.6218261446229553`*^9}, {3.621826866826733*^9, 3.621826871599002*^9}, - 3.621827109112069*^9, 3.621858435507676*^9, 3.6218593873950157`*^9, { - 3.621864071660174*^9, 3.6218640934394197`*^9}, 3.621864332392087*^9, { - 3.622164164567607*^9, 3.622164176509246*^9}, {3.622301014463509*^9, - 3.6223010375428457`*^9}, {3.622312270056622*^9, 3.622312292794024*^9}, { - 3.622337864096171*^9, 3.6223378866705093`*^9}, {3.622379939848324*^9, - 3.6223799631350317`*^9}, {3.622389227015457*^9, 3.622389251844224*^9}, - 3.6223916124073544`*^9, 3.622391753168096*^9, 3.6223918006286707`*^9, - 3.6224181712136507`*^9, 3.6224656337911463`*^9, 3.622468037118791*^9, { - 3.62250478904456*^9, 3.6225048124476852`*^9}, {3.6225637491747093`*^9, - 3.622563774311275*^9}, {3.622761066971243*^9, 3.622761087254861*^9}, - 3.622780795314808*^9, 3.623554904996008*^9, 3.623554952759056*^9, - 3.6320186386140633`*^9, 3.632064110629396*^9, 3.632071959566101*^9, - 3.6320953181477003`*^9, 3.632147992903555*^9, {3.691460907510145*^9, - 3.691460935466241*^9}, {3.698168625085766*^9, 3.6981686517826*^9}}] -}, Open ]], - -Cell["\<\ -Similarly if we add invese of the decreasing parts into proto additive \ -sigmoidal function we obtain something vey close to increasing sigmoidal \ -function; if the slopes are not smaller than say 0.2 and L>1\ -\>", "Text", - CellChangeTimes->{{3.6218256950307198`*^9, 3.621825808717045*^9}, { - 3.6218261021507893`*^9, 3.621826104582325*^9}, {3.621826493638167*^9, - 3.621826493640167*^9}}], - -Cell[BoxData[ - FormBox[ - RowBox[{ - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], "+", - FractionBox["Ka", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]]}], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.621826510092082*^9, 3.621826522863192*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"fRightAdditionSigmoidal", "[", - RowBox[{ - "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], "]"}], - "=", - RowBox[{ - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], "+", - FractionBox["Ka", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]]}]}], ";"}], - " ", "\n", - RowBox[{"(*", " ", - RowBox[{ - "Not", " ", "the", " ", "sign", " ", "change", " ", "in", " ", "B2", " ", - "terms"}], "*)"}]}], "\n", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"fLeftSigmoidal", "[", - RowBox[{ - "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", "x_"}], "]"}], - "=", - FractionBox["Ka", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}]]}], ";"}], "\n"}], "\n", - RowBox[{"Manipulate", "[", "\n", "\t", - RowBox[{ - RowBox[{"Grid", "[", "\n", "\t\t", - RowBox[{"{", "\[IndentingNewLine]", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"fRightAdditionSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}], ",", - RowBox[{"fLeftSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}]}], "}"}], ",", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "1.2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "\"\\""}], ",", - RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"fRightAdditionSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}], "-", - RowBox[{"fLeftSigmoidal", "[", - RowBox[{ - "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}]}], "}"}], ",", "\n", "\t\t\t\t", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "1.2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "\"\\""}], ",", - RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}], "}"}]}], "\n", - "\t\t", "}"}], "\n", "\t", "]"}], ",", "\n", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0.01", ",", "10", ",", ".001"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "15"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0.01", ",", "10", ",", "0.001"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "\n", "]"}]}], "Code", - CellChangeTimes->{{3.6218257907088428`*^9, 3.6218258634990396`*^9}, { - 3.6218259235461407`*^9, 3.621825953287594*^9}, {3.6218260033965893`*^9, - 3.621826031135234*^9}, {3.621826120736025*^9, 3.6218261236795893`*^9}, { - 3.6218262004876904`*^9, 3.6218262902136245`*^9}, {3.6218585269788055`*^9, - 3.621858529739809*^9}, {3.621859234304801*^9, 3.62185924094481*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 15, - Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0.01, 10, 0.001}, {{ - Hold[$CellContext`M1$$], 15}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0.01, 10, 0.001}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 450., {294.53173828125, 302.46826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`Ka$20261$$ = 0, $CellContext`B1$20262$$ = - 0, $CellContext`M1$20263$$ = 0, $CellContext`B2$20264$$ = - 0, $CellContext`L$20265$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`B1$$ = 1, $CellContext`B2$$ = - 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = 10, $CellContext`M1$$ = - 15}, "ControllerVariables" :> { - Hold[$CellContext`Ka$$, $CellContext`Ka$20261$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$20262$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$20263$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$20264$$, 0], - Hold[$CellContext`L$$, $CellContext`L$20265$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Grid[{{ - Plot[{ - $CellContext`fRightAdditionSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], - $CellContext`fLeftSigmoidal[$CellContext`Ka$$, $CellContext`B1$$, \ -$CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, $CellContext`x]}, \ -{$CellContext`x, 0, 30}, PlotRange -> {-0.2, 1.2}, PlotLabel -> - "Added Function", ImageSize -> 300]}, { - - Plot[{$CellContext`fRightAdditionSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x] - $CellContext`fLeftSigmoidal[$CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x]}, {$CellContext`x, 0, 30}, PlotRange -> {-0.2, 1.2}, - PlotLabel -> "Difference Function", ImageSize -> 300]}}], - "Specifications" :> {{{$CellContext`Ka$$, 1}, 0, 1, - 0.01}, {{$CellContext`B1$$, 1}, 0.01, 10, - 0.001}, {{$CellContext`M1$$, 15}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0.01, 10, - 0.001}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{514., {441., 449.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.621826020215968*^9, 3.6218261777415466`*^9, {3.621826237950912*^9, - 3.6218262909496665`*^9}, {3.6218268669187384`*^9, 3.621826871673006*^9}, - 3.6218271092000737`*^9, 3.6218584356576767`*^9, 3.6218593875250163`*^9, { - 3.6218640717771807`*^9, 3.621864093566427*^9}, 3.6218643325930986`*^9, { - 3.622164164645607*^9, 3.6221641765716457`*^9}, {3.622301014594412*^9, - 3.622301037673201*^9}, {3.622312270316351*^9, 3.6223122930386868`*^9}, { - 3.622337864235368*^9, 3.622337886873674*^9}, {3.622379940089816*^9, - 3.6223799634022837`*^9}, {3.622389227143511*^9, 3.622389251956768*^9}, - 3.6223916125282907`*^9, 3.622391753295261*^9, 3.62239180076131*^9, - 3.622418171345601*^9, 3.6224656339106417`*^9, 3.622468037249772*^9, { - 3.622504789178753*^9, 3.622504812581921*^9}, {3.62256374932388*^9, - 3.6225637746101007`*^9}, {3.6227610670769453`*^9, 3.622761087370832*^9}, - 3.622780795422526*^9, 3.623554905213357*^9, 3.623554952892398*^9, - 3.6320186387645493`*^9, 3.632064110750493*^9, 3.632071959700783*^9, - 3.632095318280424*^9, 3.63214799305838*^9, {3.691460907692113*^9, - 3.6914609356108503`*^9}, {3.698168625227435*^9, 3.698168651907906*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6218263546822677`*^9, 3.6218263546872683`*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["Additional Sigmoidal Function", "Subsubsection", - CellChangeTimes->{{3.6218263676947947`*^9, 3.621826396269992*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.621826398523655*^9, 3.621826398523655*^9}}], - -Cell["\<\ -So finally additional sigmoidal function will be proto additional sigmoidal \ -function and scaled left & right additions to it\ -\>", "Text", - CellChangeTimes->{{3.621826400068058*^9, 3.6218264619278407`*^9}, { - 3.6218269765828424`*^9, 3.6218269765994425`*^9}, {3.6218274690791883`*^9, - 3.6218274690791883`*^9}}], - -Cell["", "Text"], - -Cell[BoxData[ - FormBox[ - RowBox[{ - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], "+", - FractionBox[ - RowBox[{"A1", "*", "Ka"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}]], "+", - FractionBox[ - RowBox[{"A2", "*", "Ka"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]]}], - TraditionalForm]], "EquationNumbered", - CellChangeTimes->{{3.621826993872404*^9, 3.621827028943354*^9}, - 3.6218271252503276`*^9}], - -Cell["", "Text"], - -Cell["\<\ -A1 and A2 are numbers in between 0-1. In this function all the values have \ -expected meanings;\ -\>", "Text", - CellChangeTimes->{{3.6218271343364334`*^9, 3.6218271981159863`*^9}}], - -Cell[CellGroupData[{ - -Cell["A1 is the starting height ratio of the function", "Item1", - CellChangeTimes->{{3.6217898879595757`*^9, 3.621790061223486*^9}, - 3.6217900985436206`*^9, {3.621827210335414*^9, 3.6218272116368713`*^9}}], - -Cell["A2 is the end height ratio of the function", "Item1", - CellChangeTimes->{{3.6217900627485733`*^9, 3.6217900975375633`*^9}, { - 3.6218272169448166`*^9, 3.621827217896871*^9}}], - -Cell["\<\ -B1 is related with the slope for the increasing part of the function \ -\>", "Item1", - CellChangeTimes->{{3.621790091594223*^9, 3.6217900956844573`*^9}, { - 3.6217902261209173`*^9, 3.621790242930879*^9}, {3.621827254094309*^9, - 3.6218272565845804`*^9}}], - -Cell["\<\ -B2 is related with the slope for decreasing part of the function\ -\>", "Item1", - CellChangeTimes->{{3.621790243888934*^9, 3.621790264857133*^9}, { - 3.6218272615748696`*^9, 3.6218272638139715`*^9}}], - -Cell["\<\ -M1 is the point with highest slope (absolute value) for increasing part of \ -the function\ -\>", "Item1", - CellChangeTimes->{{3.621790265759185*^9, 3.6217903342461023`*^9}}], - -Cell["\<\ -M1+L is the point with highest slope (absolute value) for decreasing part of \ -the function (With a positive L one can speculate we are giving a boundry \ -condition to the system saying death of the virus happens after infection)\ -\>", "Item1", - CellChangeTimes->{{3.6217902910176296`*^9, 3.6217904477775955`*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.621790079041505*^9, 3.621790079044505*^9}, { - 3.621790501211652*^9, 3.621790506513955*^9}}], - -Cell["\<\ -Here is a simple additional sigmoidal function with changable variables\ -\>", "Text", - CellChangeTimes->{{3.6217905082720556`*^9, 3.6217905286832232`*^9}, { - 3.621827326351944*^9, 3.621827328009383*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.62179057705999*^9, 3.6217905770659904`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1_", ",", "A2_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", - "L_", ",", "x_"}], "]"}], "=", "\n", "\t\t\t", - RowBox[{ - RowBox[{"(", - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], ")"}], - "+", - RowBox[{"(", - FractionBox[ - RowBox[{"Ka", "*", "A2"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]], ")"}], - "+", - RowBox[{"(", - FractionBox[ - RowBox[{"Ka", "*", "A1"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}]], ")"}]}]}], ";"}], - "\n"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", "\t", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1.2"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A1", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A2", ",", "0.2"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "8"}], "}"}], ",", "0", ",", "20", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0", ",", "10", ",", "0.01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "\n", "]"}]}], "Code", - CellChangeTimes->{{3.6218273560887623`*^9, 3.6218273624455957`*^9}, { - 3.621827418568239*^9, 3.6218274503802886`*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.2, $CellContext`B1$$ = 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = - 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 8, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A1$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`A2$$], 0.2}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 8}, 0, 20, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 540., {171., 181.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A1$20345$$ = - 0, $CellContext`A2$20346$$ = 0, $CellContext`Ka$20347$$ = - 0, $CellContext`B1$20348$$ = 0, $CellContext`M1$20349$$ = - 0, $CellContext`B2$20350$$ = 0, $CellContext`L$20351$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.2, $CellContext`B1$$ = 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = - 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 8}, - "ControllerVariables" :> { - Hold[$CellContext`A1$$, $CellContext`A1$20345$$, 0], - Hold[$CellContext`A2$$, $CellContext`A2$20346$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$20347$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$20348$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$20349$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$20350$$, 0], - Hold[$CellContext`L$$, $CellContext`L$20351$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`fAdditionalSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> {0, 1.2}], - "Specifications" :> {{{$CellContext`A1$$, 0}, 0, 1, - 0.01}, {{$CellContext`A2$$, 0.2}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1}, 0, 1, 0.01}, {{$CellContext`B1$$, 1}, - 0, 10, 0.01}, {{$CellContext`M1$$, 8}, 0, 20, - 0.01}, {{$CellContext`B2$$, 2}, 0, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{604., {359., 367.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.62182745389977*^9, 3.6218584358176765`*^9, 3.6218593876550164`*^9, { - 3.6218640718981876`*^9, 3.621864093703435*^9}, 3.621864332884115*^9, { - 3.62216416475101*^9, 3.622164176649646*^9}, {3.622301014785441*^9, - 3.622301037804368*^9}, {3.622312270442087*^9, 3.622312293176058*^9}, { - 3.622337864369945*^9, 3.622337887034285*^9}, {3.622379940231069*^9, - 3.6223799635504417`*^9}, {3.622389227345792*^9, 3.6223892521477213`*^9}, - 3.62239161265866*^9, 3.622391753424169*^9, 3.622391800895659*^9, - 3.622418171462715*^9, 3.622465634043521*^9, 3.622468037371497*^9, { - 3.622504789419039*^9, 3.622504812716961*^9}, {3.6225637494587517`*^9, - 3.6225637748421917`*^9}, {3.622761067187711*^9, 3.62276108748109*^9}, - 3.622780795527039*^9, 3.623554905358135*^9, 3.623554953026972*^9, - 3.632018638898727*^9, 3.632064110974483*^9, 3.6320719598356447`*^9, - 3.632095318414632*^9, 3.6321479931865683`*^9, {3.691460907993701*^9, - 3.6914609358484983`*^9}, {3.698168625354912*^9, 3.698168652035026*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{3.621791411948743*^9}], - -Cell["The function satisfies some limit properties at \ -\[PlusMinus]\[Infinity]", "Text", - CellChangeTimes->{{3.6217913084808254`*^9, 3.621791357263615*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", - RowBox[{"-", "\[Infinity]"}]}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", "\[Infinity]"}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}]}], "Code", - CellChangeTimes->{{3.621791400985116*^9, 3.6217914384442587`*^9}, { - 3.6218275950448823`*^9, 3.621827597900593*^9}}], - -Cell[BoxData[ - RowBox[{"A1", " ", "Ka"}]], "Output", - CellChangeTimes->{ - 3.621827609427458*^9, 3.6218584389876814`*^9, 3.6218593877550163`*^9, { - 3.6218640749963646`*^9, 3.6218640938024406`*^9}, 3.621864332905116*^9, { - 3.6221641665584707`*^9, 3.6221641767120457`*^9}, {3.622301018191967*^9, - 3.622301037925414*^9}, {3.622312273874428*^9, 3.6223122933110323`*^9}, { - 3.622337867776733*^9, 3.622337887155201*^9}, {3.622379943702889*^9, - 3.62237996366775*^9}, {3.6223892312884283`*^9, 3.622389252236659*^9}, - 3.6223916130256243`*^9, 3.622391757018585*^9, 3.622391801012004*^9, - 3.622418174885578*^9, 3.6224656341588593`*^9, 3.622468041202083*^9, { - 3.6225047928033123`*^9, 3.622504812910637*^9}, {3.622563752835031*^9, - 3.622563774959207*^9}, {3.622761067276402*^9, 3.622761087736397*^9}, - 3.622780798934781*^9, 3.623554905475*^9, 3.623554953228335*^9, - 3.632018642743498*^9, 3.632064111095446*^9, 3.6320719601296587`*^9, - 3.632095321911909*^9, 3.6321479966499033`*^9, {3.691460911801956*^9, - 3.691460935978372*^9}, {3.698168629085085*^9, 3.698168652234242*^9}}], - -Cell[BoxData[ - RowBox[{"A2", " ", "Ka"}]], "Output", - CellChangeTimes->{ - 3.621827609427458*^9, 3.6218584389876814`*^9, 3.6218593877550163`*^9, { - 3.6218640749963646`*^9, 3.6218640938024406`*^9}, 3.621864332905116*^9, { - 3.6221641665584707`*^9, 3.6221641767120457`*^9}, {3.622301018191967*^9, - 3.622301037925414*^9}, {3.622312273874428*^9, 3.6223122933110323`*^9}, { - 3.622337867776733*^9, 3.622337887155201*^9}, {3.622379943702889*^9, - 3.62237996366775*^9}, {3.6223892312884283`*^9, 3.622389252236659*^9}, - 3.6223916130256243`*^9, 3.622391757018585*^9, 3.622391801012004*^9, - 3.622418174885578*^9, 3.6224656341588593`*^9, 3.622468041202083*^9, { - 3.6225047928033123`*^9, 3.622504812910637*^9}, {3.622563752835031*^9, - 3.622563774959207*^9}, {3.622761067276402*^9, 3.622761087736397*^9}, - 3.622780798934781*^9, 3.623554905475*^9, 3.623554953228335*^9, - 3.632018642743498*^9, 3.632064111095446*^9, 3.6320719601296587`*^9, - 3.632095321911909*^9, 3.6321479966499033`*^9, {3.691460911801956*^9, - 3.691460935978372*^9}, {3.698168629085085*^9, 3.698168652242711*^9}}] -}, Open ]], - -Cell["\<\ -Unfortunately first or second derivative of multiplication sigmoidal is so \ -complicated it can not be solved algebrically to find \ -\>", "Text", - CellChangeTimes->{{3.621791483459833*^9, 3.6217914939344325`*^9}, { - 3.621791582849518*^9, 3.621791676817893*^9}, {3.6217918526539497`*^9, - 3.621791854882077*^9}}], - -Cell[CellGroupData[{ - -Cell["Positions where the slope is maximum ", "Item1", - CellChangeTimes->{{3.621791483459833*^9, 3.6217914939344325`*^9}, { - 3.621791582849518*^9, 3.6217917011852865`*^9}, {3.621791765744979*^9, - 3.621791776637602*^9}}], - -Cell["Value of the slope at this point", "Item1", - CellChangeTimes->{{3.6217917032624054`*^9, 3.6217917291938887`*^9}, { - 3.621791779550769*^9, 3.621791809555485*^9}}], - -Cell["Location of the maximum (local & global) of the function", "Item1", - CellChangeTimes->{{3.621791788547283*^9, 3.621791803788155*^9}}], - -Cell["The maximum (local & global) of the function", "Item1", - CellChangeTimes->{3.6217918082854123`*^9}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6218585558128457`*^9, 3.6218585558228455`*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}], "\[Equal]", "0"}], " ", ",", - "x"}], "]"}], "\n", - RowBox[{ - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", - " ", "\n", "\t\t\t\t\t\t\t\t\t\t", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", " ", "x", ",", " ", "Reals"}], - "]"}], "\n"}], "\n", - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "2"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", "x"}], - "]"}], "\n", - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "2"}], "}"}]}], "]"}], "\[Equal]", "0"}], ",", " ", - "\n", "\t\t\t\t\t\t\t\t\t\t", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", " ", "x", ",", " ", "Reals"}], - "]"}]}], "Code", - CellChangeTimes->{{3.6218585644638577`*^9, 3.621858602668912*^9}, { - 3.6218601980576167`*^9, 3.6218602121774244`*^9}, {3.621860264240402*^9, - 3.6218602665875363`*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Solve", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Solve. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Solve\\\", ButtonNote -> \ -\\\"Solve::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.62186021419654*^9, - 3.621860270046734*^9, {3.621864077567512*^9, 3.621864095610544*^9}, - 3.6218643347582226`*^9, {3.6221641680268736`*^9, 3.6221641777106633`*^9}, { - 3.622301020519095*^9, 3.6223010390458384`*^9}, {3.622312276182028*^9, - 3.622312294493223*^9}, {3.622337870053524*^9, 3.62233788826443*^9}, { - 3.622379946024191*^9, 3.6223799648274527`*^9}, {3.622389233835289*^9, - 3.62238925343512*^9}, 3.622391614226495*^9, 3.6223917593659782`*^9, - 3.622391802150818*^9, 3.622418177150605*^9, 3.622465635404355*^9, - 3.622468043557522*^9, {3.622504795093644*^9, 3.6225048140287323`*^9}, { - 3.622563755197548*^9, 3.6225637760892763`*^9}, {3.622761068406437*^9, - 3.622761088902279*^9}, 3.622780801207263*^9, 3.623554906750125*^9, - 3.6235549544039917`*^9, 3.6320186452950068`*^9, 3.632064112409092*^9, - 3.632071961337097*^9, 3.63209532436091*^9, 3.632147999000842*^9, { - 3.691460914139126*^9, 3.691460937237599*^9}, {3.698168631637388*^9, - 3.69816865343298*^9}}], - -Cell[BoxData[ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"A1", " ", "B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", "Ka"}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - "+", - FractionBox[ - RowBox[{"A2", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", "Ka"}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]], "-", - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]], "+", - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}]}]]}], "\[Equal]", "0"}], ",", "x"}], "]"}]], "Output", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.6218602142045403`*^9, - 3.621860270070736*^9, {3.6218640775745125`*^9, 3.621864095617544*^9}, - 3.621864334762223*^9, {3.6221641680268736`*^9, 3.6221641777126637`*^9}, { - 3.622301020521831*^9, 3.622301039048699*^9}, {3.622312276184947*^9, - 3.6223122944961*^9}, {3.622337870056467*^9, 3.6223378882674522`*^9}, { - 3.622379946027123*^9, 3.622379964830296*^9}, {3.622389233838286*^9, - 3.622389253438527*^9}, 3.6223916139653788`*^9, 3.6223917593689003`*^9, - 3.622391802153784*^9, 3.6224181771535597`*^9, 3.622465635407795*^9, - 3.622468043560624*^9, {3.622504795096711*^9, 3.6225048140316133`*^9}, { - 3.622563755200395*^9, 3.622563776092167*^9}, {3.622761068409367*^9, - 3.6227610889052134`*^9}, 3.622780801210335*^9, 3.62355490675817*^9, - 3.623554954409775*^9, 3.632018645301449*^9, 3.632064112415462*^9, - 3.632071961343986*^9, 3.632095324367567*^9, 3.632147999006846*^9, { - 3.691460914147729*^9, 3.691460937246603*^9}, {3.698168631645643*^9, - 3.698168653441551*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Reduce", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Reduce. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Reduce\\\", ButtonNote -> \ -\\\"Reduce::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.62186021419654*^9, - 3.621860270046734*^9, {3.621864077567512*^9, 3.621864095610544*^9}, - 3.6218643347582226`*^9, {3.6221641680268736`*^9, 3.6221641777106633`*^9}, { - 3.622301020519095*^9, 3.6223010390458384`*^9}, {3.622312276182028*^9, - 3.622312294493223*^9}, {3.622337870053524*^9, 3.62233788826443*^9}, { - 3.622379946024191*^9, 3.6223799648274527`*^9}, {3.622389233835289*^9, - 3.62238925343512*^9}, 3.622391614226495*^9, 3.6223917593659782`*^9, - 3.622391802150818*^9, 3.622418177150605*^9, 3.622465635404355*^9, - 3.622468043557522*^9, {3.622504795093644*^9, 3.6225048140287323`*^9}, { - 3.622563755197548*^9, 3.6225637760892763`*^9}, {3.622761068406437*^9, - 3.622761088902279*^9}, 3.622780801207263*^9, 3.623554906750125*^9, - 3.6235549544039917`*^9, 3.6320186452950068`*^9, 3.632064112409092*^9, - 3.632071961337097*^9, 3.63209532436091*^9, 3.632147999000842*^9, { - 3.691460914139126*^9, 3.691460937237599*^9}, {3.698168631637388*^9, - 3.6981686542476377`*^9}}], - -Cell[BoxData[ - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"A1", " ", "B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", "Ka"}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - "+", - FractionBox[ - RowBox[{"A2", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", "Ka"}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]], "-", - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]], "+", - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}]}]]}], "\[Equal]", "0"}], ",", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", "x", ",", "Reals"}], - "]"}]], "Output", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.6218602142045403`*^9, - 3.621860270070736*^9, {3.6218640775745125`*^9, 3.621864095617544*^9}, - 3.621864334762223*^9, {3.6221641680268736`*^9, 3.6221641777126637`*^9}, { - 3.622301020521831*^9, 3.622301039048699*^9}, {3.622312276184947*^9, - 3.6223122944961*^9}, {3.622337870056467*^9, 3.6223378882674522`*^9}, { - 3.622379946027123*^9, 3.622379964830296*^9}, {3.622389233838286*^9, - 3.622389253438527*^9}, 3.6223916139653788`*^9, 3.6223917593689003`*^9, - 3.622391802153784*^9, 3.6224181771535597`*^9, 3.622465635407795*^9, - 3.622468043560624*^9, {3.622504795096711*^9, 3.6225048140316133`*^9}, { - 3.622563755200395*^9, 3.622563776092167*^9}, {3.622761068409367*^9, - 3.6227610889052134`*^9}, 3.622780801210335*^9, 3.62355490675817*^9, - 3.623554954409775*^9, 3.632018645301449*^9, 3.632064112415462*^9, - 3.632071961343986*^9, 3.632095324367567*^9, 3.632147999006846*^9, { - 3.691460914147729*^9, 3.691460937246603*^9}, {3.698168631645643*^9, - 3.698168654254107*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Solve", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Solve. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Solve\\\", ButtonNote -> \ -\\\"Solve::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.62186021419654*^9, - 3.621860270046734*^9, {3.621864077567512*^9, 3.621864095610544*^9}, - 3.6218643347582226`*^9, {3.6221641680268736`*^9, 3.6221641777106633`*^9}, { - 3.622301020519095*^9, 3.6223010390458384`*^9}, {3.622312276182028*^9, - 3.622312294493223*^9}, {3.622337870053524*^9, 3.62233788826443*^9}, { - 3.622379946024191*^9, 3.6223799648274527`*^9}, {3.622389233835289*^9, - 3.62238925343512*^9}, 3.622391614226495*^9, 3.6223917593659782`*^9, - 3.622391802150818*^9, 3.622418177150605*^9, 3.622465635404355*^9, - 3.622468043557522*^9, {3.622504795093644*^9, 3.6225048140287323`*^9}, { - 3.622563755197548*^9, 3.6225637760892763`*^9}, {3.622761068406437*^9, - 3.622761088902279*^9}, 3.622780801207263*^9, 3.623554906750125*^9, - 3.6235549544039917`*^9, 3.6320186452950068`*^9, 3.632064112409092*^9, - 3.632071961337097*^9, 3.63209532436091*^9, 3.632147999000842*^9, { - 3.691460914139126*^9, 3.691460937237599*^9}, {3.698168631637388*^9, - 3.6981686551389227`*^9}}], - -Cell[BoxData[ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"A1", " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "3"]], - "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - ")"}], " ", "Ka"}], "+", - RowBox[{"A2", " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "2"}], " ", "B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "3"]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]]}], ")"}], " ", "Ka"}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"2", " ", "B1", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}], "+", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]}]]}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], - " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "2"]}]]}], "+", - FractionBox[ - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "2"}], " ", "B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "3"]], - "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]], "+", - FractionBox[ - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "3"]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "2"]]}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]]}], ")"}], " ", - "Ka"}]}], "\[Equal]", "0"}], ",", "x"}], "]"}]], "Output", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.6218602142045403`*^9, - 3.621860270070736*^9, {3.6218640775745125`*^9, 3.621864095617544*^9}, - 3.621864334762223*^9, {3.6221641680268736`*^9, 3.6221641777126637`*^9}, { - 3.622301020521831*^9, 3.622301039048699*^9}, {3.622312276184947*^9, - 3.6223122944961*^9}, {3.622337870056467*^9, 3.6223378882674522`*^9}, { - 3.622379946027123*^9, 3.622379964830296*^9}, {3.622389233838286*^9, - 3.622389253438527*^9}, 3.6223916139653788`*^9, 3.6223917593689003`*^9, - 3.622391802153784*^9, 3.6224181771535597`*^9, 3.622465635407795*^9, - 3.622468043560624*^9, {3.622504795096711*^9, 3.6225048140316133`*^9}, { - 3.622563755200395*^9, 3.622563776092167*^9}, {3.622761068409367*^9, - 3.6227610889052134`*^9}, 3.622780801210335*^9, 3.62355490675817*^9, - 3.623554954409775*^9, 3.632018645301449*^9, 3.632064112415462*^9, - 3.632071961343986*^9, 3.632095324367567*^9, 3.632147999006846*^9, { - 3.691460914147729*^9, 3.691460937246603*^9}, {3.698168631645643*^9, - 3.698168655147497*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"Reduce", "::", "nsmet"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"This system cannot be solved with the methods available to \ -Reduce. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/Reduce\\\", ButtonNote -> \ -\\\"Reduce::nsmet\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.62186021419654*^9, - 3.621860270046734*^9, {3.621864077567512*^9, 3.621864095610544*^9}, - 3.6218643347582226`*^9, {3.6221641680268736`*^9, 3.6221641777106633`*^9}, { - 3.622301020519095*^9, 3.6223010390458384`*^9}, {3.622312276182028*^9, - 3.622312294493223*^9}, {3.622337870053524*^9, 3.62233788826443*^9}, { - 3.622379946024191*^9, 3.6223799648274527`*^9}, {3.622389233835289*^9, - 3.62238925343512*^9}, 3.622391614226495*^9, 3.6223917593659782`*^9, - 3.622391802150818*^9, 3.622418177150605*^9, 3.622465635404355*^9, - 3.622468043557522*^9, {3.622504795093644*^9, 3.6225048140287323`*^9}, { - 3.622563755197548*^9, 3.6225637760892763`*^9}, {3.622761068406437*^9, - 3.622761088902279*^9}, 3.622780801207263*^9, 3.623554906750125*^9, - 3.6235549544039917`*^9, 3.6320186452950068`*^9, 3.632064112409092*^9, - 3.632071961337097*^9, 3.63209532436091*^9, 3.632147999000842*^9, { - 3.691460914139126*^9, 3.691460937237599*^9}, {3.698168631637388*^9, - 3.69816865930274*^9}}], - -Cell[BoxData[ - RowBox[{"Reduce", "[", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"A1", " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "3"]], - "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - ")"}], " ", "Ka"}], "+", - RowBox[{"A2", " ", - RowBox[{"(", - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "2"}], " ", "B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "3"]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "2"]]}], ")"}], " ", "Ka"}], "+", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"2", " ", "B1", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}], "+", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]}]]}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], - " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "2"]}]]}], "+", - FractionBox[ - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "2"}], " ", "B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "3"]], - "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B1", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], - "2"]]}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]], "+", - FractionBox[ - RowBox[{ - FractionBox[ - RowBox[{"2", " ", - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"2", " ", "B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "3"]], "-", - FractionBox[ - RowBox[{ - SuperscriptBox["B2", "2"], " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}], "2"]]}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]]}], ")"}], " ", - "Ka"}]}], "\[Equal]", "0"}], ",", - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}], ",", - RowBox[{"Ka", ">", "A1"}], ",", - RowBox[{"Ka", ">", "A2"}]}], "}"}], ",", "x", ",", "Reals"}], - "]"}]], "Output", - CellChangeTimes->{ - 3.6218586090199203`*^9, 3.621859389565019*^9, 3.6218602142045403`*^9, - 3.621860270070736*^9, {3.6218640775745125`*^9, 3.621864095617544*^9}, - 3.621864334762223*^9, {3.6221641680268736`*^9, 3.6221641777126637`*^9}, { - 3.622301020521831*^9, 3.622301039048699*^9}, {3.622312276184947*^9, - 3.6223122944961*^9}, {3.622337870056467*^9, 3.6223378882674522`*^9}, { - 3.622379946027123*^9, 3.622379964830296*^9}, {3.622389233838286*^9, - 3.622389253438527*^9}, 3.6223916139653788`*^9, 3.6223917593689003`*^9, - 3.622391802153784*^9, 3.6224181771535597`*^9, 3.622465635407795*^9, - 3.622468043560624*^9, {3.622504795096711*^9, 3.6225048140316133`*^9}, { - 3.622563755200395*^9, 3.622563776092167*^9}, {3.622761068409367*^9, - 3.6227610889052134`*^9}, 3.622780801210335*^9, 3.62355490675817*^9, - 3.623554954409775*^9, 3.632018645301449*^9, 3.632064112415462*^9, - 3.632071961343986*^9, 3.632095324367567*^9, 3.632147999006846*^9, { - 3.691460914147729*^9, 3.691460937246603*^9}, {3.698168631645643*^9, - 3.698168659310316*^9}}] -}, Open ]], - -Cell["So one needs to go with numerical solutions...", "Text", - CellChangeTimes->{{3.621792808735635*^9, 3.6217928237774954`*^9}, { - 3.6218587665511427`*^9, 3.6218587665511427`*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.621858767061143*^9, 3.621858767061143*^9}, { - 3.6218589721874313`*^9, 3.6218589783984404`*^9}}], - -Cell["\<\ -Lets calculate the derivative of the additional sigmoidal function \ -\>", "Text", - CellChangeTimes->{{3.621858767061143*^9, 3.621858767061143*^9}, { - 3.6218589721874313`*^9, 3.621858996811466*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.621858771472149*^9, 3.621858802485193*^9}, { - 3.6218588761652966`*^9, 3.6218588868863115`*^9}, {3.621858979418442*^9, - 3.6218589998714705`*^9}}], - -Cell[BoxData[ - RowBox[{ - RowBox[{ - RowBox[{"fDAdditionalSigmoidal", "[", - RowBox[{ - "A1_", ",", "A2_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", - "L_", ",", "x_"}], "]"}], "=", "\n", "\t\t\t\t\t\t", - RowBox[{"D", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}]}], ";"}]], "Code", - CellChangeTimes->{{3.6218590004914713`*^9, 3.6218590005014715`*^9}, { - 3.6218590329855175`*^9, 3.6218590984546094`*^9}}], - -Cell["", "Text"], - -Cell["\<\ -We can look at the sign of derivatives as we looked them before for \ -multiplication sigmoidal function\ -\>", "Text", - CellChangeTimes->{{3.621858771472149*^9, 3.621858802485193*^9}, { - 3.6218588761652966`*^9, 3.6218588868863115`*^9}, 3.621858979418442*^9}], - -Cell["", "Text"], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"xValue", "=", "2000"}], ";"}], "\n"}], "\n", - RowBox[{"Manipulate", "[", "\n", "\[IndentingNewLine]", "\t", - RowBox[{ - RowBox[{"Grid", "[", "\n", "\t\t", - RowBox[{ - RowBox[{"{", "\n", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", - "\t\t\t\t\t\t\t\t\t", - RowBox[{"Sign", "[", - RowBox[{"fDAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", - RowBox[{"-", "xValue"}]}], "]"}], "]"}]}], "]"}], "}"}], ",", - "\n", "\t\t", - RowBox[{"{", - RowBox[{"StringForm", "[", - RowBox[{ - "\"\\"", ",", "\n", - "\t\t\t\t\t\t\t\t\t", - RowBox[{"Sign", "[", - RowBox[{"fDAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "xValue"}], "]"}], "]"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", - "\t\t\t\t\t\t\t\t\t", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.2"}], ",", "2"}], "}"}]}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Function"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}], ",", "\n", - "\t\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fDAdditionalSigmoidal", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", "\n", - "\t\t\t\t\t\t\t\t\t", - RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", - RowBox[{"PlotLabel", "\[Rule]", "Derivative"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}]}], "\n", - "\t\t", "}"}], "\n", "\t", ",", - RowBox[{"Frame", "\[Rule]", "All"}]}], "]"}], ",", "\n", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A1", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A2", ",", "0.5368628"}], "}"}], ",", "0", ",", "1", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1.454867"}], "}"}], ",", "0", ",", "2", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1.084971"}], "}"}], ",", "0.01", ",", "10", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "11.11337"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "8.529749"}], "}"}], ",", "0.01", ",", "10", ",", - "0.01"}], "}"}], ",", "\[IndentingNewLine]", "\t", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "1.13329"}], "}"}], ",", "0", ",", "10", ",", - "0.001"}], "}"}]}], "\n", "]"}]}], "Code", - CellChangeTimes->{{3.6217934772988744`*^9, 3.6217934773208756`*^9}, { - 3.6218588959083242`*^9, 3.621858925651366*^9}, {3.6218591067756214`*^9, - 3.6218591132056303`*^9}, {3.6218591966087475`*^9, 3.621859217342777*^9}}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.5368628, $CellContext`B1$$ = 1.084971, $CellContext`B2$$ = - 8.529749, $CellContext`Ka$$ = 1.454867, $CellContext`L$$ = - 1.13329, $CellContext`M1$$ = 11.11337, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A1$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`A2$$], 0.5368628}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1.454867}, 0, 2, 0.01}, {{ - Hold[$CellContext`B1$$], 1.084971}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 11.11337}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 8.529749}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`L$$], 1.13329}, 0, 10, 0.001}}, Typeset`size$$ = { - 567., {371.03173828125, 378.96826171875}}, Typeset`update$$ = 0, - Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`A1$23251$$ = 0, $CellContext`A2$23252$$ = - 0, $CellContext`Ka$23253$$ = 0, $CellContext`B1$23254$$ = - 0, $CellContext`M1$23255$$ = 0, $CellContext`B2$23256$$ = - 0, $CellContext`L$23257$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.5368628, $CellContext`B1$$ = 1.084971, $CellContext`B2$$ = - 8.529749, $CellContext`Ka$$ = 1.454867, $CellContext`L$$ = - 1.13329, $CellContext`M1$$ = 11.11337}, "ControllerVariables" :> { - Hold[$CellContext`A1$$, $CellContext`A1$23251$$, 0], - Hold[$CellContext`A2$$, $CellContext`A2$23252$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$23253$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$23254$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$23255$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$23256$$, 0], - Hold[$CellContext`L$$, $CellContext`L$23257$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Grid[{{ - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[ - $CellContext`fDAdditionalSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, -$CellContext`xValue]]]}, { - StringForm[ - "Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \ -\[Rule] \[Infinity]\)]\); it should be -1", - Sign[ - $CellContext`fDAdditionalSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`xValue]]]}, { - Plot[ - $CellContext`fAdditionalSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> {-0.2, 2}, PlotLabel -> Function, ImageSize -> - 350]}, { - Plot[ - $CellContext`fDAdditionalSigmoidal[$CellContext`A1$$, \ -$CellContext`A2$$, $CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, \ -$CellContext`B2$$, $CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> Full, PlotLabel -> Derivative, ImageSize -> 350]}}, - Frame -> All], - "Specifications" :> {{{$CellContext`A1$$, 0}, 0, 1, - 0.01}, {{$CellContext`A2$$, 0.5368628}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1.454867}, 0, 2, - 0.01}, {{$CellContext`B1$$, 1.084971}, 0.01, 10, - 0.01}, {{$CellContext`M1$$, 11.11337}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 8.529749}, 0.01, 10, - 0.01}, {{$CellContext`L$$, 1.13329}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{631., {559., 566.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.621858944594393*^9, 3.621859115316633*^9, 3.6218592183927784`*^9, - 3.621859396546029*^9, {3.621864084664918*^9, 3.621864102656947*^9}, - 3.6218643417876244`*^9, {3.6221641718917627`*^9, 3.6221641816308355`*^9}, { - 3.62230102626131*^9, 3.622301044867506*^9}, {3.622312281992442*^9, - 3.6223123005227547`*^9}, {3.622337875820271*^9, 3.622337894037321*^9}, { - 3.622379951840625*^9, 3.6223799706968946`*^9}, {3.62238924010048*^9, - 3.622389259548161*^9}, 3.622391670177169*^9, 3.622391765243101*^9, - 3.622391808041444*^9, 3.622418182864533*^9, 3.6224656417757807`*^9, - 3.622468049621483*^9, {3.622504800772068*^9, 3.622504819707728*^9}, { - 3.62256376096883*^9, 3.622563781856031*^9}, {3.622761074398108*^9, - 3.622761094591609*^9}, 3.622780806990752*^9, 3.623554912548526*^9, - 3.6235549603727503`*^9, 3.632018651695705*^9, 3.632064119698249*^9, - 3.632071967829948*^9, 3.632095330619084*^9, 3.632148004985775*^9, { - 3.6914609204002523`*^9, 3.6914609434518833`*^9}, {3.6981686377764*^9, - 3.698168659367154*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6218597126174736`*^9, 3.6218597126174736`*^9}}], - -Cell["\<\ -As can be seen from figures above the additive sigmoidal function behaves as \ -it should behave for all possible combinations of parameters.\ -\>", "Text", - CellChangeTimes->{{3.621859714057476*^9, 3.6218597733955593`*^9}}], - -Cell["", "Text", - CellChangeTimes->{{3.622301100358038*^9, 3.622301105982583*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell["PROBLEMATIC CASE", "Subsubsection", - CellChangeTimes->{{3.622301100358038*^9, 3.6223011454485893`*^9}, { - 3.622303170106861*^9, 3.6223031701101017`*^9}}], - -Cell["\<\ -There is a problematic case where we can produce unwanted kinks. Here is an \ -example\ -\>", "Text", - CellChangeTimes->{{3.622301100358038*^9, 3.6223011454485893`*^9}, { - 3.622303170106861*^9, 3.6223032159750566`*^9}, {3.622303724893688*^9, - 3.622303724897135*^9}, {3.622313379296698*^9, 3.622313392709654*^9}, { - 3.622313677964355*^9, 3.622313683990614*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"fAdditionalSigmoidal", "[", - RowBox[{ - "0", ",", "1", ",", "1", ",", "8.88", ",", "19.5", ",", "0.121", ",", "0", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1.2"}], "}"}]}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}]], "Code", - CellChangeTimes->{{3.622301100358038*^9, 3.6223011454485893`*^9}, { - 3.622303170106861*^9, 3.6223032159750566`*^9}, {3.622303724893688*^9, - 3.622303724897135*^9}, {3.622313379296698*^9, 3.622313392709654*^9}, { - 3.622313677964355*^9, 3.622313683987933*^9}, {3.62231371678382*^9, - 3.6223137196521177`*^9}, {3.62231380381518*^9, 3.6223138625062733`*^9}, { - 3.6223143856001377`*^9, 3.622314402426393*^9}, {3.622564605607354*^9, - 3.622564623441017*^9}}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[ - "Butt"], LineBox[CompressedData[" -1:eJxF1Hk4VtvbB3AHJY5UpFLGRCjTs/ejoqwbZSoyHEIcQ6akIplLRQNShEoq -CQ2IEknmzDSYypThIUSGTZmJdz393quz/9nX59rXXnvf6/7eS8zupJEDKwsL -i9pfLCzM+1RnddmWq0mqbEZSBo83ZKNZDUVXtZZAtFyPhcNZOBs55H4z2dAS -idYWuAts25KN7k6W1LC1JCC3bUJGr+SzkVKUwqXZ5pfItN1foE0zG7HbOdlN -NJegQ19Ddjh4ZqNj1az1480NKHR1pktQYzYSPmsQPNbcg8z4wwJGol6jyjny -dn3CT1RdL55Xqf0GpSQWNdht/4XY9WzKumZzkXie3H0ODTaopUqn1+XlI3Ov -eyn6JiugNvtJDGdRIerbqvNsfPVK4FjeE6j8bzF6ZlJTyiqwBtiC2yZYA9+i -xu7TZ6Lu8wErd53Q8IsSJDGoKt8wxQ+B7A5Lt9pK0THzFv3qwA1AP6StvE+u -HLXvveF84utG4O7g77rpX4Hy5vT1Nu4UglH3e0419ZXoukB7XECRCBS+MIyO -Na1GFeZ7PatWikHOz17ZufoahA4H1suabIZok36lQ+feI+qtetStW+LQHv+2 -V3rHR0T28xqZlmyBAWmul+Hdtehnoa7WKQ5JSL3N45PHqEPaJpG7+pS2wq+Z -esesqnq0Pl7NLuucFMQZzF298r4BCRl4jF0ukYaTiZomXxobUU5Blv8LSga2 -bVUzDqr7hD50We1RUtoOyW2D8XGDn5F30boFXidZSI3RlTCdakJm7EaiP2/I -geh5tXZxthaU+WvCT75JHrrU8xPEt7ciozbjo7aBCqBlu3dT7r42tGK1rYK5 -pCIM8Imo/PL7gsx95FOMKhUhdN2U8HBaO/KqX62aWq0Ii7XcJ1xetqNImR/1 -bO8VQTy+tmsgux3VtGfNZtUpwsGN8zL9Re1ot5qyzvo2Rcg3LrTqqW9Holz7 -Br4MK4K5TOm27sl29O2uhaQDLw3KWhbYZvd0IPZJldyCtTRICTtd5K/egUT1 -hfTXrafBz5OfExc1O5AZC8OzchMNNKJXDLEbdKAae4dyaQkapGW8ieSz60Dp -sm72ozto8Nrl4Qvlyx3Is+hSgrcVDdQe7jeq/NiB5r41jrLa0IBrjfpCdmMH -Or96s8p1OxoMV34MfdLSgUJtCxuTnGggVXsn/mpPB4pnm2ZvcKeB98Jzcbup -DvRey9lp+2Ua2ImE2NgLdyIjt+zM18E0yDRIZncT70TNMewsGldpMG+bNxkg -1Yl6BuNjzCNoUBvQMv6E1ommr7ZWX46lgexy938VtDrR5jrd7d3pNLjKvy0h -zL0TPZ2J8XHNoMFRw6NT7N6dSFbsW9l0Jg1UW3IdQs90op2ngqx43tDAXHn0 -1NsrnUhvbf51lVJcj5rI9IoHnahhN9eXinIaTGeJqvA+6kRmDmZbjapoEOW/ -+Jae2onssieKnD/Q4IjG2kOfX3ciHzPZ8ZvNeH8TsliqGjrR4nn/PWJtNLA/ -2Bf2s7UTBSVXhzxrp0EYW1mCcXcnuj7nsLm0mwZ/nxh5XzbWifjEs07o99Ig -f1n/U8ZMJ4rZz5rX2k8D65VSGZp/daHEe3HGY0M02J3S4cvN14Wkyocf+I/S -oLpa2tRfsAuljygPLx/H/RSCF0aSXShHtfmi0BQNmjOoVhuVLqTqJFH/dIYG -ctoKOc80u1BpuIcQOY/7tYFufNWoC31krMrWZSFAt4vdhe6KLWX2IoWVgK45 -Oss23y5U6xafwrWMgE2Ut2nD5S5Ux6L4oIaTgHSp+SC3JGxt3zsy3AQMze1U -vpLVheoj3kaF8hCQfLQ/Iry8CzWIGgXr8hGwsWLIqeQ7tnNsYAo/AcfP+s2t -W+pCjS96znBtIGC97uVcMy4G+jQj4+2ykQBqMlD/Mz82eLjXCBKg4NB1lGcz -A30OzjsmI0LAUl0QL688AzXVsTmGihHgojYsTe1moGabaAtdSQL0CvdGeh5m -oJan7f+kSBFg5he6Ts0Ve2zLQa5tBAzKhLjLBDBQ687jOi6y+HsVm2b23mCg -tvOvNGrkCYhfFPmS9Ai76tceGRoB52rUhazzGOjLas2doSQBlptPXwxpYKD2 -+KbtursI+MXhIB+yrBu1DwhvTVHB9fPzsF0T60YdCk5iXKoEhGdOf7ZC3ajT -5/kmFyCgWWr2AZ81dvE0f406AU/WWGhWnMdeAatl9hEgevmS1bWkbtRlEMwV -qkVAqgTVfa6mGzEYG5Z0DhCgEeugoSrUgxhStrPJ+gTc0nOSoOn2oG635J+c -hgSosClnxfv2oB4W5YFqEwIE5HhuSTCwtQN7pM0IMPmxd/bg+q/oa0RNe4gF -AR16EbsEDb+iXtHD9TrWBMQ93slx6z22c+K7ZFsCfMX0Beg8vajvxVA5pz0B -TV/dDM2MelE/nMmtdibg1LTHtbruXjRocz9R5xQBQZ1HJfME+tH3p333k0/j -9SLembQdwx6TjeH0JiDlrLuAfFE/Gj5fGFbtjy386Li78zc0Gt/lqXOJgPw9 -xh9uFwyg0YGtbslX8H61iy9UrBlElIKbC2coARGqXoIz9oNorJjFuvo67u8R -kyBLju/oB0NMWyeGgNUt7NX8SkOoQJaucz+WANa6iYB3fkMo2E9bd/weAYwD -lsobC4aQ8NqTB+48JICdz6CAVB7G/x+oN5JIQEX88FL/6WGUlXZTX+0xAZqV -IZmLz4aRrla+wWAKAefp+zRs+EcQf3St4Z40AkbjXIVe7RvB/ekxuvGcAHVB -x9CLHiMoVXbKuC+DAGGRU3LtcSPIy4/TZFcWATKfbki/rxxBapWCpteyCdhw -eirNcXQEca9VONSdQwA/75e7RbyjKCHN1DykgABxXVN3VpNRdHzuqEVHEQEB -myQOC3iMop1aZw8rlhAQ+m+ksHb4KGKLjrC8VEaAv1+H6OPkUTzfiVatFbgf -boZvdEtG0R3Z1//KVhMQ+fALq17rKLL3q7G+8I4AZ/P3WaWjo2iOb9xWuo6A -a3fDzjnyU6jchv3I2QYCbhdbriyQpFBE2nr7+k8EjCX6VbUrUejwnIyDRDMB -0aGiiy37KCSppero20pA2wb2LWXGFBqPMnT68AXnf21a43MbCuUz7J3FOgnY -u3Cn6pkrhYz8rrpU9+B8K64SEQikkFBl3DGhPpzXCY/nj65SaIDvpav7N+y3 -esNnoymUaVN+vHyQALrCO/v0exQKSGs5ITBMAK+wQK96EoV05oZOHh8lIHZI -1FczlUJrtZbc3o4RkLQzJaA0g0IpDAmPo5MECJ7gmjhYQCFP2V2nC6YJeCx9 -jeFWQiHwO+C5Zo4AG7YPWnKVFPq70trLYQHnwZAWEP6OQk18Ht5vFglw1F1l -ereWQg9tLvus/IuEF8nHt5o1Usg17Y6vLRsJz7ujm981UYhVq9ifcwUJP1qj -TEfaKfQhqvGMFRcJOfE3x5O6KBTD6D+bwU1CksOV1Vt7KHREdi5g2SoSUvnL -ir17KSTnt/K8+RoSHB3MS2P7KTRbIXohjY+E/NoDkVEDFCrjIwP/WkeCUVmE -g8N3ClmkWVxM3khCmc7GmgcjFJKYO37plyAJ3JmWySspCo1pXrhsKEJCGzQo -WI9RKC8q+sojMRJ2JWtevzVOocuMJ8Gz4iQI+mmVv/pBIUPZvBA9SRJePlV9 -WfiTQoJ+H0MfSpGQcNx0ZeYEhTL4JsN0ZEmIf6mhYz9FoV55T806eRL2XdoT -Q0xTaMOBySVTGgk0j0jvcewDzp5vOkgS9rLRrR7MUOj8xclT9jtIyLViiVed -pVBWvOf2oV0kpBvt9avDHsif7HPfTYJSqBC36Rz+fqvngxlVvF7efas6bIPJ -SbNzaiSIXam0gXkKXVzjxbt8LwkfLW1/PsbOkZ16F6ZJgkFIAoN9gULDOl6X -+HRI6HMs6LHAFnWcUo3dT0K0vU5SMvY/gV4zovokLDsZ/nYcOzhuKuOJAQlV -fHnVxC+c31yvY3LGJLRc/YHcsMeapra8MiFB+MWhe0+wt/z06lQxI4El6+eB -NmyzVdO3SyxIsLMKz16xSKGwbd6GOlYkGB/0pRPYxVrTXHXWJAR0qAhbYE8c -8S4ztSMhsVij8Cy21Pnpsx32JPw76GMZh215z3uHvRMJcjdrduVjR+RMj30/ -SsKZl89vNGOXffJOcXclwTf0XuwY9szY9JGZEySIRp+4zLFEoe0rfYTOuZMw -CbWBgtg20jNNy06TQAZdfyOPHb3PJyLMi4SYgkkDNewq2xkdPl8SLAv5XA2x -F876sMX6k1BizrrNBls+diZfNICEc9slU49j22X7eD05j/PFepTDD/tWw4y8 -XBAJ2w6dNLuEXTPqM5h1iYQug+qscOxFrtkElWAS3JJEFO9g07b6WpaE4vl5 -Zsl4iO2oMcuvc40Ed56GxmTsWGvf2tpwEhYUDm/KwP7oPxtsGknC7toz5a+x -WWN81TuiSaAzLnQVYCtlzc4fuU1C/6pbnqXYLnW+r77fIYHrV0dkFXbc8OwJ -93u4v8euqX3AbljhJzUTh/N2Zz60Hnu5xFx3wEMSFFpeeX/GVlbzu7ssiQTN -exGrWrFPWM39E/YYz+Pa1+bt2Am+fjx8yST4e72x7MJuujlXeSeVhFNrYoV7 -sLle+l0QTSfBYn9rUi+26sc55ScvSHh9+/xEP/ap734Tspl4/wK38w5iP14+ -n5b1ioRvX/lZh7DbNvs7qeSQoKq9sWoYmwfNi5bkklD/tNRpFFv9sH+bdgEJ -fL4HeylsL+/5qNoi3F+hVzCOnRLlr2daQkLjp9RzP7A7n88v7yjD55HEi8Sf -2Lzv/YuPVJIQVr/i+QS25sC87/dqPD827xInsf3YzxDu70lI0WYETWGniS4M -T3/E+S5cbjiNbWnp9Y9xPZ5v5wqWGWzumLG89EacJ9rDBKbzGl3EuZrwfuu+ -2DHL7MeqvlCHFhJMkqaKmRbYb/2juA2fh7l2aI6Zv8ut5oIdeL7l6zKZllz8 -INXYTQK7TtWFeezPu7Qj5HpJECnLaWf6omfJdEg/CbrZPgoL2ETGbuu+ARKC -4++cZbpnOLsChkg4EPSwjOkbUopy90ZI2Fn59/Jf2GCfenOaIsGHT1ed6bgv -D+zTJ0gw3dbxjGm99Rvfc06TsCg29IXpBaNowmGWhMIc4FjETr3Oc7d4noRI -ZWl5pi1qglkFF/H5uThozDTncjYXbxY6rOgu8WQ6R+1sfQMrHTZmjEYzvf6N -e3wIBx2uevO9Z7piYoijj5MOVaquvUx7KTieBG46jKm0zDEt4cpoustDh1b7 -gFVL2J+eWKhOr6ZDc2zgZqaDvn56ZMRHh9WDy0imaSIHV6bz02G4QHIv0xG3 -NNrtN9LBsjPdhmnUUKBRLEgHmUKt40yPrtyZukmEDmRitw/T93Ve8nqL0UE/ -OyKI6QOXtvs1iNNBO9jpGtPzxY+7ZSXpoEDzvsV0yoKoTogUrtejNo5pztP8 -G0CWDro3I9OYznkefu6uPB2WCa/PYtp5iPPblCIdRnLW5zK9futFfSOSDqaf -4oqYrrBbfJWmRIdzf2eXMe0Z5yPEuYsO23c4VjO9pe3HRXsVOgicff2B6UDD -b8abgA6SpRafmVa8ZpvnpU6HfzhzW5hmVH3Z3LCXDhT35y9Mh7Obhspq0eER -kdHJtCrUjQfr0KHf07ib6RF/XfPe/XQIcir+yvS912XFSJ8O6Wih73f9cm/C -p4zoENBODTJt8Tjt37RDdFio0xn5Xa9Qgqy9JR3aPcTGmF5389bCRls62EWE -/mD6NPfVd/UOdJAduznxu587t+7ncsPP09lmmCYdSmvU/egQXX50junoG9a6 -/hfpMOG4foHpyYL56szrdAiZ0/jFdPY6snpLIn7fLnmRaa+TrlU3X9Mh38Bs -ielp0Y4KbwYdeJqaf9unQa/cnFMJAmynfpuxxeNCpokSWJos/baWd8yelQlK -IDfxPy/YCTd+G1aCLUv/c4Z+knPJjh1A/b8vbi37eyJ4Byz+v81YetMl2nYA -y+9rDN2o0lozIrHzj2siUj2y3P+z7/xj43H+XX9cGnOkX/71f25Z+3T6jp7y -H8scE93ycuw/a8WL1k4Gq/zxEkfPdhXh3X88odP8SK74P2e5/HNf79CeP5Z2 -vVL9OPU/xx3PnVxa+s//B8uP9Lc= - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - ImageSize->350, - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{0., 29.999999387755103`}, {0, 1.2}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, {0, 0}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]], "Output", - CellChangeTimes->{ - 3.6223138636044493`*^9, {3.622314387599525*^9, 3.622314403110031*^9}, { - 3.622337875969496*^9, 3.622337894187746*^9}, {3.622379951982747*^9, - 3.622379970836109*^9}, {3.6223892402286453`*^9, 3.622389259671068*^9}, - 3.6223916703183193`*^9, 3.622391765378499*^9, 3.622391808180111*^9, - 3.6224181829952374`*^9, 3.622465641929147*^9, 3.622468049766636*^9, { - 3.622504800916634*^9, 3.622504819833887*^9}, {3.6225637611099987`*^9, - 3.6225637819941883`*^9}, 3.622565210468072*^9, {3.622761074524411*^9, - 3.622761094717429*^9}, 3.6227808071259947`*^9, 3.62355491268246*^9, - 3.6235549605115223`*^9, 3.6320186518395557`*^9, 3.632064119855695*^9, - 3.632071967986434*^9, 3.632095330746896*^9, 3.632148005125489*^9, { - 3.6914609206588287`*^9, 3.6914609436107197`*^9}, {3.69816863793167*^9, - 3.698168659510434*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6223138777464867`*^9, 3.622313877747539*^9}}], - -Cell["\<\ -If we change our function to this form then it behaves exactly in the way we \ -want; but numeric maximum is a big problem!!\ -\>", "Text", - CellChangeTimes->{ - 3.6223138777464867`*^9, {3.622313922301804*^9, 3.622313983706255*^9}, { - 3.6223941877843122`*^9, 3.6223942033416567`*^9}, {3.622398398190139*^9, - 3.622398434459126*^9}, {3.622506296513286*^9, 3.622506314415797*^9}, { - 3.62250635307891*^9, 3.6225063768679953`*^9}, {3.622513580140477*^9, - 3.622513632871529*^9}, {3.6225139461437473`*^9, 3.622513955596847*^9}, { - 3.622514247190878*^9, 3.622514247875547*^9}}], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{ - RowBox[{"A11", "=", "0"}], ";", " ", - RowBox[{"A22", "=", "0.7"}], ";", " ", - RowBox[{"Kaa", "=", "1"}], ";", " ", - RowBox[{"B11", "=", "4"}], ";", " ", - RowBox[{"M11", "=", "15"}], ";", " ", - RowBox[{"B22", "=", "2"}], ";", " ", - RowBox[{"LL", "=", "1"}], ";", " ", - RowBox[{"epsilon", "=", "0.02"}], ";"}], "\n", - RowBox[{"(*", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "\n", "\n", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"Log", "[", - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]], - "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}]}], "*)"}], - "\n"}], "\n", - RowBox[{"argument", "=", - RowBox[{ - RowBox[{"FindArgMax", "[", - RowBox[{ - RowBox[{"Log", "[", - RowBox[{"(", - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]], - ")"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", - RowBox[{"M11", "+", - RowBox[{"LL", "/", "2"}]}]}], "}"}]}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}]}], "\n", - RowBox[{ - RowBox[{"const", "=", - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"argument", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"argument", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]]}], "\n", - "\n", "\n", "\n", "\n"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"rightSide", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"UnitStep", "[", - RowBox[{"x", "-", "argument", "-", "epsilon"}], "]"}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{ - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]], - "*", - FractionBox[ - RowBox[{"(", - RowBox[{"Kaa", "-", - RowBox[{"A22", "*", "Kaa"}]}], ")"}], "const"]}], "+", - RowBox[{"A22", "*", "Kaa"}]}], ")"}]}]}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"leftSide", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"UnitStep", "[", - RowBox[{"x", "-", "argument", "-", "epsilon"}], "]"}]}], ")"}], "*", - RowBox[{"(", - RowBox[{ - RowBox[{ - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]], - "*", - FractionBox[ - RowBox[{"(", - RowBox[{"Kaa", "-", - RowBox[{"A11", "*", "Kaa"}]}], ")"}], "const"]}], "+", - RowBox[{"A11", "*", "Kaa"}]}], ")"}]}]}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"wholeFunction", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"rightSide", "[", "x", "]"}], "+", - RowBox[{"leftSide", "[", "x", "]"}]}]}], "\n", "\n", "\n", "\n", "\n", - "\n"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"derivativeRightSide", "[", "x_", "]"}], "=", - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{ - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]], - "*", - FractionBox[ - RowBox[{"(", - RowBox[{"Kaa", "-", - RowBox[{"A22", "*", "Kaa"}]}], ")"}], "const"]}], "+", - RowBox[{"A22", "*", "Kaa"}]}], ")"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}], "*", - RowBox[{"UnitStep", "[", - RowBox[{"x", "-", "argument", "-", "epsilon"}], "]"}]}]}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"derivativeLeftSide", "[", "x_", "]"}], "=", - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{ - FractionBox["1", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B11"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M11"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B22", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M11", "+", "LL"}], ")"}]}], ")"}]}]]}], ")"}]}]], - "*", - FractionBox[ - RowBox[{"(", - RowBox[{"Kaa", "-", - RowBox[{"A11", "*", "Kaa"}]}], ")"}], "const"]}], "+", - RowBox[{"A11", "*", "Kaa"}]}], ")"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "1"}], "}"}]}], "]"}], "*", - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"UnitStep", "[", - RowBox[{"x", "-", "argument", "-", "epsilon"}], "]"}]}], ")"}]}]}], - ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"wholeDerivativeFunction", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"derivativeRightSide", "[", "x", "]"}], "+", - RowBox[{"derivativeLeftSide", "[", "x", "]"}]}]}], "\n", "\n"}], "\n", - RowBox[{ - RowBox[{"M11Numeric", "=", - RowBox[{ - RowBox[{"FindArgMax", "[", - RowBox[{ - RowBox[{"derivativeLeftSide", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "M11"}], "}"}]}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}]}], ";"}], "\n", - RowBox[{ - RowBox[{"B11Numeric", "=", - RowBox[{"wholeDerivativeFunction", "[", "M11Numeric", "]"}]}], ";"}], "\n", - RowBox[{ - RowBox[{"M22Numeric", "=", - RowBox[{ - RowBox[{"FindArgMax", "[", - RowBox[{ - RowBox[{"Abs", "[", - RowBox[{"derivativeRightSide", "[", "x", "]"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", - RowBox[{"M11", "+", "LL"}]}], "}"}]}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}]}], ";"}], "\n", - RowBox[{ - RowBox[{"B22Numeric", "=", - RowBox[{"wholeDerivativeFunction", "[", "M22Numeric", "]"}]}], ";"}], "\n", - RowBox[{"M11mid", "=", - RowBox[{"x", "/.", - RowBox[{ - RowBox[{"FindRoot", "[", - RowBox[{ - RowBox[{ - RowBox[{"wholeFunction", "[", "x", "]"}], "\[Equal]", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"Kaa", "-", "A11"}], ")"}], "/", "2"}], "+", "A11"}], - ")"}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", "M11"}], "}"}]}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}]}]}], "\n", - RowBox[{"M22mid", "=", - RowBox[{"x", "/.", - RowBox[{ - RowBox[{"FindRoot", "[", - RowBox[{ - RowBox[{ - RowBox[{"wholeFunction", "[", "x", "]"}], "\[Equal]", - RowBox[{"(", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"Kaa", "-", "A22"}], ")"}], "/", "2"}], "+", "A22"}], - ")"}]}], ",", - RowBox[{"{", - RowBox[{"x", ",", - RowBox[{"M11", "+", "LL"}]}], "}"}]}], "]"}], "[", - RowBox[{"[", "1", "]"}], "]"}]}]}], "\n", - RowBox[{ - RowBox[{"A11Numeric", "=", - RowBox[{"wholeFunction", "[", "0", "]"}]}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"A22Numeric", "=", - RowBox[{"wholeFunction", "[", "30", "]"}]}], ";"}], "\n"}], "\n", - RowBox[{ - RowBox[{"Grid", "[", - RowBox[{ - RowBox[{"{", "\n", "\t", - RowBox[{ - RowBox[{"{", - RowBox[{"Grid", "[", - RowBox[{ - RowBox[{"{", "\n", "\t\t", - RowBox[{"{", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"rightSide", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1.2"}], "}"}]}], ",", - RowBox[{"ImageSize", "\[Rule]", "250"}]}], "]"}], ",", "\n", - "\t\t", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"leftSide", "[", "x", "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1.2"}], "}"}]}], ",", - RowBox[{"ImageSize", "\[Rule]", "250"}]}], "]"}]}], "}"}], "\n", - "\t", "}"}], ",", - RowBox[{"Frame", "\[Rule]", "All"}]}], "]"}], "}"}], ",", "\n", "\t", - RowBox[{"{", - RowBox[{"Plot", "[", "\n", "\t\t", - RowBox[{ - RowBox[{"{", - RowBox[{ - RowBox[{"wholeFunction", "[", "x", "]"}], ",", "Kaa", ",", - RowBox[{"fSigmoidal", "[", - RowBox[{"A11", ",", "Kaa", ",", "B11", ",", "M11mid", ",", "x"}], - "]"}]}], "}"}], "\n", "\t\t\t", ",", - RowBox[{"{", - RowBox[{"x", ",", "14", ",", "16"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1.2"}], "}"}]}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}], ",", "\n", - "\t", - RowBox[{"{", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"{", - RowBox[{"wholeDerivativeFunction", "[", "x", "]"}], "}"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", "Full"}], ",", - RowBox[{"ImageSize", "\[Rule]", "350"}]}], "]"}], "}"}]}], "\n", - "}"}], ",", - RowBox[{"Frame", "\[Rule]", "All"}]}], "]"}], "\n"}], "\n", - RowBox[{ - RowBox[{"m", "=", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{",", "\"\\"", ",", "\"\\""}], "}"}], - ",", "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", "A11", ",", "A11Numeric"}], "}"}], ",", - "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", "A22", ",", "A22Numeric"}], "}"}], ",", - "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", "Kaa", ",", "Kaa"}], "}"}], ",", "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "/", "4"}], ")"}], "*", - RowBox[{"(", - RowBox[{"Kaa", "-", "A11"}], ")"}], "*", "B11"}], ",", - "B11Numeric"}], "}"}], ",", "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", "M11", ",", "M11Numeric"}], "}"}], ",", - "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", "M11", ",", "M11mid"}], "}"}], ",", - "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", - RowBox[{ - RowBox[{"-", - RowBox[{"(", - RowBox[{"1", "/", "4"}], ")"}]}], "*", - RowBox[{"(", - RowBox[{"Kaa", "-", "A22"}], ")"}], "*", "B22"}], ",", - "B22Numeric"}], "}"}], ",", "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", "LL", ",", - RowBox[{"M22Numeric", "-", "M11Numeric"}]}], "}"}], ",", "\n", - RowBox[{"{", - RowBox[{"\"\\"", ",", "LL", ",", - RowBox[{"M22mid", "-", "M11mid"}]}], "}"}]}], "}"}]}], ";"}], "\n", - RowBox[{"Grid", "[", - RowBox[{"m", ",", - RowBox[{"Frame", "\[Rule]", "All"}]}], "]"}]}], "Code", - CellChangeTimes->{{3.622301100358038*^9, 3.6223011454485893`*^9}, { - 3.622303170106861*^9, 3.6223032159750566`*^9}, {3.622303724893688*^9, - 3.622303737368443*^9}, {3.622303771333527*^9, 3.622303925202929*^9}, { - 3.622303959361005*^9, 3.622304030549078*^9}, {3.622304061941491*^9, - 3.622304062346755*^9}, {3.6223070397194853`*^9, 3.622307106239244*^9}, - 3.6223072893736343`*^9, {3.6223075698140697`*^9, 3.622307570228386*^9}, - 3.622307786265629*^9, 3.622308416303548*^9, {3.622308536004023*^9, - 3.622308578337145*^9}, {3.622308923855628*^9, 3.622308941749878*^9}, { - 3.6223089896595297`*^9, 3.622309002674838*^9}, {3.62230912202738*^9, - 3.622309140473983*^9}, {3.6223102230855722`*^9, 3.622310242477044*^9}, { - 3.622312212282053*^9, 3.622312232847167*^9}, {3.622312381518385*^9, - 3.622312397596574*^9}, {3.6223124794180737`*^9, 3.622312485591153*^9}, { - 3.6223133988340073`*^9, 3.622313419373497*^9}, 3.6223135338163548`*^9, { - 3.6223136230330067`*^9, 3.62231362472031*^9}, {3.6223139985564327`*^9, - 3.6223140395858192`*^9}, {3.6223141112367373`*^9, 3.622314159530877*^9}, { - 3.622314288305992*^9, 3.622314334426045*^9}, {3.622314432163804*^9, - 3.622314446226815*^9}, {3.6223144921999083`*^9, 3.622314502798318*^9}, { - 3.6223146565906343`*^9, 3.622314667179741*^9}, {3.622337976900383*^9, - 3.622337990966238*^9}, {3.622338148301549*^9, 3.622338148762856*^9}, { - 3.622338529367972*^9, 3.622338557389266*^9}, {3.622338591788287*^9, - 3.622338592331572*^9}, {3.622339011745824*^9, 3.622339020767248*^9}, { - 3.622339107234585*^9, 3.622339170743157*^9}, {3.622339221108127*^9, - 3.622339246363635*^9}, {3.62233931192122*^9, 3.622339381293345*^9}, { - 3.622339467328673*^9, 3.6223394708975277`*^9}, {3.6223400223221273`*^9, - 3.6223400252154703`*^9}, {3.622340096340567*^9, 3.6223401014773073`*^9}, { - 3.622340726367478*^9, 3.622340755692129*^9}, {3.6223943235537643`*^9, - 3.622394342801282*^9}, {3.6223944042533607`*^9, 3.622394413814383*^9}, { - 3.622394498601762*^9, 3.622394522486624*^9}, {3.622394570244836*^9, - 3.622394645063891*^9}, {3.622394899316678*^9, 3.622394938115501*^9}, { - 3.6223949823512363`*^9, 3.622395092790567*^9}, {3.622395257762209*^9, - 3.6223952954732122`*^9}, {3.622395351029291*^9, 3.622395408135839*^9}, { - 3.622395478132041*^9, 3.622395481677043*^9}, {3.622395653530356*^9, - 3.622395693439055*^9}, 3.622395743655305*^9, {3.622395855070014*^9, - 3.6223958920476923`*^9}, 3.622395946836135*^9, {3.622395988647359*^9, - 3.622396018019346*^9}, {3.6223960527785*^9, 3.6223960826724577`*^9}, { - 3.622396117488113*^9, 3.622396162829809*^9}, {3.62239619537237*^9, - 3.622396198756785*^9}, {3.622396308347144*^9, 3.6223963245462847`*^9}, { - 3.62239636493496*^9, 3.622396387019471*^9}, {3.6223964684854717`*^9, - 3.6223965371733227`*^9}, {3.6223965690588913`*^9, 3.622396607732559*^9}, { - 3.622396649170375*^9, 3.622396774079652*^9}, {3.622397151044559*^9, - 3.622397153827188*^9}, {3.622397208045455*^9, 3.622397278450097*^9}, { - 3.622397312951262*^9, 3.62239732835719*^9}, {3.622397371805274*^9, - 3.622397511276792*^9}, {3.622397590041072*^9, 3.622397617981264*^9}, { - 3.62239767956143*^9, 3.6223976951190357`*^9}, {3.622397729227735*^9, - 3.622397904870262*^9}, 3.622398128784243*^9, {3.6223981853897133`*^9, - 3.6223982405712423`*^9}, {3.6223982740660343`*^9, - 3.6223983203306513`*^9}, {3.622398353210734*^9, 3.622398369480727*^9}, { - 3.622398454439095*^9, 3.622398507472507*^9}, {3.6223986027953653`*^9, - 3.622398610346493*^9}, {3.622398650642516*^9, 3.6223986509041*^9}, { - 3.622398681575584*^9, 3.62239868196546*^9}, {3.622398924114012*^9, - 3.6223989271998262`*^9}, {3.622399009765359*^9, 3.622399020506589*^9}, { - 3.622399187416953*^9, 3.622399245229165*^9}, {3.6223992830269423`*^9, - 3.622399285705872*^9}, {3.622399495320148*^9, 3.6223995385559053`*^9}, { - 3.622399574322267*^9, 3.62239959685535*^9}, {3.622399634909569*^9, - 3.6223996386378803`*^9}, {3.62239977432771*^9, 3.6223998369181337`*^9}, { - 3.6223998708816767`*^9, 3.6223999334294786`*^9}, {3.62239999372386*^9, - 3.62239999561841*^9}, {3.622400034023226*^9, 3.622400050253748*^9}, { - 3.62240101911595*^9, 3.6224010220346622`*^9}, {3.622402089963007*^9, - 3.6224021111027822`*^9}, {3.622402144478427*^9, 3.6224022687409067`*^9}, { - 3.622402320450328*^9, 3.6224023562571287`*^9}, {3.622402693557397*^9, - 3.622402713883005*^9}, {3.622402773247737*^9, 3.622402794094947*^9}, { - 3.622402890434915*^9, 3.622402891250202*^9}, {3.622417674057019*^9, - 3.622418069508525*^9}, {3.62241821375455*^9, 3.6224182186723423`*^9}, { - 3.622418265623829*^9, 3.622418286456134*^9}, {3.62241839596275*^9, - 3.622418406446319*^9}, 3.622418514265994*^9, {3.6224185696076593`*^9, - 3.6224185988272753`*^9}, {3.622418629889791*^9, 3.62241865012887*^9}, { - 3.622418798505595*^9, 3.622418829044702*^9}, {3.622418877356071*^9, - 3.622418889953619*^9}, {3.6224191205261374`*^9, 3.622419124100209*^9}, { - 3.622419191410014*^9, 3.6224192269659224`*^9}, {3.6224196538539133`*^9, - 3.622419695762591*^9}, {3.622419740555017*^9, 3.622419750167437*^9}, { - 3.622419843187521*^9, 3.622419976657907*^9}, {3.6224200501101427`*^9, - 3.622420062549161*^9}, {3.622421240199368*^9, 3.622421275347246*^9}, { - 3.622467816493372*^9, 3.622467822299428*^9}, {3.6224682917679977`*^9, - 3.6224682949429693`*^9}, {3.622468424167699*^9, 3.6224684321986437`*^9}, { - 3.622468472371505*^9, 3.622468488187644*^9}, {3.622468558071309*^9, - 3.622468560703986*^9}, {3.622506282166294*^9, 3.622506285115065*^9}, { - 3.622506520215748*^9, 3.622506534571258*^9}, {3.6225066280644836`*^9, - 3.622506753790126*^9}, {3.6225067990212927`*^9, 3.6225068626962547`*^9}, { - 3.6225069119515467`*^9, 3.622506931188982*^9}, {3.6225069716761227`*^9, - 3.622507014151308*^9}, {3.622507048943109*^9, 3.622507108481838*^9}, { - 3.6225072813716097`*^9, 3.62250729958285*^9}, {3.622507358071859*^9, - 3.62250736292521*^9}, {3.622507398008914*^9, 3.622507461286462*^9}, { - 3.6225075056123962`*^9, 3.622507565913493*^9}, {3.622507768413032*^9, - 3.622507856278927*^9}, {3.622507980809124*^9, 3.622508021165851*^9}, { - 3.622508070708662*^9, 3.6225080714606743`*^9}, {3.622508129447464*^9, - 3.6225081702864523`*^9}, 3.6225086161651707`*^9, {3.622510890597389*^9, - 3.6225109954926863`*^9}, 3.622511047938682*^9, {3.622511154268244*^9, - 3.622511428846401*^9}, {3.622511531736755*^9, 3.622511625752851*^9}, { - 3.622511793134647*^9, 3.62251181731737*^9}, {3.6225118783889017`*^9, - 3.622511978460968*^9}, {3.6225120230760307`*^9, 3.6225120367458973`*^9}, { - 3.6225121512945023`*^9, 3.6225121937204103`*^9}, {3.622512263774817*^9, - 3.62251229262684*^9}, {3.6225123616085653`*^9, 3.622512425659272*^9}, - 3.6225125501787024`*^9, {3.622512622365692*^9, 3.622512633839488*^9}, { - 3.622512722865803*^9, 3.6225127920107393`*^9}, {3.622513047294073*^9, - 3.6225130678687983`*^9}, {3.622519019137804*^9, 3.6225190692460537`*^9}, { - 3.622519101461019*^9, 3.622519139913665*^9}, 3.622563827034527*^9, - 3.622563897390545*^9, {3.6225642406748257`*^9, 3.6225643795043163`*^9}, { - 3.622564418832094*^9, 3.6225644822185993`*^9}, {3.622564773349401*^9, - 3.622564781068747*^9}, {3.622564872848497*^9, 3.622564872907711*^9}, { - 3.6225649096628838`*^9, 3.622564909695414*^9}, {3.622565253112994*^9, - 3.622565257214017*^9}, {3.622565734306666*^9, 3.622565742818021*^9}, { - 3.622565781520969*^9, 3.6225658297643223`*^9}, {3.6225660621747017`*^9, - 3.622566250514043*^9}, {3.622566317289009*^9, 3.622566344783671*^9}, { - 3.6225663754604797`*^9, 3.622566444087381*^9}, {3.6225664992037973`*^9, - 3.6225665635146303`*^9}, {3.62256662955757*^9, 3.622566672929533*^9}, { - 3.622566723450726*^9, 3.622566734982637*^9}, {3.622566765933578*^9, - 3.622566951795496*^9}, {3.622567003304698*^9, 3.6225670157207336`*^9}, { - 3.6225683151251297`*^9, 3.6225684233659763`*^9}, {3.622568484794232*^9, - 3.622568507511999*^9}, {3.622568594018955*^9, 3.622568595394993*^9}, { - 3.6225686778782063`*^9, 3.622568720043316*^9}, {3.622568800217676*^9, - 3.622568803342307*^9}, {3.62257291891576*^9, 3.622572995075721*^9}, { - 3.622761506449649*^9, 3.622761660504546*^9}, {3.6227617715207148`*^9, - 3.622761816414226*^9}, {3.6227618905536823`*^9, 3.622762043783149*^9}, { - 3.622780887301238*^9, 3.6227808890292263`*^9}, 3.632020189249464*^9, { - 3.632064164626252*^9, 3.632064170895097*^9}, {3.632064241428608*^9, - 3.632064241754911*^9}, {3.632064293505814*^9, 3.632064306168355*^9}, { - 3.632064368925227*^9, 3.632064511424811*^9}, {3.632064599233013*^9, - 3.632064657159417*^9}, {3.632064736401823*^9, 3.632064738882062*^9}, { - 3.632064769259181*^9, 3.632064783131075*^9}, {3.632065167100236*^9, - 3.632065175860379*^9}, {3.6320695571752987`*^9, 3.632069558445674*^9}, { - 3.6320696240528717`*^9, 3.63206963182577*^9}, {3.632069757261747*^9, - 3.6320697606133223`*^9}, {3.632069977383318*^9, 3.632069982110785*^9}, { - 3.6320700138371477`*^9, 3.6320700144048033`*^9}, {3.632070333114437*^9, - 3.632070524134491*^9}, {3.632070579081958*^9, 3.63207067008113*^9}, { - 3.63207073088953*^9, 3.632070755330822*^9}, {3.632070794241068*^9, - 3.632070835991292*^9}, 3.6320708901213427`*^9, {3.632070932372613*^9, - 3.632070977194922*^9}, {3.632071126037592*^9, 3.6320712430191402`*^9}, { - 3.6320714413975*^9, 3.632071474201441*^9}, 3.63207157863302*^9, - 3.632071784914215*^9, {3.6320719276507072`*^9, 3.6320719358029203`*^9}, { - 3.632072012066317*^9, 3.63207202065681*^9}, {3.6320720804537*^9, - 3.632072097206773*^9}, {3.632100927982142*^9, 3.632100928709655*^9}, { - 3.632101381963463*^9, 3.632101424983739*^9}, {3.6321015247080107`*^9, - 3.6321015296980057`*^9}, {3.632101714621951*^9, 3.632101739670206*^9}, { - 3.632101803309667*^9, 3.632101803739645*^9}, {3.6321021970227137`*^9, - 3.632102197084341*^9}, {3.6321022385640182`*^9, 3.632102238642136*^9}, { - 3.6321024597831717`*^9, 3.632102459925975*^9}, {3.632102511162087*^9, - 3.632102537672068*^9}, {3.632102621596735*^9, 3.632102626842537*^9}, { - 3.632102960985096*^9, 3.632102979549286*^9}, {3.632103047960823*^9, - 3.632103154023736*^9}, {3.6321031979575853`*^9, 3.6321032955739098`*^9}, { - 3.6321035534064913`*^9, 3.632103554459036*^9}, 3.6321481378421097`*^9}], - -Cell[BoxData["15.475769704556784`"], "Output", - CellChangeTimes->{ - 3.6227616610341873`*^9, {3.622761751786191*^9, 3.622761783086574*^9}, - 3.622761817461001*^9, {3.622761942937003*^9, 3.622762035798162*^9}, { - 3.622780807156261*^9, 3.622780807475968*^9}, 3.622780895486866*^9, - 3.6235549127334023`*^9, 3.6235549605463676`*^9, 3.632018651895236*^9, - 3.632064119900522*^9, 3.6320641803128843`*^9, 3.632064316422812*^9, - 3.632064520708897*^9, {3.63206464456371*^9, 3.632064667987813*^9}, - 3.6320647431047583`*^9, 3.6320647847323847`*^9, {3.63206960551151*^9, - 3.632069632831252*^9}, {3.6320697612109537`*^9, 3.632069788241972*^9}, - 3.632069983651532*^9, 3.6320700158402157`*^9, 3.632070338160265*^9, { - 3.632070369320245*^9, 3.632070390305233*^9}, {3.632070426718523*^9, - 3.63207047061552*^9}, {3.6320705072857533`*^9, 3.6320705253475723`*^9}, - 3.632070576117486*^9, {3.632070611521137*^9, 3.632070671388166*^9}, { - 3.6320707329265223`*^9, 3.632070755920149*^9}, 3.632070838167204*^9, - 3.632070890820634*^9, 3.632070982927902*^9, 3.632071174667068*^9, - 3.6320712201920156`*^9, 3.6320713910618677`*^9, {3.6320714440045853`*^9, - 3.632071474720243*^9}, 3.632071579689601*^9, 3.632071787404614*^9, - 3.6320719680480824`*^9, 3.6320720223617*^9, 3.6320720985392427`*^9, - 3.63209533079461*^9, 3.632100930299376*^9, {3.632101408516047*^9, - 3.632101425700108*^9}, 3.632101494800438*^9, 3.632101530477899*^9, { - 3.632101716977216*^9, 3.632101740782269*^9}, 3.632101804478817*^9, - 3.6321021977778997`*^9, 3.632102239343174*^9, 3.632102542031672*^9, - 3.632102628017846*^9, {3.632102961635336*^9, 3.632102980328308*^9}, { - 3.632103137982574*^9, 3.632103154597677*^9}, 3.632103199255734*^9, { - 3.6321032524085484`*^9, 3.6321032963845463`*^9}, 3.632103555377936*^9, - 3.632148005188685*^9, 3.632148144271183*^9, {3.6914609207155867`*^9, - 3.691460943633375*^9}, {3.698168637970812*^9, 3.698168659531807*^9}}], - -Cell[BoxData["0.6443942990397911`"], "Output", - CellChangeTimes->{ - 3.6227616610341873`*^9, {3.622761751786191*^9, 3.622761783086574*^9}, - 3.622761817461001*^9, {3.622761942937003*^9, 3.622762035798162*^9}, { - 3.622780807156261*^9, 3.622780807475968*^9}, 3.622780895486866*^9, - 3.6235549127334023`*^9, 3.6235549605463676`*^9, 3.632018651895236*^9, - 3.632064119900522*^9, 3.6320641803128843`*^9, 3.632064316422812*^9, - 3.632064520708897*^9, {3.63206464456371*^9, 3.632064667987813*^9}, - 3.6320647431047583`*^9, 3.6320647847323847`*^9, {3.63206960551151*^9, - 3.632069632831252*^9}, {3.6320697612109537`*^9, 3.632069788241972*^9}, - 3.632069983651532*^9, 3.6320700158402157`*^9, 3.632070338160265*^9, { - 3.632070369320245*^9, 3.632070390305233*^9}, {3.632070426718523*^9, - 3.63207047061552*^9}, {3.6320705072857533`*^9, 3.6320705253475723`*^9}, - 3.632070576117486*^9, {3.632070611521137*^9, 3.632070671388166*^9}, { - 3.6320707329265223`*^9, 3.632070755920149*^9}, 3.632070838167204*^9, - 3.632070890820634*^9, 3.632070982927902*^9, 3.632071174667068*^9, - 3.6320712201920156`*^9, 3.6320713910618677`*^9, {3.6320714440045853`*^9, - 3.632071474720243*^9}, 3.632071579689601*^9, 3.632071787404614*^9, - 3.6320719680480824`*^9, 3.6320720223617*^9, 3.6320720985392427`*^9, - 3.63209533079461*^9, 3.632100930299376*^9, {3.632101408516047*^9, - 3.632101425700108*^9}, 3.632101494800438*^9, 3.632101530477899*^9, { - 3.632101716977216*^9, 3.632101740782269*^9}, 3.632101804478817*^9, - 3.6321021977778997`*^9, 3.632102239343174*^9, 3.632102542031672*^9, - 3.632102628017846*^9, {3.632102961635336*^9, 3.632102980328308*^9}, { - 3.632103137982574*^9, 3.632103154597677*^9}, 3.632103199255734*^9, { - 3.6321032524085484`*^9, 3.6321032963845463`*^9}, 3.632103555377936*^9, - 3.632148005188685*^9, 3.632148144271183*^9, {3.6914609207155867`*^9, - 3.691460943633375*^9}, {3.698168637970812*^9, 3.698168659539361*^9}}], - -Cell[BoxData[ - RowBox[{ - StyleBox[ - RowBox[{"FindArgMax", "::", "lstol"}], "MessageName"], - RowBox[{ - ":", " "}], "\<\"The line search decreased the step size to within the \ -tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find \ -a sufficient increase in the function. You may need more than \ -\[NoBreak]\\!\\(MachinePrecision\\)\[NoBreak] digits of working precision to \ -meet these tolerances. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/FindArgMax\\\", ButtonNote -> \ -\\\"FindArgMax::lstol\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.632071968122817*^9, 3.632072022493829*^9, 3.632072098686843*^9, - 3.632095330895238*^9, 3.632100930423534*^9, {3.6321014086441793`*^9, - 3.632101425828972*^9}, 3.632101494934959*^9, 3.6321015306054487`*^9, { - 3.632101717110693*^9, 3.6321017409125957`*^9}, 3.6321018045655117`*^9, - 3.6321021978983927`*^9, 3.632102239453599*^9, 3.632102542140682*^9, - 3.6321026281305017`*^9, {3.632102961765164*^9, 3.632102980449398*^9}, { - 3.632103138116001*^9, 3.632103154732575*^9}, 3.6321031993872843`*^9, { - 3.632103252541972*^9, 3.632103296513227*^9}, 3.63210355550523*^9, - 3.6321480052715397`*^9, 3.632148144327627*^9, {3.69146092077697*^9, - 3.691460943696989*^9}, {3.698168638012494*^9, 3.6981686595832367`*^9}}], - -Cell[BoxData["14.850184065703333`"], "Output", - CellChangeTimes->{ - 3.6227616610341873`*^9, {3.622761751786191*^9, 3.622761783086574*^9}, - 3.622761817461001*^9, {3.622761942937003*^9, 3.622762035798162*^9}, { - 3.622780807156261*^9, 3.622780807475968*^9}, 3.622780895486866*^9, - 3.6235549127334023`*^9, 3.6235549605463676`*^9, 3.632018651895236*^9, - 3.632064119900522*^9, 3.6320641803128843`*^9, 3.632064316422812*^9, - 3.632064520708897*^9, {3.63206464456371*^9, 3.632064667987813*^9}, - 3.6320647431047583`*^9, 3.6320647847323847`*^9, {3.63206960551151*^9, - 3.632069632831252*^9}, {3.6320697612109537`*^9, 3.632069788241972*^9}, - 3.632069983651532*^9, 3.6320700158402157`*^9, 3.632070338160265*^9, { - 3.632070369320245*^9, 3.632070390305233*^9}, {3.632070426718523*^9, - 3.63207047061552*^9}, {3.6320705072857533`*^9, 3.6320705253475723`*^9}, - 3.632070576117486*^9, {3.632070611521137*^9, 3.632070671388166*^9}, { - 3.6320707329265223`*^9, 3.632070755920149*^9}, 3.632070838167204*^9, - 3.632070890820634*^9, 3.632070982927902*^9, 3.632071174667068*^9, - 3.6320712201920156`*^9, 3.6320713910618677`*^9, {3.6320714440045853`*^9, - 3.632071474720243*^9}, 3.632071579689601*^9, 3.632071787404614*^9, - 3.6320719680480824`*^9, 3.6320720223617*^9, 3.6320720985392427`*^9, - 3.63209533079461*^9, 3.632100930299376*^9, {3.632101408516047*^9, - 3.632101425700108*^9}, 3.632101494800438*^9, 3.632101530477899*^9, { - 3.632101716977216*^9, 3.632101740782269*^9}, 3.632101804478817*^9, - 3.6321021977778997`*^9, 3.632102239343174*^9, 3.632102542031672*^9, - 3.632102628017846*^9, {3.632102961635336*^9, 3.632102980328308*^9}, { - 3.632103137982574*^9, 3.632103154597677*^9}, 3.632103199255734*^9, { - 3.6321032524085484`*^9, 3.6321032963845463`*^9}, 3.632103555377936*^9, - 3.632148005188685*^9, 3.632148144271183*^9, {3.6914609207155867`*^9, - 3.691460943633375*^9}, {3.698168637970812*^9, 3.698168659589817*^9}}], - -Cell[BoxData["16.368758876176518`"], "Output", - CellChangeTimes->{ - 3.6227616610341873`*^9, {3.622761751786191*^9, 3.622761783086574*^9}, - 3.622761817461001*^9, {3.622761942937003*^9, 3.622762035798162*^9}, { - 3.622780807156261*^9, 3.622780807475968*^9}, 3.622780895486866*^9, - 3.6235549127334023`*^9, 3.6235549605463676`*^9, 3.632018651895236*^9, - 3.632064119900522*^9, 3.6320641803128843`*^9, 3.632064316422812*^9, - 3.632064520708897*^9, {3.63206464456371*^9, 3.632064667987813*^9}, - 3.6320647431047583`*^9, 3.6320647847323847`*^9, {3.63206960551151*^9, - 3.632069632831252*^9}, {3.6320697612109537`*^9, 3.632069788241972*^9}, - 3.632069983651532*^9, 3.6320700158402157`*^9, 3.632070338160265*^9, { - 3.632070369320245*^9, 3.632070390305233*^9}, {3.632070426718523*^9, - 3.63207047061552*^9}, {3.6320705072857533`*^9, 3.6320705253475723`*^9}, - 3.632070576117486*^9, {3.632070611521137*^9, 3.632070671388166*^9}, { - 3.6320707329265223`*^9, 3.632070755920149*^9}, 3.632070838167204*^9, - 3.632070890820634*^9, 3.632070982927902*^9, 3.632071174667068*^9, - 3.6320712201920156`*^9, 3.6320713910618677`*^9, {3.6320714440045853`*^9, - 3.632071474720243*^9}, 3.632071579689601*^9, 3.632071787404614*^9, - 3.6320719680480824`*^9, 3.6320720223617*^9, 3.6320720985392427`*^9, - 3.63209533079461*^9, 3.632100930299376*^9, {3.632101408516047*^9, - 3.632101425700108*^9}, 3.632101494800438*^9, 3.632101530477899*^9, { - 3.632101716977216*^9, 3.632101740782269*^9}, 3.632101804478817*^9, - 3.6321021977778997`*^9, 3.632102239343174*^9, 3.632102542031672*^9, - 3.632102628017846*^9, {3.632102961635336*^9, 3.632102980328308*^9}, { - 3.632103137982574*^9, 3.632103154597677*^9}, 3.632103199255734*^9, { - 3.6321032524085484`*^9, 3.6321032963845463`*^9}, 3.632103555377936*^9, - 3.632148005188685*^9, 3.632148144271183*^9, {3.6914609207155867`*^9, - 3.691460943633375*^9}, {3.698168637970812*^9, 3.6981686595953913`*^9}}], - -Cell[BoxData[ - TagBox[GridBox[{ - { - TagBox[GridBox[{ - { - GraphicsBox[{{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], - CapForm["Butt"], LineBox[CompressedData[" -1:eJxTTMoPSmViYGCwAGIQ/e3eySMq3UvsGKDgp7NhjuONJnsYP3XX81CJG5Pg -/NlfD51ivrEIzjebbND68/omOJ8lKT3py/VDcH72SaaLH69fgvPlagM6Plx/ -BOcf/2Uy/eKiz3D+qsX7LyXp/IXzlXfrzWV3ZnaA8SPL5qzyC+WA85+qe675 -KMAL568JPXWYSVIQzr/8sKRm8lxhOF/1pZ3+pW+icH525A2/k00ScP4dl4kZ -eY+l4Pzdv/x8pSxk4fw+yTvz6vbLw/nHIl1KT/Aqwvn20U0XdUOV4Pz3B50m -T5umDOebPBMKCjukAud/3uflXsSuBud7hE6yfGqmDueLL3BM2lKvAefLBhR/ -aDukCefv2LulesN7LTj/7P1YWzMzHTi/fL/YH6F0XTi/a83ymn3ZCP68mRZ/ -MwsQ/GPFUf8OVCL4IhrzGPJ7EPwNE1RZT29E8F8kmvA1/0Hw//gd7dNj1IPz -+W3C+G+xIvhmYhUChvwIfsup3UL3FRF8BWNncWt3BD+CJUjh80QE327CHkGW -6Qi+sow6s+gcBP+d8Z+nZsuQzE9etrpqF4Kf9V5gbvd+BN+/urpvzhEEX2py -QOG+cwj++kO/zJgeI/hT/FI1hF8g+FW3zkuqvEXw49OsuE0/Ifgun5b8cf2O -4Ncu11/2/geCDwAklcUP - "]], LineBox[CompressedData[" -1:eJwl1nk4VG0bAHCJJKmoqNCLkIpmn7HVc4dsoZBCIYqQZE9IyFqStE2KvJRC -pMgSLa/KnmwhIYkZW0ayZCnfc/r+mut3nXPu7dzPuUbO8ZS5Ez8fH5//Ij4+ -4jdaMOR4KT8J3CJlgw1+89DE9b6GgCUkeP1z6mDtHA91yO0tjxUhgYvcSIve -DA+9zinJT1pFAp1bfgmUKR66r65wP3stCSSGnW7Gj/PQhXfxN8o2kCCuJG/+ -yCgPeZrNRL//hwQdfV1t2YM8dKDr6JluBey9N3W8+3hI07XejbeFBNrJ+w4X -dfPQkrB0EzE6CXZ5yC6taeShkeUrkLw6CczH9zUl1/BQIzuATNtJgubanGfz -5Tx0J89ktaUBCR4s+rDW5SkPhWkVCzibkCDNeSonMJOHnKvkp/zNSTCjmXNN -IZWHKD3T7ezDJPhjFqFjFMdDEu6ONZkOJOA3mZ6oDeOh+em60ufOJOgJeFUx -5s9DFSvTUjo9SfC15bs+6QgPHUbGx2QjSRBr8EyvfjsPadcWWlIukCD18cvi -Ijke2nxQTl/7Mgl07dLsbNbw0LjH1JZjt0hQPGaa+vHXKIpJSeU9yCFBXvQf -26GXoyj/90QgqZUEURoRr1J3jaL4KouqwQ4SVF9KibWmjiK3q0/X3vtCgvqS -Ms6E/CiS3+KZt26QBHrCIf2fFo+ixP3D/YvmSfC7q8gy9u13VPzRU3loFRkM -JD7x1Wl/RzdUjl8tY5IhpyBhn6jWCBJIlHi+Xp0MzNmtuu+3jSDv6Xc9/ppk -sEudOMiWGkGm5QrbKUCG9z5fj1vMDSNBq96q+4ZkuBxjdN+3dBj5nrf9E3+Y -DJ5hJCNRNIzMOyxcHcLJELr+43DtwSG0ZaWnwY8IMshK38uQMRxCfLpxm8Oi -yfDspFvhFY0hlJvztj81jgwnu5eI98oMIeEwhmPPDTKs3bV+0zbOIHq9WfKQ -fTYZwkrzaTFnB9HNwzQNXg4ZYpJihdZ7DSKPK3vXn8sjg9AIlNQfG0RSc9Ft -Kc/I4Cd49+lD40HkX//LovsVGUSsRwUlNg4iVb8OY9sWMizOFi4qrxxAAllT -2763ksFKda/DrRcDqKNbXOTsJzJkHTmvczV/AMUY7Km+0437++bew7s7gPqk -ynZ3DpDh88+9B/UCB1DpvnYF92Ey/J5wzSF7DaDEyInF89/JoJmrflzLZQAh -nkq51E88TxH2TOGBAZRUnrzz0G8yzFn1j5MZA8hrukRmeAG/jy+L6jaqDiAD -ldb5QH4KLF1IeL9NcQBNXV9RmiREAYMxa8m0tQPIzPUcq0OMAidMo5nT01y0 -dJUD2VqJAoUl+bt//8dFmYYGEl3KFDh3x+z0x1IuMjpPmj+yjQJK5nOtFc+4 -6NLU70oXMgW8v5zn/szkIvGuJPsADRxPcNVbj6tclC8RvnteiwIKLxs6heK5 -aP8+122hiAK/l6s/K4rhoptvWNPRuhS4qi3mbRPCRdJZLfE3TSnw8EZXTbob -F734VuorZUYBT4mxS0NOXGQnk25z14ICjs53CnY7cNG/CV5KD6wosF1znZCa -FRcpnV7xstCRAj43DFoF9LmIrGvw/aM/Ba7t78hepMxFjWdJzdZnKFClrX78 -pAIXeRdJlHQFUSCwM4Y6KMtFz7b2R/SHUsAu/Mjsyg1cpCEWLj15gQLWG83O -rRblos9GrvxnLlGAxdfW/0uYi4Ij9g3MX6YAyX6j18gSLno1vbFA4DoFpkmZ -or/5uEi3u3TPmrsU8BDVVnk5yUH9kukU9r8UmOf3DVvxk4OizC5ISt+jQJM8 -ZceJMQ6qfmv1bVMmBW7nXpYwHOYg0+zJQFo+BR5bPShN+MpB1gGkLPNKCgh9 -knNSbOAg/8ZVO7Orcf1+x5T16zkocet44+I6Csw1tsh71XFQTWfBTEEDBQRE -rzG6qjhIa5eGoWQHBbq/27HEyznIKkmq61QnBbYsBK31fs1Bfj/nPau6KTDz -K3nzp5cclHv/FfvMNwoI2y47VVbKQbLLdg98HqFAb1z1/pZnON5RpWA6jwJG -LOUktwJcX5nQqks/KDC7U0BVKB/X41HD2jlFgZPuPz6Y53GQQPPe6NQFCkhw -9lIp2RzEvW2j5CROBZeJkeGJf/H1Sc3nL9ZQgUM/qdeXivOZyphKSFKB5Dh1 -sv0urpevx69SigoHOlIa6pNxf8ec3m1RpMKKo2tyf9ziIM4LPevwzVRg/9BW -E8ReLKn8vWMLFT5Yd41Js3G91UNr4rZTwXntVLrVDdyfquexURYVftawZRcS -cbwos196Gjj/9a9bqdjcL9S4u1pUGB63b3e5gutJnMzft4sKdYm5nT2XcX9T -gYvzjajQ4CXdNhOH5/cqMu20LRWYStnV5dEcNMttHuU/QgVXHTFlaezQVfKa -8Y5UMCM9eRUQxUEXHF423ztOBRSkcFgzkoNSF08LNHnh636H7vWFc5CSym4z -W18qZI/8VjiAnb3/avKAPxVYSjKuNWEcVHifxFwIosK44rxgaSgH1em7HFeJ -ooK3KnlzaQgHmXsW5hfF4P6onQd2YbexBfh0LlLBtze1r/osB/UOprKtE6hw -Il1+5GswB01f/FQdlUSFTr4Kb5UgDpJvMFL5mkuFvjCSnnwABz38xQ5wf0KF -hBeeB6pPc5CqHPftdD4VFJ8Vyntjq3mft11RQoVHIpvfV/lzkMmasnjNN1Ro -HXA5H+vHQU1ayz5XvMPzCfaK24Ft5WS12byKCt9Mdoj99OUgx8KJVy7vqSCR -1eTpiB1gpfrjehvubw+73MyHg/6EBu2Q66CCO7L5tgr7fGZ17KNOKqxNqTZo -9Oag+Fkn+TdfqfCd/0aVJXb6nRSLsWEqyIs3jLt7cVB9z8pCIz4aNMgvLPlw -ClvZKi+LnwZdgvaf07A/eKZmLROkwfaLySGnsRv4KHdrhGkw0lQovwm7SdY8 -xmg1DSb81gef98B2SQrPWkuDnRmPHWyxm/N6g5eto0Gie/sMC7sFfLxqpGlw -eXSIzjuJ53/kmo2REg2S9lwJccJuf9i5P0uZBtoJdam6hMcU9i7bRoOgOUVb -BeyO0Gc6NSQaVD9fYPe7c1BnaquKkToNZoULGj2we3rWLRga02DITkA86QS2 -ssNMpikNDipG3Q3D/uqZ+VPYjAZKXhV3XbF7+TQGqi1psLVi85gGdp/soUZD -exp4rRBh97phu6TXZjrQwLi3Lfw9dn/e8DvhYzRg8KU1FGNzIPh5tQsNVJKn -LyVgDx5JTjf0psGvy3N2uthDD/uTM31poFtYRaYSHlNlC5+mwafTMwdlsUdC -X8ZVB+F6Fhun/nbloNHUL36GkTTI1no6Woo93iNnYMimwWOXuwZ62C9UGYbJ -STTw8E0VUseOCTQw+nGHBocCni5Wwd645pTxrX9pUJGWlSuObaRftm8wiwZt -K1yf9rpw0NprH8x25NDAf8JIq82FmFev+ZXHuB+dP7O12P6BwpbqBTTYIS62 -uhA7LeeAdewLGuxZYn8tDvvkrKtN1yscj6qQHY6tpn/2EKWcBhl1N3kBLsQ+ -pdt+qqCBebnuHyfs2dU/HLY00PD/tRRpbWzzwItu1b00cOiVLF6ELVOZckKm -nwbSwjOms8c5aGD1U3cvLg2s8gSW/sQOyWn3WD+C30e5cncfdlaPoo/rJA0K -TKWX1WD7qar7vpimwS2rZ/++wYZAYz+xWRqEKXUceIHdutrndMkfGuiPP5R8 -gs2v/zpIeCkdrsqs7L+F/f5qc7DtMjp8cnxocw2b3cM5+2Q5HeZO1A/GY28P -FA21FqOD3OCweQS2TY5NROYGOhR3r9D1xH6yejLOUJUOCXkBu42x+0h+eg0k -Ojy/kVepj73OeHLhAJUOi9Xsjuhgh0ZMeh9j0UHq/aFmDex9k5NW53bR4Z2n -bMFW7Agxf/ElunTIPs3sVsIuVp2qjdOjg866IKlN2LLOUzuT9tDhgrd4vRT2 -WOuUwjNLOtCPegqvwFb46d+taUWHSwF95cuwrVZO3yy3oYOgy/M4IezX+tPL -GuzpkFi/e98i7ITi6bEhVzpMWxrETzpzECnpV5lsCB1qondm9DgT358A/weh -dFCKL9Duxr7R9Iu0/TwdRO1khj9j/1k2k6YZg+cT9cmuDbs+aCbmQCIdotVL -a+ux+dlntLuu0SHKMuS/Omxmwczc0Zt0iH/o918NdsrIjIfXHTqktzC+VGB7 -2M7uj8ugg4fC/bhX2GlnAleszqRD8u3s+hfYrddnK29l02FJn8v6Muyd9bMa -D/LoMOFhU1WMvQLNyZY/p4NIe2z0U+wc2fmR6Xo6WAqRXR9gHz7sv9+iEc/D -7qJ6BvZy9lhpbjMdrjV7rryP7bay/4JTOx0mN/jUpmEr/Xmv3PyVDiThlLAU -7I/qBgnb++iwteNyUDJ2hF/5dCyHDpXXDAPvYPeOFFbAMN6nntLIJKK/z3eP -5U7QgfNdp+kGtonkhjrhaTqoUDeMXceeN79Gc5qhw7byVeKEbWpi+KX/0OGE -iLjjVWzJEq/UWCEGiIfZkxOwE27odB7bwADmMeHTF7BR0wud19IMUHh2vT4W -e1RULVvqHwb419G3EDaOVAls2sQAj83e3GhsYd+160CVAaZ9x6MisYsfXz53 -m8QAy/YlkxHYLsPC3CkKA+oajJ0JVzj+eZbDZEBD0J1957HDzbgWUsCAcz2/ -tcOwKZccSv21GUAJinoXit1T9Vm+SZcB2zZYGxHeCQ0/YgwZINj8xOYc9tz2 -kstT5gyQGxG7fhbbd/nF2kYnBqw5vNUlEDtO0nvY3oUBA0fH+Anfk7cWGXVj -wLfEwrtnsFvUNu9Z5smAJTJSXwKw6U5varQDGUDvZPieJvr1zBpqCGbAmfQR -GcLHgq4ssz/HAIu5g9X+2Neu2BsFRTAgQnCrIuHJF3PV+fEM8DzbwvMl9qe6 -d3DXFQa0RepnEFZqqRZuuIrz5W23I3xg6KbhCJsBfZu0mnywCyXo1QrpDEi/ -HV/jje1/yr3qehEDbj63mfLEjg+0GNj0nAFepYOvCWdEaix9WsYAI9noOMKt -t5ca1P/HAE5DmxJhZtW9yiV1DPAr3HX8FLZp80XutXoGsOfy1Qk7d3sLbWpk -gGHZclHCNyZAH7Uy4Gu8faEH9rRsV8XpHgbMn1u1mvAqlbccwW8MUFukNXIS -W5mVveRaPwOcZ7ZVELYyOaOXN8QAUodhMOHiM2srBiYYIOS09oc7dkCTyTtr -YSbsoXBnTmCL/N5+tUyECZdcL3whnLJ5lcM/K5hQpJP1jvC74Kb5PnEmfMg/ -cJWw+OaDdE9pJhzPV6ATvm+mxt+8kQlenR4yhNWC1zcw5Jhw6KiCEGH7xs8n -5hSZ0HK/+rMb9qOgI+lRJCZUv6iMJYwydnkNUphgZs7yJ9zUII+M6Uzgc1p8 -lPCMYn+HmDoTGlhZOwjrNbiKJ2szYVWBwLQrsZ8KPmH5lkygXL0RQNhn7/69 -ElZMaCsScyO8JJAhc8aGCbdCGw8RVv0wXbzTngmO4+uBcOCZ4LFqFybIGz8S -ISx6z/alygkmGB/auuCCnVq/M+7ySSaox30bJ1y5aZGypTcTTGb5PxNeUx9p -3xPEhHf57TmEH/xyVtUJYQK/lXg6YY1NBnP3Q5nAGQlhE3YIWHbzRCQTarZ8 -P084V/5y/VQ8E04+ErAlrH+avUM0jQkyGkclCd/L0BU/do8JkhMXVxLmbx3j -PM9gQpjQJyHCL+mGCS7ZTMi+3fXrOHF+xmd63xQwQa0qpJNwolxG0YYifH9U -8UfCY/vM47xKmHDlkdgHwtmPsxj/vMT7MPJPOWH5k4diAiuZIPbjTibh0DtC -to3VTLC/Up5OuKs2n6JcxwSexeIUwuytyz9/bGDCpFFLIuGVA2WqlA4mvKzN -OEt43nFjM3eECZV22QcJ2yTWPNjJY4JRj7EF4aL//IOv/2DCQhr/XsLesh8U -daaYIOGfqUd4sOtcQMoCE3RPdzAJ64mqmEwuYoHuhjU0wve02uWMBVhA3WFP -InzkNrl2ZikLml4pKxNutfoqYynOgmxa6Ia/84m5NJ69hgVC+jsk/86nSL2S -X5IFvwOE1xA2kUj0zJNiQbJcvSjht83ab0QUWVC9ZRE/4Sem91zKWSz4Jt42 -4kycJ5MXk3s0WKBwmTZEeKdxa/hHLRbcNUnmEq4zXJo8sIsFq2Nu9hLm6Lo3 -rjBmQfzsP58IP9KJtGObsiAv6ksrYR/tlGE5MxYYHc1qIcwHDYKMAyxI3ebQ -QHiDJl3j0BEcb4lJFeEedZPKPkecX8qhgvADNef9Hk4sGGkLeUuYzmR7hLmx -ICq69TXhvZT5tAe+LPDJ/lFCOGLzW5GJGBYc3/Mkh7CY4pSiUDwLEnuHswin -yCvDhqssaF+u/ZBwiUycLySzoOWzVjphPamX8RZpLLAO+pJKuGXd2EPnByyo -SruVQnh09f6uuCd4XoP7kggHiUVN3y1kAXOfMZvw0pXFYvmlLFhVe+gG4U3L -pPU+vWPBZ05+ImErvr5cxQ4WNBfQ4wjbnyHfTvnGAnmr8FjCzuPB0ZLfWTCm -viia8MkT1T4JUyzgb8uJIOzbt/aIMJ8awEhE+N/8to7G4cJqoOR9PpRweGuu -2py4GpxjZ4QQvlKlL/ZdUQ1Gw/cFEU593jPYraYGWt9PBRDOfXSmvGGPGjBz -JvwIl6WI3y63U4OZxgYfwjUJ2T4FXmpwx/KXF2H/E1nZb5LUYHVsrQdheb3M -b01v1KC98qw74XrZh1K9I2qwuKvRjfCZuQyLH2vVIcD+tivhjUaCyQnO6qBf -IOVC+A37KIdUpA56B/BxIZ5vFeQd49eAzla8btjtax5O3zLRgFqL3L9eBH2i -Snc1YOpU3F9vPSGr8HRMA4bPB/51cWTqTLOWJhif8/pr/VTZD5MxmvAo0v2v -N+1fFMJu1gRGo+tfLwj1qmhu1IInpi5/Pfvw8CD9lBZUuh7/6wnDtvvbX2vB -9jHnv97fcV3upcgOeP30/y5w259scnAHFCb831vco6szsneAUfD/nXLy+eTC -wg4o8fq//wcbchDo - "]]}, {}}, {{}, {}, {}}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - ImageSize->250, - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - - Method->{ - "DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{0., 29.999999387755103`}, {0, 1.2}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, {0, 0}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]], - GraphicsBox[{{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], - CapForm["Butt"], LineBox[CompressedData[" -1:eJwVVnk41F8flV1KkezLmDEzzIyRyDrf7/1EEsmSJVuIiMoaki2hRPSzFLKF -kJAiUaTspCyVbElKhLJUWih6vf/c+5znuefcc879437kXHwOurGzsbEdXV/+ -v/8ce9oqf6kQX3nd/TTgZZL2sp7Kyd1DUUi0LILz06lkbbe6T1ZiQyno57Wc -u+6SKdpZP5q7OIYKkIG31cfg8FRt9dQd55cHq9B530SeF1fStDldjrksDTaj -eMZg9KJprvaJp+wvvg6+RARSSamvaZm2TLjZxcXBDyh2h5+iNr1du2NFLf1F -wXfk51b0c7Zng07pjScvXRir6LHbXn6igqYOqZ6Zw6PHAX6BDS+P6fvo2AZl -l5pY8cJ8RYfORHmJziTVsPzr1s1wpcnDKd53XKfcqquFXVwQ0qudPM5XS7Be -vQ8IS83ZBjTHu3Y89yxZ5Blc+eXP7WD+vlurS/QSa8qkgZ99gwjEDBF8bFUS -WCXVOtMq/CIwH2J739o6kUWL1MxPlhUBPoNXnqGt/7GYoju3me8TAenK3B2v -rqew1PXJv3qviQAe7ZTHk3WNtS+f/0k3SxSyNH4zGKolLD6e+KzVvaLw1PTK -9VLmLVbXSd5gJXNR2K957Y6jWinLWJNLJdFNFHJKlh2EnctZ5r1rBcaXRcH9 -hQzf/YK7LLvVrxeevRMF7L6JpNC7GpYLffK4kYoYxNg4JLzye8I6YTtk8jRK -DGrINztu5LSxxDA0sT9BDBQCnr8Q8mlntROKT/dcFYOiNq1NPvs6WMTpU3mv -SsSgVamCQRZ+yhoJ2vLtbc863uDxsUysm5XMVaY3vSQGR+o/Yn/H+1j7ruy9 -+k1CHLZ4/TugefUV6x/xw9RfEIc3QQl6dg8GWDWV4Zo8x8ShI7VBj+IwwvIC -8XjBRHG48FBCWOvqGEu+t/qN5D1x2Lr51PHHDe9Zbw6bKVGGxUHjgZOGzdWP -rJQvnyN2/FvXC9W2jXr/iTV/7+HNXUISkNV46T33wxmWYWhsnzZZAt5+cD84 -U/2ZxbaRRNTfLwEM51tPsoQWWQ4vFo2MHCWgEtWNLZl+ZdVmPD5l6icBCz9b -JzqKvrGEnBOyLWMkIGaNIfx7+xLLm2rXZpsuAedGTf4kFvxgdc1T5x1L1zHN -36juwC8WueaHyNEGCciMjfg6JL7MGt2T7OE9IQEvnf7FGMqusi7trO3Y9lMC -crEB+6SD/1jahLeUh7ySEO8Q/m/nEBs2s5njgqOkJHiOvn7KJsOOZfxRmORg -SkK3IlnzZBgHZjBjsucWSAJ/W94x8x+c2M+BgBsmFpIgpeLhfTeeG7Osajxy -LXhdT0KyLm/bRoxxy0LwyzlJ+OmgeU+Tnx/jyJtqxC9JQrZl2sV//JuwqsRN -hI85kiDjJtB5hiaAxcdc71W/KQn6fBfcJ/dtwY6E7jwbd1cSdv7R3fNbcyu2 -1dNmjNkiCW1dW/Uf+wti006fE889lwTvU2fBU0wIe2IdgfW/loQ3+XJaWq1C -mPeewuwz05LwNo/jlqqyMPZcdtGudbMUGIVNLEXaimKFItEbRUWloCf/sr2a -hhgWulmkzpMgBbVeRm0EaXGM9kdHfIuqFPzuVnn5jl0SY//W03mEJQWqV3a5 -H+KQwoanjwRX60uBjuVfkYObpbGLA7GDtjZSoFF64CSGZDHnbonY8iNS4GCW -6/NTlYBptN5W/3dcCgQGobinm4BNVb66WhguBeelz/m+EiJiexJlLRcK1u83 -2GnrOi2PScVUceiWS4HHU9cjnyrI2PcQ/XtX7kuBSJmJYWcYBSvwOCGk3SkF -hjusv9UpK2AhTmtNCS+k4IN65FHn7YqYuXWy37sRKdD+WGgUz0HD2PbU9sXM -SYFkxvh85QodG9I2ihz8KQUKGuKxdpxK2B2Vt8o0NmmQCU4991aUiTnKcvzX -KyQNfykclJ/MHVj9iskBCU1pGA60PVj0YCemrnx1TENXGlwHtd/1nlHFqlzf -+FgZS8NqnFp0i64aVvL8WEqSszRU2dHyjOZ2YfIbKkgVx6WhI+5y5sVedez6 -rqXqZwHSoCbL+f1jnQaWlhs5yB0nDdqZq+MBFVqY4Kt2D/lUaejZw07zrdXG -Eng2r+zOkQa3nPlY8Wc6WLTvNanwSmkw1k57pCqMY766VUe+D6/7zXJ9apez -G/sc9Pvb1o/S4CujaS1hoYu5l+ExzHlpOLUpi6a0VQ87LPys2JNdBsrGwzdG -5O/BhvYJasZukoHlx8bRDkH6mGX4oaeFIjIQdcHTsddiL2Y0NfH5HU0GvIMU -pwYV92FtErTwVTUZKBrwDFYkGWJg6isgiWRgyMg0OpZihGk8+LvD2kIGomvn -P/MfMMbk47cHPQ+VgUK5Uq7eFDPs+mN7ntnzMqD11s62DzPHJL7nZ/AkycDO -++2SNQvmmKADs163UAaWaAZg4mmBJSQFGDtXyEB51bYr6SqWGG9b3dvwBzJw -YZ9L0PcNVtiakgHbw+cyQLn96aTqI2ssxCUxeWBABsbsT+/vLD6E/Uh7RVwa -l4GB31OpLzJtsC//nPSVf8iA55TFxWd5dtjwi+D4ImlZ6F+4sZdvhxNmyf1E -soUqCwWf9pvMajpjfdpct8dVZMFqIlrKeNwZa7+R3Cu5VxYOPzQNSdFzwXSH -Bp21zGSh4U7UFi42V6xhk8w3aztZCFj6xb+11RWrDiwVTvGWhbCculH6UTdM -uXSx6E6wLPx6yuCdAHesdExdoztKFuLjb106SzmG5Ru02PKmy0KQ6/GAN5s9 -scvio7kRT2RBrOu0n4SNF/bz2cbp+U5Z8FuzzsH8vTHHCC0Vp5ey8O3M9jPL -aT6Y0kRaC5qUhXN9uQc+s/lhV662bbo7v66nFVBwrNAP+2uwZEX4LQvWFT8G -eUz8MfcBhYBILgLwqKbvLqg+hWUqN2ZobiSAxlaXPeL+AVjPxUMNiwIEuH0t -d/G2eiCmrnOB+4jYOu6+F7VnIAjjzpvI2E0ngNHTsXzD0yGY9nJIw7IyAbjH -roc1BoZi3geFPlSqEcDhCPFHW3gYNsC5m07ECdDrndC0UBaBbXQcMh3RJUCi -n4/NwMuzGF7rE5BiQICOWAu6R1QkVuyZ28BuToBOpQ0w0HYOG2ne9aHOigBv -D7hN1fpGYQJS3dyn7AggmK8fx0mMxoJ6/phOuBIgctvFmcGMGGyvqu2HliAC -RAdeGWwYi8VCEha5w0IJcC/YhIVaL2IVk7F0tUgC7FNI1HeqisNEMmoCCuMI -MJU9OfH01iXM6OuBaw6XCcCeTK9ouZeARRhNNginEuC8nGFrXUciNvV3G8/5 -bALE+x01TeFJwiSsy+hYPgHUWYsalflJmMkdXbMfRQT40+//89ruZKzmiN81 -tzsESNkUU3orNQW70N5D39tMgIPn4084x17F6mTdzdbaCdA/PLTZyToNmw9e -Dah5RoAcf+5JklI6Zk1nPKa8JsAZW9U1pe8Z6/9Hy4exYQLA7jV9wYlr2OO3 -djzpYwRY5kdcv95kYpSkODOeaQKE8ueUUWezMbsZQuCTLwTI4vxZrciWi13W -fXDt9FcC/FRcfphNuI79XJr68GmFAO8u2l3Y1ZSHtdvuCezcLAe6z8/ce378 -Bvbc/P7GKSE5eETEw0J3FWIvDSl5HGJykMBzd8GLtwgb0+J9hhPloGJty4mQ -zmLso8oZZweqHJw8JHF7f81NbFZx9scZhhwQW3/b9N4uwX6IPyfcV5cDD+Os -hQv1pdiKIFbzUkcOvA2TBpNflmFsGyv2L4IcdGPFoatL5dimlf+C6PvlYKFA -dHzg8B1MfsTieb6THGxS2vlj0r0Ko71sPfLkqBx8szzW84dyD9vRtevXqKcc -vBZqvjc1fw9j1YkSxQLkQKoxYfV8+n1Mt+pi7a4zcpB6PplnOrgG21e6bGwR -IQd8ydN3QlxrMYvMN6cvX5SD5IVDIfetHmI2KcabyxPlIFDmh72iYx3mGN9Q -8DRFDlqvQYWbXz12POR6N2eOHJxmygWuPWzAouxcSaGVcnBT7/vvq75N2MWD -/Q8yauSA4t9Rl0dpxi4b6ZvU1K/nJfRXiX5sxjK1qWe+tsmBZO9hu+igVixv -Z4bAlmdysIGTmCVl3IYV0/gKGX1yMHJ9+fQJWjtWKfG559iIHIjghs7X2Dux -GiGHo+ffycHYFoEYrdVO7NHG7uWCj3IQNhvUIsjehXWuVMiPzcvBOH9Jjjjj -OTY+4h9iyUGE2bKWQUpsHzb1cmKLPy8R+OSuLJSrvsC+dFkW/beZCMZ+bz/o -fHqB/a5T7+sSJUIlfBfMOfoKW6u66TYtRQQRe3wPv3I/xlkm9oeLSITUHR0R -dRteY1uzVsi7GURg8xxQ0WwawERST9Q7qhBBX4antKFiEJO6NGoWpk6EFM28 -gG9FQ5hC6OPQWiDC931/zrLfG8GQfdQLJSsi1N5oshmyeIeNOMQFqNoRgYc7 -56yz0TgW4JgkquVEhKtXBE7D13Gs9Eju4T2eRJjAP/McsPiA6bsWsRl5E+GI -rB6da8sENn60/IbpKSLUlZVg8HIC2+5RN2MXTgSr39b8Qb6T2F3PpgTnKCLU -XIzhFjaewoxOdCq7xxLhZvD43dAdn7BI74FAv2QiSL7Vb9q2fQb7HPBtw8Ui -Ini/44+l2cxhF4KWCxNLifCJoFDaHDOPEYLZ9qXeIcIoS2z1SMMCZh0qcDn3 -IRGaIOmvBe0r9jVsu0rhYyIUs9/joo18xRIipPpvtRAhI8lXjy/5G9Z0jiZx -v5sI/VKN8dzblzCHaJWGupdE8PqcG9HwYQn7GaPp3DhIhJyon7V3HvzAGBf3 -Fj97T4TnTaduZEb8wtIvu+z88IMIixM6+dfD/mA7kzxff1ohQhBl2m9H2l/s -ebJv8Nw/IvD6fzjPVb+KsV+NePybjwR2p5oOU4XZ8Jy080fWBEigb/lr9M0D -NlwzI4GTU5gEP8+MxFOPbsC9sjKNtsiQwJCnX+VqLzvOm5M/J0wiQVvstmN7 -kzjwgtySJAkFEtwltIfetuHEh/JrBsg7STC7e5f96AZuXK/kpQtrLwlGJru6 -mU/48LFbw1y6+0lgFgZFX9o34sFl4yUGZiRQbOWjaQ7z4xUV8/MH7UjAe43z -D0NWADe8+yPZxokEgTq1N+ottuAfK/+qOR5d9x+ecsHcaCsufn9jqKc3CZYj -RBMacgXx6hpBGZ9TJFg0buVhWQjhJg/EmgKCSbDtwUnv7wLb8Jh6Ck9kFAla -ZMXfa+QI4wtNuqlpaSS4bLCJuigthkey4yn6Wet5rw3b8nCK40J6WslL10kQ -FyLaVPlNHFdrVf7v4C0SfH9ZfHrjZ0m8jZN+eX0EhDNZDSVuP6Rwa31K4t0q -ElgaCm2u4JPBg9ulLgk8IoG8VubRZgUCzscjFt/QSILbhmr5c80EPNNgW9zJ -NhJUDxLqB13k8EedfLFdPSToP530uq2aiLM9+xl14T0JDuY+jUu8ScaT+b+d -2zVFgrdz770pQRScaDwX+XGWBCfrn7j6G1PxPd0TEbpLJHhc8XGzsaAi/nrz -u/Cvv0kQtW1yNYCNhrubjITlrZKgmceiJPY3DY/r7QtZ45aH3s+PQps4lXCJ -rc/P3OaXh9aoZ9bZ4ky83Kwj2GGrPGwJ5LrcqamM97xoCKoTl4dbtZr4i2c7 -cKH+Uv8ghjy425m3xPqp4jeEi/3IKvJQYr7qwUtXw9Ws8n37d8mD9ialUf/P -arj1QLr3TrSut3vl1JYodfyTSKrXez156FC8sfzcRgMPPnT5ZNI+eWg2vI1f -0tDEM4dijs+by0O66NZ9uIA2TheP9MyxlodRbsytn1sHf2Qb6mFsLw+Wi020 -Cl4WPjbi5156VB6apO+dT1bEcdJbRxf30/KgWCnnaRy4G6+WtjuyPUwe2j4K -0kYldfG9jlbOrZHy8E/sFHt+py7u8W6/IzFeHn6U3RB8uGsPvixrcPjFZXnY -7CHoHfdzDx7vrOsQmSoPMkFCNnGP9fHy95p2Y9ny0FK9MZvhZoBjRDXbxHx5 -WLtBfO28Zx/e46JswyqWh9/NtZem6Ib44gTZOvOOPNSbqg5Rtu/H1aaEDlo3 -y0P4cdGSGVtTPL3tU9PxDnnIz3xbdNzUDF8pfKRy9rk85BgfYAb8NsMbXd0F -SwbW+c+2PbdyOoiT9HTOPXojDxmxaRmPpS3wC8StX/vG5UHHwbN1dMICN37/ -sG95Vh5+/bPiDLtohd9pvAwCi/IwUf23uviYNS6U53qX+EMeslL8dEdMD+FD -jpuT9v+ThwvVnHsHWLb40VFn05xtZHCdzdU6dOUw3lG/60mlGBkG7MsnJ9sd -cVrWRuV2aTI41r95Pc/ujC/aVgssUMlgX3FD4qLVEdxCKy6CQ4kMMcwgLiaf -C14j5jgvupMMh3wD28VbXfCwQZ4eYJGBZ/d+6+9mR/F3NaOY1W4yfPbcTT9H -csN10ypve+4lg26tIunqmhvOa2WfmGJGBmb/wRPVvcfwKy8rjD8eJQNVzS3A -dfoE/qsy+tFvTzJorz3Nz+Xzwu2SbRibfcjg0Rpu+Z+6N04wY9+kfoYMn+S1 -njfY+eLRyoOhRhFkSM1dcmNx+uFTAuWfHaPJMGUfkZFe7YeXd1s9i00kg592 -tyQH/RS+5TZNJzuFDCE69e6lX0/h/gn/Su+mr+sJ3wp1aAzANfffih/OJ4Ns -kmSbyukgvLXzryG9hgzl7ebvMy1DcGrJi4eongwEtgN/wtxC8fjYYkXLxvV+ -7mgonDgXhpvtNeML7yLDlf01ZtqjEfg9MvlMci8ZTApqmDwCkbgI18p0UT8Z -ZuVvRx6vjsRHW2509oyRYXpVW6p8exSObgRrTkys97t0dUDsRRReEHWg5Nc0 -GYJUzv2SvBKNe+z+FUv4Tgbn0WkSaed5/PtjIwN/HgrobZltyx28iBu/3bZt -xyYKbLdp4s/qiMOL/4yOzW2lgHad2o2ixnjcRtMnyFOCAr8OnGAz6E3Aq6w1 -damyFFBrPtmSNpmI8wduEJgkUYCLK3LbMe7/8MeVqUXOShQQN7GLSK5OwkX7 -HPxkdlJgKHbk8jerZNx3noyNqlOg9KBP6vHVZJxEf9B/CCjwAqbWEpxS8YuF -oxymFhT4776LTNbpNPxDc1HvJhsK1OI39hWZpeM6772zuhwoEDFpLjyukoHP -S29Q3etOgULH72xUgUzcgNW1xnGCAjdaHnqN8GXheXapXU0+FLhSYG2yeUs2 -bpFOdsHOUGCDxYcxV41cvPz+vNKfcAq4+tYlG9pfx7n7a5cfRFHAiKF8Tlw/ -D3+w1ShZLYECEu4+Dk7n83GZeO9G+nUKJG18K15pXoifLtFImLlBgY2ShxxX -thfhfe1sNjdLKJBKzmsse1+ER3OkLhCrKBDr39Z4LOkmPirnUD9eQwGtqwG3 -+AJKcHUgx+bWU8DR42GIrvMtfDqsVkaijQLIRW+kw6IM182KnB18SoFrfz6/ -abEvx7MeGtZc7aEAyz9x9r7Xbdzk55sDgkMUkPp69S5b5R38ng9bOO9nCgg/ -lGszd67CN11+uq99gQIzqL3gteA93L08RThmiQLfxNfQpq57uNiMfPm/VQrw -mq/+TDO9j/vzzJ9uYKdC9VDc+1PSNfgzcq1eKA8Vhgexw9u/1+ARLoZvfm6l -wlMH/7/9NQ/wwUihm9XbqbBUQ32aXPQQ33H9jb+/BBUy2EmVZjl1+MQbr43z -JCrs606jqN16hO+zStGaVKeCQ3jG58DcRvyU0K4gXhYV+C7CoTvGTXhu72AV -fTcVZo6sUfnZm/EfhtIM//1UkLgizrCJbsEJPI0eV82ooGY9ANOmrbhxq0vR -Aysq3Hv08fGQfBtegJfI/HOiwlx1Ygc20453/zGyJ7pRoaZ0cPTkcAf++8Fc -uv7xdX5edYPfq07cVFVVMCGACuRTKcE5U134X+pjDvE4KuiZZ9IGr/bi1Eln -YF1exxrSnCG+ffjBAo5wp1QqOH9RmuyVeoHfkjL8WZRDhZMfImW/xr/E+4c/ -73xaQAVfQr6XxYFXOFv6ZZ8vN6kQjL5ZlYn249aC/dM7q6jgduCCUGLba/xc -TxDZupYKs3/niJ23BvDyS+IuZx5RoaJq4LJ9+iDOwe305kk7FV5Ie+mLJg3j -d1dmuo3fUMGrfbksl2MMf1ObsNF3nAqbr7tEI/wdzh2obJA6SYW1cpr0e91x -/PBCQOPwAhW0lq29OnLf4xfLRVf/LlFh4rn189BDH/BqzzotwgoVbNo7aI2i -E/jGj/+q3DkVQC8nhqZ19yO+K79gIY5PAQ6PkRgicZO4s6M+47aAAmgrqKr2 -H5/Ca4fii76LKYDqrzCLE0bT+NHu7RmRSgoQrOMuzDj/Bf8v/kH/jZ0KEC+h -xZS9O4fXGdgLdmgowOcs+xjTT/O4YHNe/GZdBah87COs8XgRZ53V69hhoAB8 -7B6na7y+4h6sKQ5LYwW4UkZXcJP/hj+uoYdnWitAUtpAWWTJd3zmVM/DBnsF -kItd9E4MWsKFVfx+jjsrwECQQAHfgR/48bIaH+oJBeBaKTp7X/gXLpq326X6 -rALYdaoQ/cX/4EPuIeVPYhTg8tBzbbUdf/EMpXs/u+IUQOdy+AHFg6u4WL38 -pfepCnCMFJgV/vAfPnTu8OsvGQowyxK5Nn2WDWXsS5P9naMApG4HrzzFDUhs -gKdaoEQBUoxXTncls6OhbFgTv73eT4925TMzDpThemYfuUoBPBU+qZwR5URi -X2dHdR4pgE80d4NoAxcS29TD5dmnAF77RwJe+vOhoZfcZgGvFQCLv0RJDt6I -Mq6hzLMjCnAo+6Tlq4v8SIxayUz7qAALORrNaV2b0dDcTHD+jAKsar6yXP0r -gDKqiS3l8+t5j0+pDEtvReK6Vw61/F5/39NJERy+gmiEtzu/Z1UBBj+anbYl -CaHMXq4vw+yK8OtZlNHEWyEkcfh05OImRRjzWE1o8BRGEsF2t6TlFIHCdnXB -fVIUjeCp3xUoinD4ep4S6Y0YyuR6jqnRFaFt9u2VhhFxJJGKvTTapQgL/ypC -KMuSaMQ2SMpaWxHq992SeC4mjTIJd9yPIEUoGisIXdOTQZIVhD+nDRWB6Mvn -HeBEQKMBtvrRJoowHClm2sMjh7J1Uv67bKEIWmc4zs/WyCGppxzyRYcVobk8 -4ngUjYSkPk4Zv/RThJlnuUXhPhQ0Wiqb/jZIEYIT67+Qrako28/m/XSoIogm -kY9u3auApP49Dfx3ft1/V+BXuh4NjbaxN268pAioYPghxZyOshN0NookKcLa -9C/3X54MJCVxO5eRqQhRT0273zQw0ej45LTGdUVQnpM+/2ZZGWXflFHVK1SE -hLjXDXvydyCpXUkdthWKoDG3//vaqgqSNju1eKFZETDNh7ont+xC/VZ5aTod -inDqqOR2oeFdKN6+m7X4TBGq3+Zo7C5VRz/dqXG2rxXhW7mckuNRTVR+0lJZ -YEQR/nw/x/x4QAu5+p973TymCB5St9andm3UF/5GjjGtCNf08zYQgYUuRPN2 -jn9RBNNq2q4kEwxhcbu8r35VhL65uR6xYzgqvfJf3dqKIhiYVNr/swcUU6Zn -8WIzDUaT2HWNvuki7Urf5fNCNNB9mf0786Ye+lqTc11blAbSvIZLd133IMfm -X59vEGhQ7BoXp/JVHwl3yqfYkGnwbFoiX75lL+rqNtfcTKPBScI8dT7bAGkM -l8UEqdJA4t20/k5PQzQ/NkSja9LANVyi08jBCBV+5HrxjkWD75o/WgNt9qOt -i07ShntpgDisDJy9DqBZbuEaSVsaPB83rZriM0d5m3Y79B2mQd0d/ejX5ebo -kJA3+3kXGnxSP9AzaHUQtUp3msyfoMEOkWPmbPUWKIT0Y6nAlwbvmvCavNOW -SEWRmHUocJ2/JVHUUMcK5aqFfWqMoMHwoYZnT4askaX2rcTAaBoMZQw4S947 -hPhhQJV2kQbp9LGia1dtUPD+HZGpyTQ4yt5srx5gh8xdPoq5F9LAVOlJn0y+ -I+L1EHwicYsGPdzU4bI2J/TYC3frvU2DK8WP/yWGOCPamYxKzVoa1N9+q06q -P4LGI9oOzdXT4Kb9hL3XUReUHvNtNb+RBvYutbs4hF0RZ5KxEX8XDQTFI+rZ -Y4+iuqtnFp/00MCvb2D/rJEb8ssqTgt4RQM12boocRF3NFbMNvF2lAb7PYv7 -jrYcQw8aqkPvLtCAkXT85Mi5Ewhc6lO6lmhwSCtXIy/3JOrkbr71cZkGpeVI -Y6zdCw2b9g6KcdJBKlgstEfaF7ksvZ7fyUeHBHFD3Uutvmg2Y5TrgAAdTH8s -EFb9/NDK+xnVc2J04I2sbhX+4I+iLiwaZUnTYc39Utn+olOIn/7ryH0iHWSw -k0Q73wAkFcCZNMOgg8MLkQMgG4Qwbtkv5rvp4Hsl5MaDmTOovZTMcXIvHbI4 -U3lkf4QgE1OGxIX9dLigpP1Diz8MOWZo7auzosNfI6duXdsINMUCp347Onx9 -duPv9pSzyOf93qB5JzpsIokbVJ+IRJE0y0LicToshN6ktbaeQ7y9dvUsHzoI -SS6t3gmNQkmnjry0DqDD+U1ahCmtaJT/yJvtUgQdHuLe0TbdMajZJM7hewod -rLhokby2F5HR9/9Obc6gQ1+Mdeang3HoVXpaPDWHDjHWpnPl1vHo4/iNB/Y3 -6dBmeVsvKDwBnTxf2htYTofYHbyBhvmJaEmxcuq/Sjq4XFoJzu+7jLhOPRZu -radDd2fRzf5bSeiyaBt9rJEOR7amSMpbJiORR890f7fRIazmpzKZKwVRuIZ9 -GX10UBOvKtELS0X70r8/v/KRDuXHKrjL29NQn87KRMUMHbb8CnFXrUhHNuNs -fzrn6cDocK6uz81AnooCiqu/6XCHxytZMTsTfesWBtE1OsyvDVW33MpCIf6S -h1Q4GFAj4rW9sykbxdcrnHfbzICowvhbmULXkZCzcvZZIQY88s/cLUnJQ1mc -6veuiTLA7dcnri+deaj8gN77bjkGLF5XswiSK0Dd7w5j6uoMsOO5euaefBEy -brG5u6zNAA+XPPGemSLUVWxBakAMOCxMOvDyfjHq9DLk22PIAN9S7cfhriVo -r/meMB4TBtRPFUxm6d9CbWpooesgA/RnVEKSlUtR8x+11+YODDDcmnNug1Q5 -2v1Oed/2Iwww8DIS/SdzGzU20+qH3BhwtsTOeYRWgRriCPlOPgy4z7Mxi6B8 -Fz0Q3eTlFbWeh+TjOpFThdT/cI/viGWAWl3wbM/ee+j+2AaLpUsMkAqCPosf -91BV0S/N0KsM2F7kdvK5632kEvetDM9kwPcv3tu2ydeguyfnZNivM0B5WPVz -xmwNuq06wRlXwoDuZRE7gUsPEEN07LTxbQbM64TrWbk9RKUrQ7NbqhjAW+U7 -G7e3DpU09fSl1TPgRuyzAB+ZR6jAtC67sIcBkfo5nP8JNyKC6v0tHq8YsHFO -R+b99UZ0XeRuFH2IATtYDGkn5SaU/bbIo+o9A+hO2ys07ZtR+olktcYlBjzb -VP7l6XQrEjFNuBm9zABbi0/uE+lt6MrOWAmDNQakqb0P6t/fjlKWw9h6eJQg -SXf3u7jmDpQQ6/H8jYQSJD794sSY60L8J1zRdVkl2DQmNL3Y+gzFmzhWucgr -wRdybahAwXMUu90yY0ZJCf6L8kk7e7IHRd1AR3+BEnzwes8RK/cCnX4i8lfo -mBKcM1iZvBn6GsWX3wx7fEIJ2E7X7fy1ZQDlXtNc9fRVAlWdxiuPiwdQ+ym7 -tcYzSvAa7xaNfTOIhBVy2XwSlCB5nM3Jy3kE3U0icz2rVIIxOYmFk+3vUGt4 -zfmgmnX+jKXxL9Y4GjxuwE2sV4IsgwFTg/RxtLbHk+dMqxIsMLcMHjzwHhkv -l/NRB5XgjKb4G0bDBzR9RE0g+q8S/I7g4jHJmkR/TdouMzcwoY7HW9TjxyTa -wrLeMsLFhBIiv+C4yRRSFwneqrKFCSf/ij279m8KxXTVC72TY8IC76ymkPU0 -yqg1To2nMMF7wa/9d8k0Kit8u02dzoRDosFCRSvT6GXEP+FENSZ82jn9YmPm -zPr76onqGDBBTmhwj2nHLFIj9KdP7WcCCnMpLhT4jAw2u4mlmDFh856VdgPL -z8j70wXxGVsm7L/T4rJv5DOK6hfNvOLIBL1POmZJEl/Q1aYSCXBd11P6M7li -8wU9yuqSTD/JBH8+8Nje9wX1XbTP1vVjQsuT99/v886hicAvUvOBTMhMqzhq -h+bQRjMBGf2zTIgolS3KKJ5DMtj13MVoJuzdVctQHJxDKrQdstkXmXBhcSNH -Gdc8suE8SPiezISQ1WH2YId5hCc9EuRMZwKfhMqa4MV5RJKicmzPZgIrRyBX -o3Ie8ZYkL5HzmRAjf6lrenAezav+nVQvZoIZUPZQ/s6j/ifugwZlTNA2Lcj8 -Kr2AHu5/0Wlzd72vyhTSAWwB5Q7q1HneZ0JXVsWijt0CinEtLgupW+93frmt -KWABHV/YmnPpCRPOZvdvmUhYQKahoZezW9f9b2UbLixYQGo8U2dvP2XC1t8l -jZtqFtbnVzO/xz1M4GyJWiR0LKB/MvUuva+YQJ1n2zb9egF9LCVbjg8x4YXk -Q0PPDwuoSz1J/+tbJkS1/yKVf1lAd5pX1NknmKCAJV19sLSArpi4KWybZkJk -8MJc2soCChnpFZefW+9fP7jXdG0BOblr8+/6xgQpdSb1y78FtOdb4V/9X0wY -7LknH7iOw28qFy/8ZsLDwj1v3qyf/x9fAvjc - "]], - LineBox[CompressedData[" -1:eJxNzVtIk3EABfCvUVbkUtOhD1Gb2GW12taWtmzNHkInfkWb0QazmJcs01q0 -ckkERmtFErFlTNEQcxKOybywyorGIjIt02I1FtGQFU0XLdlYpbIK4n86cDj8 -ng6n/ISiikFRlOxP/65p0fnqBwx+AfUv0ebguCEJ9nP2eq4sg92O+wOtqbBN -kmOzs2Ddvp+ml6vhpMbbdJoYDicvl2VL4AmrQSDaCbc56fT9RbAwEPdZNbBG -VlLJNsID89EG/lv42rByOOSHayz9rK6PcDZX58wKwebS6U8L5uB7Xt36qVQB -8U1eteVhLqzwK49qL8BLUrUC9VohsdrA71E8g08/NnbWl20hHgukuIopEfFM -gFMkt8J96bEm+SYxsYM9F46Pwfrkq6MTVVuJDa/pp+qlucSF9VYpsxPu29N1 -xJOXR6yigr1r/PDIdfupwZPbiM/Odiu/syTET6wVn/l3YV/GnXgLvZ14wzF2 -Tn8ELuxgv4pdzidOLJ7k5a/aQRyVv7NtdsODNaXt9AEpsZvhOhxRw6OtmQKL -Bp4c8Xt8Wjhto/ZLRS18fLpO1NAIc2tNz7vtsHhhyCzvhQvaijVhJ6x6wfwm -dMGXeDcyHrnhYLjj0BsvHLnI4J7xwbMrK2ey3sMr6HXGgwF4l8PRE5qCS3an -6Ju+/vf/QSflR2AdUzyuj8HnbM0tmT9gkzRePvQLNntVvLJ5+FbdUCyRgH8D -F1/e6g== - "]]}, {}}, {{}, {}, {}}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - ImageSize->250, - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - - Method->{ - "DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{0., 29.999999387755103`}, {0, 1.2}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, {0, 0}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]} - }, - AutoDelete->False, - GridBoxFrame->{"Columns" -> {{True}}, "Rows" -> {{True}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], - "Grid"]}, - { - GraphicsBox[{{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], - CapForm["Butt"], LineBox[CompressedData[" -1:eJxt0204lVkXB3Aphbw2MUgUo6RzdkZlUrS2UnkZRI2MMMYhKRlvNSryWpSo -lERCSKEkiSIlpSkiJEpIFEecsyUJkWf1/flwX/f1u/Z9X3utvf57oes/tu6i -IiIiN/H58ZZOcZ4mIsKhh1JkIq3lU8DhaLDHZrTf1DHFII0UuLIvpTYdfc9c -b6BweQqY2LQmGU/j0Mk/3ALBLgUOzLTTixDlUNf7BbebzqdAj48lb6YYh1a8 -OCf2RfsCVGwwrJKS5NAzlSov9S1SIYApH1Wey6F2S65UHbdPB+3T6951L+HQ -NdHqIbwNmXDRPS7OcC2Hyq10CbwdkA3Sfrtll9lyaMhVrYTf5HOhqu6WS6MH -h0aZzEhKSMmH9Q6as2YEcSjXPX5c4eENkNb/HtxzikMhLN/MpKUIqi12PXG9 -zKGDo1/1dm67DZYnxzz2lHHoCYmATK7iXVDVGmnRbuBQL96jjEtOFXCDr3DB -7wP2J3vyknJzJazqebzSboxDbZZo1208VQVSKz6kfpThUt35g0929T6BSwWL -nKQ1uXSp3uIjabxnEBP8sr9zFZfOypdbn2pRD7xIBSsrKy4t2Fg5WXi6EaaV -BoqZu3Lp+SLpmRY9TTAAZrEj/3Kp34ivaGJaC6QMG+769TiXRmdJLu/d1gpJ -Yxd+np/BpR02DTlBe9shetXJcxklXLqiadqlhC2dYJR9ybu4hktNR2Ls9755 -B2vdtBUOvuPS7e/z3LYf7QYxmzq5ui9cWlRsBJ+VPsD9f8U6SyUITRu++Xvm -uR6oEuaE2KsTmnOFhN/X5sOpM74BkcsJ3XzxszAvug9yjmUb/G1GaFD7xINt -/I9QVOrV2OJMqMd3sVB1tQGIVLaraPMj1C711JH8eQKgAdaJy/1xfXGzWp66 -ACbrTL2PoYVPt4pd0hTAvsg1qqsCCG0rKS09uVQAO9mCwNN7CRV3OlGyaY0A -LKr6l5kHEhpbphC23EEAc3zD0kqCCfVVCnn9PUEAF59cPRQfTaiS/BuwFBOC -UsF4XDf6Da+y8G9xIZxMNE1bcZRQ5Q7tYv/ZQgjd8f5+M/pN3vU9J+WF4DxD -ddq8GEJFISz56nwhqNCYiMxYrO8Xw6p/VgohvsQzuiieUPksocsCnhAk00rO -iZ0m1E2cne1xF0LYEbEcO3TKLPU/c3cKweePi09H0Rq9D8J0vIVg9fmVpFEC -oYrz9Vyl9+P/y0xjqxIJ/SaXtcUpTggR2Yvim1MIvRnl8lirRAhdjZUSiy4Q -+rS5fvqpO0JYN+Ucthf9iK37MFYmBBH7RJ+5qYT6dFueeVQhhEMS4ta2aYS2 -FPyUZVQthECvvtl1Fwm9viMq4V6bELz1rh6uyibU5MoDOjElhFpn08m5lwk1 -nP1BVVWUASfmfYAbeuacyDSDGQz6u1Xdpl8hVPWXW+f2iDPYmRC7zjgHz8s3 -xvmOHAPeqPfU3TxCo5vit3UuYGB/79f9RQWE9hyl6nuAwWiabJHkDUKn7dXs -9jRmkBQmELqgr92V7OOtZ9BqkuMmXUiokedomfUmBo41CzbvuInzSZ86PNOa -gcsr2cVKxYS+HpTvH3TC/YcETQfLCF2R6qFdtp+BeFONbCM6J+fhA5eDDHJu -5Zhr38X5UNvL04MZfAx0r2hCT5hG2BuHMvCaasvj3iNU92qVU8oRBj5Sz8Lf -VhA6P6/RvCGewf5FubrrHxNqvFQ3ziCHQdOZtqzT6GyJAAn/XAa602WV36P9 -V0vq5+Yx4L/1n3b4P0LtXa9lyeczsEsyanz8hFDnGs+uR4UM9KQa/M1rCG1/ -v1K/vIxB3IHp/GR0iGfGcMNdBn38lY796DGd5F3vyxmkVyWbHH+G9Z6rPiRa -wUA2xE2hrpbQotbMLZqPGAx8+lpsU4/1y7lKjdYwMHXRWZqB1vRfsJf/jEFm -nWPaEPqIg2pKcy0Dh7wHUacbCN39PXrR1ecMnrrF2L9sJLTxtb+B4QsG2S1q -4/YvCe1Ywi8dfM1AdKONdw767Co/w/JWBk5FEV1j6EQjx4ioNwzmnuJXJzej -YTFPoZ1BhHnh+bYWrFfi1L+KnTiv8g1GLq14v4fKHPM/MJjsvBNQgjbXT4h2 -72GQPINclXlDaNOsCjWVXgYvLBTnlaM7ZcOPH+Qz2NjaM6rcjuf/XTlEvZ9B -96SDri9awOuQqUSHLnzu8QT97MmgtOsAg9KdJc37OghdNS/KMVnAgPs1qujF -W8yHj5nlAGNQrTLRr9OJ8xg28zwwyGDHWh/NcHTau5tjYp/wvA/bx+u+I9Ty -iMMBhSHsb+4Sn9guQqmxjrTiMIMbv124/B6dr5LbcQJttV3+7ZpuQmdzni2Z -9YVBVMaY5Ud03YPzy4Tocd3qpZs+4PfWolKpXxkkbl3LS0UL9+iUTx9lsCKw -MPkLWrDbTLADved+skRWD6Hj5mq1WmMMJLtljL+hE2zJoTB09syIQNteQo8d -7itoRXda7u4V4RPqraWSenicQbDvWzV7dFT/wJ8taJWELXbX0fWxWsmLvjHY -2ramyqmP0HBeVG45+r9dUpmlHzF/l7ar1U0wcIsLbZXvx3q7rshJTTIQKRyW -90TfqO8+vgm9eqwt9OcBQrNuC7RK0C2qNre90ZmKmib96ABaxarQywbmMNXv -DPKjrjkHCAiNLxgSBKIt8haerUGLv7ZYn4nm1yXUaggJrf34q3YNOnJIQuwA -uuwvhwuD6IWKhwwb0G3iBzN/mmJwz2DIX5sRelnafM0KtIPTjrwQtF1/sLst -+mtoa1czGgJqNbzRZ7KsVMggzuc5849CD2z9OSYEzdsVy09Bm4h1fqtHp8mk -GxegU25d8dL4RKhnannIA/Swu2+7Pzp8dVBmPfp3xdVWVeg/jf2utaOzHove -VxwiNNRKP5WPnthXs2wneuXqv/Z9Qm9ZfCb9DrpTKVJ/FJ3b4ig/+zOheasN -306gRaO1wh3Rn3XUfad+9LNKOHQN/er6o4EfLuQX86bQD58+sv2OlkwKado8 -jHkpLMkcR7uamW7IQHd2rOwcRpeOyRV/RouPt4gL0HNyXy/a8AXz36ev1o3e -5ZCReBat+rR/QQu6UnK3OB89Ijgh/xStUrZ8v8EIoR+77g7eRvvtnug7hi7x -lLqfja6eV+XQhv7lgFJwPFrjWWwN9yuhJ4wPLg1CHwiyMwxBR2g8r+ahGzjq -1+rRq4vyt5uhtdt752uMEqpTWdTBQYfGFsT5o2MsgrbKoHWFxj6KY7hf7V2V -H3mITpV854GufujllY3utHphcwc9QH6/GYI+ed1tueM4oS/DJTQ5P/L0Fzfr -Glrmi7rlFOaRyo3MnUJvFzZ716MHfaJGLn7D+SUlnfdCmy7c7PEZ7W/79vJv -6PQGpVcmE4TGpRvki6Ct9XLv9KIPz8rIO473I7vLT8dgktDixP5Ma/T3+DXn -j6FzcivOyf0f/w9gA5mH - "]], LineBox[CompressedData[" -1:eJwV0ns41GkUB/AxZsolSllWUikZinmnhNl213kp2ov7qEl52CRlU+tJqWxJ -urDaxD7I2l1qlVq5FXIplMuSy2Yr0iiPYvW4/OZtKWVk7Nk/3ud9Pn+dc77n -mAd/57uTz+PxvPH9/xeOtx21VYtpds89izw1g1mX07gYtM1T+/A0dKBfYGAH -ehmv0SQWrV/GIHJGTLMix6/K0KE7K4ob0G5rxxI+Q9d8dMLciEdowKzWDgv0 -vqj5mpXoh54taePTDP5ytP9TrUHobnMn1Q/oc1XR7okCQhXhRvLMDwzailIs -FGg3R8/t0eg5V659sBYSevdThx5/9I/nu/Lvo3VV7YuN0Ykha/S0ZxPqGb9k -OHGKQYL+cHu8NqFUElcpVzFo1tTIfYIOkKx/LEZrTRrHiHSwfnLqdiE6vt9V -3IRelHXpcfEkgzMVl5JmzSHU9XmUuQb6ZLC/12l9QvN3lcXEv2NQJ48QdaJ7 -zaB7E5rvET9jMZdQB0fnq8vRcY5lRQ3os7FhudUTDGLnGMwTGBAaAbvFI28Z -xNxq7ohbQOhV/tIkmzcMjuhIfWM/JtTy3wudX75moCpN5rrQpsGlSRro6KCh -BFsTQvvc669XMAZHSzNrFWixTd78FejYwGkbe1NCpX7SzAkO57lZN3vYjNAr -CtfGoyMM0rZ6VMuWEyoJktkZDzIwEuZuyUMXS/X6bv/DIL1IPc6zIHQdc38f -hM4QFK8sRLuMeYfnDjD4tXB+hpYloZsPzQuz6WeQw+/eX22F+wnLGF7Ux+BG -XrCVSEzoq7Nm5SlPGYy+mDt9CH14lzJzFdrKpPrvZrSgSlPQ2M3gYrzx998S -Qu/Muxc68YRBckhbe4GE0A9OI5GyLgYRix0i19oRau1m1j3xkIHkJ+0aZymh -gzrHlw60Mig6UiwLcCG0S1C/Z8cdBjah2SMlaK3VN5Z13maQ55t0Unc9oacO -D8jd0JdXhZdUoXVMDJxEVTjfc9ECE1fs35/y+stxX87ZDzs3Euq/pj3FpYSB -n3aSj5cHoSb1zek5fzCYzNjj5bKF0LyL2VGqVAYOY+WL6/YSWiFUHHPfxeCT -aNH6jhOE8tjCB/aOeH++Aun5C4TKtR+dejmthN/8BXHPrmM/d1RE0qCEy5lp -2fW1mLfu+RU+CUp4vyr13LZOQqcEvQe/2qAEg9GyjhNDhF40FtUe4yvh9c97 -7/eg97sG58g0lNCxcUWd/TChUUYOO615SkjOSS0ZQrsJfOIeT3Ogvy0y3WcU -8xgcs7Se5ECnRRJgzjCvgZtObYwD/rXrr+6+wfvQ6m1VPePg5aYdfQvfEloe -taG0rYeDe5qmTw+gZ48dPJ6l4CA2KLHFagLz4T2vce7mQG0UVpD8jtAvnG0H -zzziQHXaMvIbFaGBRetUui0cKOx691ShzxV4LXvWzEHli7QQwym8/5Iykt/E -weHPhZub0Z4ZhlNfN3Iw8aZfKpkm1Nb7yJbEuxx0/f7L6kT0hn37i/xrOSjz -lq0cQMsfqEatajg4kF9nmqEmVC9BvqjpNgd+W6MNx9DCJ9H66VUcrNVao+c+ -Q2i2vPVVSCUHhreGhLlondCIa3YVHIzvuKSeQb/0SfHml3PwHxnMZXQ= - "]]}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], - AbsoluteDashing[{6, 2}], CapForm["Butt"], LineBox[CompressedData[" -1:eJxTTMoPSmViYGAwAWIQzTsnjpGBQceBAQw+2B9wtTnKw4Xgl7yX7JQUQfA1 -Jjs9fKyJ4C9M7euzsUPweYuy+fWDEPyj57YmXEpH8J2jlNlZapDUm/2rfTYR -wT/lnXUiaTmC7zvhZ3rubgRfRvXbdY2LCP7GF6Jzi54i+BbPjpmG/UTweUye -znvFpwvnL92gFsurjOB31159/cACwU9uEfXz80PwGXdVsHolIfhv7D17v5Uj -+HO+2GQZ9iD4M3/OFZddhOB3WEyYsWg7gm+7bGnettMIvl2Khmj1QwSfNfCc -wLmvCP7+ctYHuzj1EOH5bmV9hDyCP3FKYUmLMYK/smuZZaIngr9lV86l63EI -fotk2IE7RQj+whNr6iZ1IPjNy9QmXZuD4EfsM6zcsgHBr1RbZeB8DMFP2Otq -m3ALwZ+yxE9K7wOC37uryqeLRR+hn8siqEECwd+4KklDXQ/BX1+5ITjGCcH/ -OSPb3ykCwTf7tF3uUC6Cb1ml7nyhEcHvCGKx6J+O4M+NZGm6sxrBXzJr6vzD -+xH8H9pTeqOvIviCb7ZeaHyJ4DOtWP38wBcE/3Pywn///yP4ADpX7OY= - "]]}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], - AbsoluteDashing[{2, 2}], CapForm["Butt"], LineBox[CompressedData[" -1:eJwVz2s0lAkcBvChmXYrbDTaKF1Oa9J6Z14KZ7Ty/8e2UhEj19JOKC26uGzu -bTF1pEguu5TklkRN5FI7bQ02HZcuk45m0cWUmRhj3lZS7Jr23Q/Pec7vw/Ph -WRFyULBHn8FgeND5vw2Ld+kxGAQqN+cJmCdKIehkargX7VOa6QSTnFKoPlz8 -sJS254zwJOdcKXzv3V+0QY/AAu2Cn4XiUkia7bcmXZ/ATf7ynsXyUlAd8gid -zSLQ8c2NtIbVZdCy0andYC6BXt89lKc+LYM4yuykGZtAj9ZkH6d1FWCV56J4 -s5rAYpfA+ICKKijbk53t5ExgknJ7e7RfDRjGRH5FCghMO+5xuDFdDO2PmoQ9 -4QQqtrbN6F7Wg2vQyi+YKQTey3vQVHutEQwddKmqswRyWteUZ1jfgq4tER0h -lwks0drLXMz/AI+cqfD9twkciooMnlnRAkssJ+VWTwj8kGXw6rq4DeqHTS/E -KAmcVzBsyd7RDnzVfXu/KQKXike5KtcOMLBTlqiNuOjf/fGSW2s3XKrjBBuu -5OK9fQ2NKT6P4VRq7+ggn4vvelI3b7r3BEJFpp6enlxcrmLW2uiegp4kgbU5 -hN7fl/mz1j4DDbhnTcZzkV15u1Dc/BcUTzhF2J7mosfewLt7OQNQNHXha4ty -LiZLg2LmDbyADH5OYflNLr6YWFgSs3EQ1lddOtDczcW/D7Ukph9XgHOYlWmy -govB40UK44HXwPJ+NP/RBy5Gn9ngPTB/CKTxrEHJHB7afU4432SnhHbtlV8C -lvGw4Zj3wn+FKjibHx0nWsvD9zppRkX4W7iSWeW4252Hyn35p2IODkOjJKpH -vouHvg0LjuzeOQIiM7+W5zE8fBUh9I+2VENZx9UjuRk8lDu/5pmo1ZBexcl9 -VszDqNOJRk7ZoxBw1zaxsY6Hklx574SFBhI5NTau93n4g3VerPayBoR3Nq4X -9tP7hF735WZjkF/pac57x8OwkWhVrGgMsiRJWzOZJEoz3W5UD4xB4ly+4Ogi -Eg8NqZUbOFqorwmxWsUj0auCExwYpYXriXU+O11ItChsUD6o1MJUYeQ2lwAS -KSPt2wN9WnAYv7m0bT+Jju6iFwUsChyTVrnKjpGY5iu4NW5FQYaAyT/zG4nE -Y33jh+4UXAhkpj2vJZHfWTcyK4yCynMFF/+UkrhUOuy/JImCT9b5WTt6SZQk -MzPPZ1NgrGmSHRsh0YixRDRWQsG7ov2dA7QtXFP6bC5SIHOzbLNXk/gpo5kR -RzunIr9hhDYz3q59irbRjthfvTUkThvUr55VRsHcLpudKygSW+e4JRtWUKBf -Xfu2ZYLEdec6jfUuU/DaN3TQ/AOJ9tZ3nzvTbp21uC+O9nJT19QU2kd/zOyy -miQxpP8gfKStW/jTtZyPJLKPHOhWV1MwfZwTK5wmMU90xryrhoL+tS8jJbTd -He5sYdVS8LuiIIz9D4mC6+u2I+2E9Sy/DtoOobmjTbQnJ97wbWZIXESJHS5e -peBZ+XnbTNriWF/LPtpNXj7fDtEOlH2jMblGQdzVtsWFOhJl267on6C9PSiJ -PU47XJUnkNK2+3KN4dbP9F8nk+RPtNnNI6wq2p0K5xRbMQXvQ8t0n2l7+dj5 -RdD+D+/aSMk= - "]]}, {}}, {{}, {}, {}, {}, {}}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{14., 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - ImageSize->350, - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - Method->{ - "DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{14.000000040816326`, 15.999999959183674`}, {0, 1.2}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, {0, 0}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]}, - { - GraphicsBox[{{{}, {}, - {GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], - CapForm["Butt"], LineBox[CompressedData[" -1:eJwVV3c41t8bli2jSNm83oV3EEnW53MeQpGZEZKVRFMZkQgZETIKWckohJAk -mygq40shVGREQ2ZJpZ/fP+dc57qf537GOec695F1PXvwGCsLC4vfxvD/+cf7 -zjbytXx85E1Xp09fueavvcqndIbC0M/iYPZP3hWax2o/WYsOJaHXt7LK3SUq -NTNWWl+wDeUi0hnrSf+gh5pqyTsjfg1WokNecVz/3ajWZHc97ro82IqAMXhl -3qxR82Qn638Lg33oObGw2MvspaZ0kPnV+cGPiGvnOQVN+rTm8zXV1P9ylxCL -W8GPz92yWsV5TX2ujL/ogJMBL1HeVotUp5jFtZcNbtg39B3Xv65l55dZbGrN -DRlHn2tNlHRoTckZlixs5YcnUh5OMV4s2iXWL56yigmC4Mphj4gqTe3+cZ9L -yVnbgI10157roY82ZRZX6vuxHcixuRovRO5rT5s28LJu2gE8bxfP2CmXaBdW -ac0o8+4A5Xvyj2xsSrVpIep3EmV2gJNupmdg2wNtRRGVbRb7d0Dp08Cd/bcr -tdX0KT97bu0A0d1yOVwZT7SRt+iI6ZcdIHeYc1Q4vUV7/x3epi5tETAUeMBg -7OrQNlbnUI47JgLX2zIdhJ1faVv0rOcax4vA+tAE96PcXm0b91VhvsciEJPv -V3s5tF/b/u9C5MsPIjCd/11c6MOAtuONL6sx3KJg8LGN0/i/YW1X+tQJI2VR -eCv69Fr/uQ/a7q3vR3nsRWFyeaj7yNmP2ifthkw7w0Sh4zb9eV7WlPYzwt0L -3TdFofLBA96z+z9pE2e8c/oLRWFf7zYGRXhWO/iBTudQnSickV8QNWf7oj3s -t2XxXbcomIndm7gv+k1bDX8nPjEuCrHlkpm0Q9+1Eznu751ZFoUh5VPYn7F5 -7f03DG4uiotB/wsPE/WbS9r5h4UbfzLFQEvUSXJMZEX7H/Hj9B8QA3n1Xl37 -mh/a9p8fbGG1EoOm0jOJS/6r2tUVQepcx8Ug2qpPl+qwpi0UcMCF76IY3I8m -X8py+6N9GsRiBOPEwKVhWUjj5ro2uadqROKhGOw/XOfZ2LAJC0kJY5d9Jgbu -XfpEHkk2bOSIOZP6doNf/qKa7U12TI0ibUP/KgZpH9t3tNA5saSvX4J3/hOD -lXQJ27BxLgx6D257yC0Oa362lRMd3Njcwyf3dguJQzD/gTHOJzyYYWBUryZF -HDqcWSxmq3gxls0kov4BcdA/0tmYIbQVK/sWXf3cShxCB6iT1mVbMYf/5o2M -HMVhub/p3bKZIPY4rdHb7Jw4mHKUfnxeIIS5XaJw910Uh98TZVU+9tswIefY -TKtwcfjBuyy0ul0YOyNn326XuuHPvvArLnc7JsnbYjeaIw7037dyGT47sBdz -cnOOxeLgK/xlf62JCEapXtnh1iAOejad34fExLBRvUSPMxPiYMDxLsxQRgqr -0iKLtnwVh5U4mvqrXdLYNZXHz7f9EAfJXh+7hIMymCbhHfUJtwTo+iusqwwR -MCERrwFeIQm49uZDOtFfFpvlZ4t0lJCAlVr7DhZpIpb2W36KTVECruwNVjt1 -iYR5LdbdsNkjAYL77X28dpOxfbOmekUgAfZ8nccsVsjYjwGfPFNLCZBjsz9V -HkPFrCqbXW75S8Dbk7GPc7bRMEaRpeDXUAlQ/Rpers5Lx9hyppvxaxJwQrA+ -4h8vA6uM4yNMZklATf+HtgCaIhYTfrtH7Z4EFNUpHJ3ar4S5BKpcji6XgIzS -S7qr6juxrZ627xWfSkDF5h17G88rYzNOX+JCX0lAIvLAPUVVsCabYOz1GwnQ -cfmqptGmgp3Ry88MmJGANum4u7uUVLFXMvP2bfySMLDetxBitwfL33Fls4iI -JFwUPWirukcdC+TfUetJkISTTh9aCFIaGO23ltiWXZKgUevS/YFVC2Nd7O5w -0ZaErkpF10Ns2tjbGRf/Kn1J8E6sEzrIj2FXB6IG7Wwlgap2/TiGEObcJR5V -4iIJtuuSp3/sAmxPW6navxOSwHYlI6+7C7Dpiv6b+UGSUJ4ad7pfSBfTi5Ox -+p4rCVl4pPXRGT1MMrySTbdkA18NO/KpTB9buqj/8MYjSZCWVNPvuGSA5Xqc -FNLskATGjbZvtUr7sYtO6y2x/0nCke8lTs7bDTELm8RzH4Yl4ZhOrH4MmxHG -ove4N/ybJKwfUp6tWDuADWkahQz+kIRfOqKh9uwm2APld0o0Finw26Md+E7E -FHOUYbveIyQF3f0BxB+K5ljdmqmJuLoUNPMsmRTUHMTUlG6+36MrBTJ514d7 -AiyxyqMjZ62NpeCwPQQ/1bXCCl8dT0pwlgJCQkq60TdrjLypjFR2QgoEEvJu -XO2xwW7vXq566SMF/nn1XydrD2Ep2SGDnNFSMNfz5a1PmR0m2P/Mg5wsBas/ -Q4lej+2xWC7+NZ0sKYgQ+HVZ7OVh7IrXLcmgCimI1M55uEvYEfPSrXRZeisF -lxsePbXPcsG++K0ubp2UAkqAsrm4pSvmfh8PV5yTgluqamTm1qPYEeGXdz1Z -pcGM+wBb8B03bGi/oHoUnzTYOhUFOvgdw6yCDnXm75CGm82mNj2W7pjR9MSX -DzRpSEzieTeo4IG1i9OC/qpKg6553RkFkicGZl4CEkga9E/xBERRT2B7av7s -tLGUhpL3R8Z4TU5h5Jjtfq8CpSEmx3q9O8kLu914mOtzhDRUPEu26MXOYeJL -d9K4EqRh6+bIbdXfz2GCDop1uvnS8DXzj5qppzcWm+Bj7FwmDYxPe2JSlX0w -7vbad0E10qDg8vXk0iZfbJ25j+XJK2kYbyK47Kr3wy66xiUODEiDs/Uq3nH3 -AraS0k9cHpMG44z8yP/S/bGv/5z0lVak4f4h94CXORext//5xxRIyQDv/ONd -PDsvY1acTRJP5WRAik1X77N6CNaryVE6piwD1kLvBI3HQrBneYk9EgYyEF5r -cSZpbximOzTorGEuA12anawcLFewBj7pRRv7Db7UC+tb2q5gVb7FwklnZEBf -J6qL7haBKRXPFzzwlwHRXt7VjxCJFb9X29MVJgNZXrEXL1OjsDv7ntpxp8qA -yCzFZYQ/GosXG80ObpKBgAJeO3HbOOzHy80zcx0yUGQTdQU7H485BmsoO/XJ -wEeR7iO/Uq5jzImUp2hKBlIaXPEvLInYjZvtfOVzMrDsYp90PD8R+7Nv2Zqw -KgP/fBeecZkmYe4D8j4hHATIDbypmFuVjKUrNaepbybAtfsHdoqdv4F1Xz3U -MC9AAJVXR0dK1W5ialqRnC6iBPhg//eE3kAKxpkzkaZDJ0CohWG44YV0TPPX -xYZfSgR40Hz4SLNvBnbmoNDHClUCZMqKvG4PysQG2HXoRJwAcV15md/vZ2Ob -HYfMhnUJYBZzWnmg7zaGPz7rk7SPAPeLq3d4hOVgdz2zG1gtCLCN/Ft+oP0O -Nty6+2OtNQHKpLZ2P/bKxQQkuzi97QlQqhV/lp2Yh/l1/zabOEoA3sruV4Np -+ZjBLruPT/0IIO7R+LDh/T3sYuw856VAAoi2ntmB2gqxsqkoumoIAZqkI6Wc -KouwHWnVPvnRBPAV3fm4s+g+ZrRgcsshngDLGl+Cnz4swYKNphqEkwkwvWKb -VPu8FJv+s40rIpMAQU0hu5K4yjFxm/t07A4BiuL9xCvulGOmD3TNVwo24u0w -HrylU4FVu5y7dewBAWgpNVFFyZVY5LNuukErAVLSZME56hFWK+Nuvv6MAOVs -qx8cbaqxOf+/PtUvCeDaFl1FYj7GbOiMRuobAvyd3NzBXKrZeD+efnz/lgDX -T7fwCU48wRrf2XOlvifAC/aWjh8jtRg1Idqca4YAwp28HnKf6zH7WYJv01cC -jCnFnVZgacTidWtuXVgggPSbkDOZhCbsx/L0x09rBGBGqjrsbmnGntnp+Xbw -ywKH6mTwqxNPsVcWjzZPC8mCzIiHXuDuNqzPkJrDJioLx8uOV53mbsfea3C/ -xImy8NdPU/5ixzNsUjnA2UFOFlKaSO4Hqp9jnxU+rwQwZMG66zZ/T2kHtiL2 -ivBITRbu7StKj6x7ga0JYtV9WrJwstkxKLHv5YY+KTswD7LAp/RR4u/yK4xv -7bof/YAs1Dwg+Awc6cHIw5av7jjJAt5+s3zKvQ+j9bW5NLnJQnpLXMRvaj+2 -88Xun6OeshC638N9eq4f064VIYr6yIJRku3diNQ3mG7l1ce7A2Thtdha8Sf/ -AWx/8S9jy2BZeFKeZnLx6CBmmT5yIf6qLPTIhPE+sn6L2SYZ85fEbfibGEzL -Ow5jjjENuZ1JsjDjb6x87NwIduLi7S72rI1+WOvO/H3yDguzP0oKrJAF2qXT -t296jWNXD76uSauWBc/GJ4dzqB+xeCN90+q6jfw4PpmITH7E0jXlAhbaZWE8 -5OZMmN8klqOSJrDlpSzkCh8kShpPYXdpPPmMXlk49aHy5wnaNFYh/qX7+LAs -3He735PGOoNVCzm4RXyQhbTJkM/qf2ew+s1dv3InZeGZxGmCIOtnrGOtjPx+ -bgOPeTslyviKjQ2fv2jFRoRHD5ZdqVHz2HTfxJbz3EQYz4vzLtm1gH19YVVw -nZ8IXSZMJ61PC9hqrVrvCxEiCNVdCsp0W8LWK+8dm5EkAhRl3N2stIyx3xf9 -zUEkgih+fPDJphVsa8YaRYdBhD1mZN89LT+wHckn6xyViaAfXDJeX/YTk7w2 -an5JjQgNJZO3FwpWMfnAxsDHQISx09SETQ/XMHQ47D+mNRE0z8zJDVr+w4Yd -on122RMhm/LjnZMRC+7jmCCi4USEJN6Ml2iBBS92yT6i50mEd9/59hlbsuL6 -RwtYjM4QIfThQ0f2LWz4mFtJnpk3EczLK91QHxu+3aN21j6ICMQRAxFfLw68 -3LMl1jmMCB3dhWzbjDlxo5MdSu5RROCMsMy+uJMLDzkz4HsukQjbxE7HCm3n -wb/4LG66WkCEfIo6i4ItPx7p9ys/rpgIthJ5vC3hAjjBn2V/8gMiBGmc13du -2ILbBArEZz8hArfPPg5LmiC+cGm7cn4jEZ7GnfonPyyIxwZLvi56SoSBV3uZ -3IlCeEsoTfxRFxHsQvstOLYL4w5XlBtq+zbqXXqiUv9RGP8Rru7cPEgEq/bF -Q2U123HGVYO7L8eJcKDNT+RWsAieGu+q8nGFCMNvZEuyLkngKgmebz6tEYGx -97SjYook/irRy//bvw1cR+kgW50UznozuHGVhwTqBysJVGECnpUS4bIuQAKV -Gw9ih2sIuHpaLDu7MAkev1CiUt1k8dMZ6UZbpEmgKpqRk9xDxLmz7nwTJpGg -ozmqQS+BhOdmFyaIy5OAheVMzX1bMj50p3qAokICw9WLTsObqPjewj5XbQMS -tJgbHmA0KeDvi95y6B4gQSm8/D37jIb73x8r3GdOgmYrvUO739LxsrK5uYP2 -JMjfu9ylIKOIG5avJNo6kSBdxEG/xlIJn6z4o+roRoLWv9BgZrQTF3u0OdDz -DAkUj+ZH12Ur41XVgtJnvUnw/T/CtIalCm5aI9ri408Cic4q+oLALjy8jsoV -EkaC2yPCNruzVPHvLbrJKSkk6PXd/f2rlDoewoon6WeQ4MV4xBIbuwYutFcj -cfk2Cfj231MoW9TAVduUrh8sIkESI8KX84sW3s5Oj9+QgEAsqDrlsqKN2+hT -48orSSAa8i65iAfH/Z9JXhOo3+C7FDfVJA84D5doTEMzCSYHRNY/twKevm9b -9Kl2Esg++rLw2lUHr+/giXrRTYKwttQnrVW6OMvLH2GR4yR4/vJwcfQ9fTyR -dzF09zQJ7kaFHiL6GeBE428hk59J4OOrJ3jGeB+u1zURrLtMgr3Vm7T2CRri -b/g/BC2skiCCfnDqLIsR7m46fCnnLwmYjrIGYatGeHRP78V1TjJUt6UH1LGb -4OJbXwWU8pLBhDb696aYKV5i/tzfYSsZvnW7vm1RN8O7/2vwqxUjg7L9gZCu -l+a40Ovi834MMiwkUsSvnLPE84TvnqMokyHTKvASG90KV7W+4/V6Nxn0vkYV -nv5ihdsMpJ5RQWT4ub+zgCfMBv+0I/n0+F4yZNGTBp/ZHsL9D8WfSthPBlM7 -lrbwPbZ4+lD4iTkLMuSujfPtEbDH6WIhnlk2ZFAVuNnyivMwXm8X6GF8mAxf -AmpF73I74O+Hz7kXu23kI/TxylUFR5z0ztHV/QIZPk0Kdhn4uuBVUvYu2y+R -4e3QsvaAhCtu4Gjt3BZChrHrj5rSO1xxjw8HHIkxZDim+kG4crcb/ktm35H/ -4snQ8saGL+yHGx7jrOsQkkyGkM6ya6GNx/CScXX795lkOFj27RPp2HEcI6ra -xd0hg7G7bt4hPQ+821XJVvsuGa6/Xns9SvfE5ycoNukPyHDZpJdFcvtJXHVa -6KBNKxkeEf5QR+3O4qntn1pOPCfDhTTtwKNmXvhafr3y5VdkaN+9I/nUqhfe -fNRdsHBgo1/9VzVNnM7jpL1aofUj5I3zejrkkZQ3HkncutA7RgbPp05S/RPe -uPH4k95fn8lwBq8gn7vqiz9ojgeBeTIYpITSMo774UI5R8uJK2TYHZLH2m12 -AR9y5E848I8MfCFBAR3aAbjbqLNZ1jYKbHN7UK1/Iwh/Xre7qUKUAm1FN836 -nwXjtIzNSs+kKBCX9mJ1kjUEn7erEvguR4F2we3rl6xDcUuN6GA2JgXMD5lo -EnnC8GpRxzkRFQo08K3p8LeF4ZcGubpBmwJmutbaU+bh+IfqUcxahwJv4yt3 -nSdF4LopFaWeBhv2re4QsR6Bc1sfjksyp0Dh+nxEbk8UfqOvzHjSjQJPSWKN -xjPX8J8VV+pXPSmQev9qZCRPHG6faMvgP0sBDY3Djb5q8TjBnJVPLYACdZGF -rg/sE/ArSoOBRsEU0OcaFWOyJ+LTAiVfHK9QIHl96XBUVSJe0mX9MiqOAvtZ -Ff6bpyXjW0ppWplJFCCwJvxJWUjGz8f+Ky5PpUDRZZOxfc03cPUDRTFv71Ag -6O5anPiFFLyt448hvXqjfgw/EWSVjssV/vcE1VGAS/xX1ZFjGXhM1F0Fq2YK -bGFn/jAMzcTNDcx5gl5Q4FtE02fh0Wz8IYUSkNhDgSPe1dZL/Dn4Do61mYLX -FKAtppy1rsrBR5/mdXS/p8Aip67zje25OMrzV5+YoAD3O5eCf725eG6YSeHP -GQpQO2U1N93Iwz10fkYRliig432PjUOlAF9qNNp3nou6oUfOXvUfLMSN323b -tpOPCo8if2edf16E3/09+v7bVirEO/NPXWwuxm3Vz/p5ilPh2uxzDZGeErzS -Rl1XToYKDRVl4DZVivP6bhKYIlEhOziuRJnzAd5YkVzgzKTCnn8jBd5V5bhI -r8M5aRUqcOktsPRbV+BecxRsVI0K2t949xj+rcBJ9JrXh4AKI5GxVcedHuJX -80fZzCypQExwijx1oRr/2FrQw2dLhUXeqxw+5o9xrfEzGS8cqNBHWl2/r1yD -z0lt2mXgToUjvdc6vvLX4vu0X6yznaSC2MTtD5k8dXiOffKLlrNUMBq5pfFK -oB63TKW4YgFUaA0tlJbY04iXPJpj/g6iwiRXzN0/9k045+vHv2rCqKAQGD44 -r9eM12w1SlSNpULy1JNPyhEtuHTMmWb6bSpQ+TIO+Fu04RcK98TO5lFh2S7b -tHF7O977jMX2XiEVTFay0anxdvwKW/J3YiUVSGFprYSE5/iorEPdWDUVLg55 -3mr07sDVgBKVXUcF1tMcUktOnfjMpcfS4u1UeBcwI3PW8iWumxHyebCTCrx1 -orzuh1/hGU8Mq292U+Evf2DNwdNduOmPERPBISpEaOMvEst78IdnWYK4v1DB -Ch778jn34XzxnfuffadCo4+9XaxgP+5ekiQcvkyF2OfbWhs7+3HRWXLJv79U -8N60chDM3uDnueYuNLDKwWOVeD1RqQH8JeXx3kAuOUhfJQVXLQ7gwa6GIz+2 -yoH/p9ASj+ohfDBE6F7VdjlQeHVQR6bgLb7z9sj58+Jy8E7mw83BzGF8YuT0 -5jmSHLS4nq4vKRzF91snaUypycH6RMpe2ewx3Ftotx+3thwkjQ+6WxuP49k9 -g5V0HTkg/MlJv7/pI75iKMU4f0AOWILvWHwNm8AJXM0eN83l4PiNW8W+ZpO4 -cZtrQY21HFB4+Dc5kafwXLxQ+p+THHgnhh6umpnGu34bHSYekwOJZoeR4aFP -+GrNt1T9Exv+o1pZA30zuNmuXYKxPnKwsGJnPzf1Gf8j18gmFr1RT/aT3z9v -fMflppxBO14OVMNNz7N5zeMHc9mCnJLloN2WbdZCcgEvkjT8UZAlB5XHOT+6 -xizir99+UenMlYPzjY2G9cZLOEtq/Nmv9+SAs/5h/WaRZdxG8PWMSqUciPDK -NAy2reCh3X4Um8dykHNi7TxX0Q+85JqYa0C9HBhy93bFp/zE2TidRpqeyUHt -59ktO6//wsvXZruMR+Rgt4f5fxdY1/GRx7GbvcbkNv4rIXRO7B/O6au0L3lK -DopSH2Zp6rKgI999mt9+lwOB6kEX3uxN6GqJyN8/y3IQ9a1k6aENK6ryrNUg -rMnB8NX8Z192sKHNk/8q3dnl4czv+L2GD9jR7ju536N55IH+4egukascyNlR -n1EqIA+uFkd2t3tyosdDMQVLovIQ7vtFRcOQG7l1bU8LYcqDj+ZN+4IrfOh6 -TM3rPBV5KI7OGL1cxo9q9x0WfL5HHv5qvuVLmRJAgq05Mfy68iBxemcx1rAV -aV/e+3znPnlgK+6yLj0liDy0p9msjOVBpeus+QGSEGqspgel28hDwEikgu69 -bWjWu/tJw2F5MHkT9lrTVxgJK5/7MeYsDwSkU3TnwHZ04n71WbmT8pD25l6u -9DYRJJKj41p1WR78LMTwEyISaMj9YklTuDz4eicL8ilKojTmwx8vouXhkis+ -8t5MConWka+NJ8uD6JY4rplqGTQUeuTN1zR5kC1VQtHBBJS2P0VmNUsetpow -NOnyskh0gKtKoFAerqy0uFASiGgoE9bFSjf6Z1F4lM+MhNKOBuynVMqDnifG -nb2djEQXPo9q1cuDOuF1yL9aChLl6+bw7JUH0+FkMzkvBTTUx2nu80Ye5kfj -Let8aSjtFkq/PCwP7sPtpN4IOhKVq1BMmZSHu/1JwjufM9HQt1n/O7Py4MJV -K+f8SxGlVRGflszJw/E0q7xvEjuRmO6NQ09XN/hD5tyGTiujYe6uO91/5eE0 -83Msr6wKSu/h+PqWVQG0yu0Oe42oIPEjF0Lm+RTgkVfhsV/uqkjc375ISlYB -6u0SBT6M70HDePKSPFUB6swlDrsOqqN0jleYKl0BcneBcvOABhJPxvqMditA -pYwyKX9ZCw3b+UnaaCrA3aJPoyzCGEonPHB3QQpwe29E+RSOI4kywu8Lhhtr -ie8TSQ6ARn3s9K+YKsC3xSNCjew6KFMr6Xq8pQLYPsXSCh/qIMlONnLBEQXw -Fz9+uJ+6F0lOThv3nVMAjoDp9WcnDNBosUzqOz8FkBY6do5osQ9lnrMdnwlU -AG5LVUId7EeS/zp9/0UoQHDnjzkiZoRG21mbN1/b4PsTtbnO6ADKjNXavCNB -AfZqWxQSjxojSfHSbEa6AuiV528jVJui0bGpmT23FaBq2/RizoIZyrwnvWtv -/ob/277ZiUxzJLk74bldmQKcVL+QxPPLAkmZe89HtirAeFb49i081ui1dU6K -1nMFaNKaErDss0Yxh7u0518qwKS3h4t4ng364S4XbfdGAay/0iysHGxRySkr -JYFhBVid4jFx1LdDR8+Hvml9rwBbrI8nie+xR71BI7KMGYUNvbSWurrbAUVe -4e4Y+6oAblvUvDv3HkFY9O4zNxcUQPPCHPf9w46o+Mb12vU1BVAnKtUkWjuj -8Pt7Lf/jp4Ep95vj1M+uSLPC61eEEA3a0vmlVrOPooXqrNuaIjTYPBywJ8re -DTm2/vySR6CBfPprt7HpY0i4g5xkS6FBM/XZO+Uad/Siy0Kdn0aDQCb3I7PE -42jP2/vhfrto8Dvn9T0JB080936IRlenQdjvZAN30xMof5Ljvw/aNEBHvwVV -G55EW+edpAwNaLDrkNeFFofT6DOncLWEHQ1CW2P8bf55oRw+HYfeIzRosVov -zrpzDh0SOsMa4UqDgKDHzd8Mz6M2qQ7TuZM0YJc1Nb1e6o0uklaWc71o8Pgt -7bydpw9SViBmHPKlgYdh3KoUwxdlq1761BxMA4tdHck5z/2QlWZRnO8VGixu -m/41m3MB8cLALtpVGtjL8CTphfkj/wM7Q5ITadA+UNvn7HgRWbhOirrn00Dl -oeBvPCIYcXsINokX0eCiitJRnsLLqPE0fqynlAZ79m2ff3UiBNEC0irUH9OA -KWYoYFkUisaC2w99q6NBcee//kCLMJQavvj3TjMNRBajE9/9C0PsCcZGvC9o -wF+Ynr3HKxzV3gyYb+qmQXmwpMh9lQh0LuNuik//xv5kHvxn8icCvb/LMvFu -lAaXaZdDle9GoZqGqsDy7zRwMRMKc3e4hsC1LunFMg1mRl144vxiUQdna9Hk -LxpolDb1/M6IQ2/NegZF2ekwqBHLgjgSkOvymzkVHjpkJF/X0ClOQJ/TRjlM -BOigKktvHbJORGvjs7tCRekQzbtjtq8lCYVFzhtlSNFhq1vGxZawZMRL/+ny -iEgHGw9HryMHbiBJH/aEWQYdpOqjfPuXbyKMU+arhQ4d9mmy5w5V3ELPiils -pwzoYFWxzwaepCNTM4Z45AE6nFxLExZ6mYEc0zT211rToU5yR2rSlmw0rQ1O -r+3pEGQZZCm+9zY6O27gN+e0ET8kiuykk4NCaFb5xBN0yJH9Wyp54w7i7rGv -0z5LB+7IOTxiXy5K8Hbps/Ghg2BYvdCPTXnoTv0ZlmvBdOhfNbjPFpePWk2j -HZaSNuxfBfS9ZytERkvXvfnT6CC5lP4x+mch6k9NiZHLogNly9WmguUiNDmW -V3P4Hh3MSh9T0/hK0KmI4h7fEjr81zhrQpMvRcsKFdPXK+jQdzb3dr5pGeLw -bhRuq6PDvMyO8hXHchQv0k5/30yHB/4aR5+xVaAd9S91V9vp8LQpYddYWQWi -crz1YvTSQdPib9uA6EO0P3Xp1Y1JOnC0BkxG6VajXq21ibJZOrCMkIdNCI+R -7RjL7445OpxINXlhz1mDPBUEFP6u0iHtzuvMk1+foMUuYRBZp8NEn446x7da -dPG8xCFlNgYclF5Egj/rUEydfMQxfgb075urapZvRELOSpmXhRhQNBP+mtui -CWWwqz28JcIAo04hB07dZlRisne8S5YBn+da/fsiWlDXhyOYmhoDJFtnHUOs -25DxU9vyX5oM0DJzKTnA145e3LUkNSAG/ArkEWPvbEcdpw159AwZEHo479uo -1XNkYKF3icuUAdcOKUeYkjtQuyr6/uIgA0q/CgaZrXWg1t+qbywcGFBjdsc7 -v/YF0vmgtH+7CwMIkVZiBwpeouZWWt3QMQYMGPzWoaa+Qg3RhDtOZxlwnF/u -mHRiN6oR4Tt9OowBiIzHonP/IbXfnGM7oxgwbGAUcIujDz16v8ly+RoDSF/D -5enZfaiy4Kd64E3GxvuduqI12o9Kd02wRxcyQNPjifx/cQOIIfL+gnEpA5Yq -1wOL9QdR8drQ5y2VDEgZXypTYh1ChS3dvSl1DDB7K6nlHP0W5ZrVZuZ3M8A0 -+9Xop95RRNj1aItHPwOin+4/+7jsHbq9ozyMPsSABWq0gH7ie5T5rsCjcpwB -W9w0CFoqYyj1ZKJq8zIDVkfDV1sJH1FslMerEXEmlFm8v3HZcRrxnjyKbssw -gdmxYJL0bRrFmDpWupKZ0HmzWGY86BOK2m6VNstkgpvdEPHWnRkUlofcfgIT -jq9ST+bPf0YXmnb8ETrOBN6DkSXNQd9RTMm9S40nmfAs8xGHJNs8yr6l/tfT -iwlGmwSdVA3m0TNv+/XmACakV3n3eXTMo2HnL8GngpnwQaVbU5NrAX0zufRP -5AoTahcfyFrqLSBh+WyWs7FMMFNoiGupWUDy25VCxROZwCN1v73z+wLSYm3e -9OwmExhZoHCZvIhMv5uHnUtnwulLKofqbBaR6+g4q9RtJpwiV5jZRi4iv87z -VzrymPDRnTtr58NFFF3Nxu5TyITNAtJBMu8WUWbejXCZUib8kY7l3cS+hMoT -KBwvK5hA4tlyqlJuCbUFVUf4VTMh5v3vZcH9S2jwxD5OYh0T+HTO2v1zW0Kf -Dw1FdjUxIZJrou9w8BJa1/PkCmhjwvWeAcPNN5aQkMpaFLmTCXu61YK+Fywh -isy1DWXPBDEjhvziwyWkzicZHdjHBD19durvhiVk/KuER25wox6OkeSVp0vI -eRqL6RthgvmRxu/d7UvIu797c/AYE/KH/qhe2MAjm52uKUwxwZt5ZGWsfgml -l87zvpllQkLsvzObKpdQWXpobMgcEy5EVWT35i6hlighfsYSE5IZEaaG15fQ -a5+8uMGfTHiQEU7wvLCEZlxUBa782cgv1u3mzsNL6I9pe7ziJkUI+Cq7JU9z -CW3RttkyzKEIfM9Cep5tX0JEhU/XIzYrgmj9qcX8r4tIbYf/VuUtiqBYo+9m -2LSIjNh4Eke3KcL9E8zXrXGL6Mj8LcGroorgIOaTS7RdROEv6oQ+yCqC4aHV -rk9jCyjtsXFyDFUR6j/lJVy6vYDu57/bpkZXhBTmbh0b+wXUF/xPOE5VER5Z -TteZtc9v3I+9Ilr7FCFx8dYb3pk5pEp4nTp9QBGU9nBrPdk5h/bxHxNNMlcE -s1tHMLLPN3TmU6TYrJ0iRGblSgR+/YLqM15IpJ5ShFoFoTiHkhlky36QsJSo -CJ+mWxKOVY4jPKFekD1VEXwWT5z0rx1DJEk5tu2ZijBl+n3mfvgHNLfrz5Ta -XUWo3Nsff6NgBIUfvXv/Yq0ixFhv++u33o9OfN+ada1JcUMPT/A3SvYhs8DA -+Mw2RRAJdiRqo94NfWx+rrFbEYYtC/fupnSiB61raqwTimA12BgTtfII3TA9 -Jr9tRhG8ij72vIEydHG4R4z8TRF2ftp5Wbw7Bzm5a/LuXlSEkIA7PIP5l5De -Yv4f/Z+KkCPMmavxOqkp6J7S3e+risBCuPixVyej6X+vMGtm - "]], - LineBox[CompressedData[" -1:eJwVV3c41t8bloYQFWWVFSHhfV/vXnqorFSEolJWUhp2VqVCKmREQigrxLes -kM85ZI9ktKNkFFFpGBn18/vnfK7nOud57udz3/d1nusoO57ec0RQQEAgeGH5 -//fy0nNHHwuSQKATifk9ScC/4wc7/JaRQOZJ7/CgTgp+q7z7yRVRErQp26js -L76DqwsqipNWkSDa5F36Gl4WzmKrZuWvJcGNtd+lfR/ew+4Wfy4/VSRBO/tC -3AOH//CyCxk7V9NIELvFU9RgtBSPrRDfsoFNAp/Z9ZPWDo9wZ6IfmapHgsa3 -DT65T8txyoOdktbGJLjCl3HdeuUxvsArX+KykwRvutsbcl9XYZemDZO+e0jw -Sbhe/roCwpS+qdeJB0nQs338v7VG1VjqhGNLrgMJMn+f0lreU43nptoeV7qQ -oOV48lLXEzW4YeXd1B53EthJzuhmnn+CD24xc1YKJYFVbnVPrEcdNmgts6Zc -JUG5z50C94E6rL5P2cjgOgmepP6b0LKoxz9PTW5yvkWCLcIHJ4KUGvDrGft1 -PqkkyB1e1qJzsQETYa0rwjIW+Clau3X2QwMOT03/nlNAAkd/eZ5SdCM+pSn6 -sbyIBBeEmNkJ/Y3Yssynq/kRCW5WfAp2ojRhhXbT0tEaEryuifHi1jXhxftL -s+caSOAn9BM5LW/Gw0OKiWJtJPBI57xfb9KMi+d/B5BekmA0uKIyoLoZRzVZ -No28JYFegr5Kwa9mfDyuaG3mBxJkxw5ZSai2YMNDq50ODZJgvUZoVKlFC96w -yf2BzAgJqiWSp+4EteC/v9rnu76S4Av7Xnp/Zgt+i7R3RP4kgYrg40sXW1pw -rNXo0KI5EliIPPYSFW/FZSuzZA8JkMG5MkBERKsVq/pYwWNBMtTreI3HGrXi -2LeLj8osJUOT5IrKB/atWACKI32EyDDyqGnk5JlWfCrLsaRLmAyykyo/nl9r -xT0iEu9IK8jw66IbZfx2KzZ1r1kUKU6GRczEueaCVlz+wl3jyyoyqGkrJ5x4 -3IrVuEq7jSTJ0FbfSO1vaMU30p/5ZK4lw7UX+//SOlqx4LLzKYtkyHA38LTE -6Vet2N1Np/aQ3EJ9M/ELST2t+H1H78jj9WTwe2BpXvOhFZsxIlfJKpJhpa9g -0Ne+VlyZzGP6KpPB/J3QpMZCrL5ozK5bhQzHbcezz/Yu4Lkkh5DVyHC5yuzU -xOsFvDbT/EgNMlzREFJJ6lrAo8x0ftFcOP8sJ86nZQEvIXfaSJsMS3lXwmKq -F/DmbBSzSGR4Rp6rmCpZwHNYbiioS4Z56oHBhzmtWKPx0YnDNDLcmxEraU5s -xQlaR+OqGGTYMxv0zDi8FS+JlaqUZZMh89LEc5ZvK/acqu/z5ZLBuvrc/gzH -VrzriaoOBRb448lJijNbcZX6c6soAzJsXhFjqKzYijUjLwWObiPDifWbZ54v -bcVLbfqbskzIIL3P3G/rsxbsScR8FzQjgykv/deqohbct0Ffyn4XGZY9u7Y7 -M64FV31Nc5KzJMNRO72r+pYt2PuS3d+og2SA9Gkj6/pm3D+8YuPYITLs2jhn -aZHWjM13Ve0wcSCDi8/xuAN+zVhLdt2txS4LeDZCWYR6Mx4ofE31O00GtLKu -4F5QE97z1vKYw0UyeKk8sbZZ1og3rXQ3/hGy4Be01U2gswELbItQv3CZDBeT -ppo3JjfgwoK6ofQIMjD68zaJ6TRg4Qt0x74EMhyxrm833F2Pq9WlDxzOJwNd -ac/ArbBarO3z1szuORkqPgzXLPmJ8ZK8yc1fX5Jh64TrYXQJ47fvJUTPviFD -0NW/dmukMA433tGc8p4MHbS4bUU8hAfXVW3vGSbDa69NZ07GVuGkJ7f1Dswv -6CkYVpHpXIE9pirkR/8t8DttdGBAsAIba72cCxCkQFxo0o6Vd8vxZLz44yQh -Cnw66SDLGXiELY6dZ75dTYHL832C6z3K8PJVDmRbNQqkFQhUulUV41wTY6le -DQq8FrzU8tqtGJteIs3Zb6bAnusv6vXWF+PIyflGVzIFtp1tGv19vghL9CYd -9uNQ4EhdpMG/PQ/x+rznUTd3LdRjfhl8vLMQEwOPvddZUID+6FiFfGsBPiSf -sT/NkgLMNplfVqYF+E60h1qODQVGkx53MXbdx2pnxFGZIwUujM+Wu7rlYfI2 -468vfCmAqq778aazcedZUretPwWG9oR/N4jJxp6PpCp6AymQHe0S8XFzNi7V -HAoZCqZAtJzcyxdHsjBn9cX1E1cpsPPNnZOKYxn4nekxQf9ICjzCf+VPxGTg -oBDz4bnrC3j6h+O0WRkYTymULImnwP5na1/NXbmLt71/vGNNGgX2fpD7tUvv -Dh6SzqAk3qFA41GaWN23dBxmcVV6fSYFblOTRa6mp+PmOpsBlVwKBAzTPk0K -peNd+RMB1GIK+Cac1HrYehvb+pHy9jRSgFdsNzxYfAv7dq7Sy2+mAIQUd3wx -uIVjNX92Lm6jwIfROqjrTsQtPSV/SjoooHdX7u6rmZuYp88xkX5LgfbaFaNt -dgnYJmld7+keChjPytMez8Rjn19z7k3vKbBk25i56a14XJiFE/0HKPBX/2GT -7rsbWElk+/C7sQU9Z4U8wjziMM9JLYj2nQIavA/3n8vFYdsqoVWRPyhAyah5 -d6M+FseeamHqTVKgoiCm00oxFi/p3n05/R8F1qZ4vOcMROPPyfvVjkjowo5e -uRUbzSPxkgluJbFGFwL+aQeKtkVgpV3yu6SkdeGl4GEHXdMIbCPQ59O4Thc+ -eu5ZLb/zGm5xPlK/aaMuDFMU6CdPXMGfCEPbi+q6cLfLpczuTzheLK3x9e0m -XRidj24yDg/HvOYvayJ0dOFAqu/w1/zLuFDb3fkbUxdqL5B944XDcEuYxbQh -RxeeOb1dEZgVij9/0I1I4+nCqwfipeu3hmKl2Ilic31dCDeUlThzKQTHTgYs -LjbVhSXnRZ7XSF/CPjj07hk7XXB8qqD8PDwYz3zu/iZorwtfhdYsnmAE4+BV -G7hRjrpw/8vNKOOn5/FVB9SdeVQXLMJMapXjz+H0xVNLujx0gXZoK+OxURBW -09puYeetC96a4t37HgfifKu428O+utBZukUugxKIy7JIjH+BunAwhzEnoRaA -24xcj2qFLfCZYRy6SNsP73EvK34Urgtan0X3Pi45g18lLhHYek0XPmzLWFan -dwb3j6Qn2kbrwuczO4QSbH3x1LU3zWFJutDd5r1DMtcbb+gw1fpYqAvvFOce -Psn2wPemE/1OPNSFcTvPvMxdHlhb+XPdVLEuvFWQucKZdscsz0t24hW6cP7N -6AoHc3e8c01VFLd24bzNttW+6qdwF0/kXUO9LlQ6zX+piD6JbY7YqO9pWuh/ -OspjZO4Ediz7jV2f6kLd4Xyiq9cN+9lo/4h/pQspkc22u6uP4b/BgXzlt7rA -rh2pPL3lGL6U23zlfo8u/O0Q7lpV44qjZo5sqP2oCwU8Y8hsPYozUlItx0d1 -wUTzYljD3BHc3reyzFSACsXGstGH6h1xu4bNgzxBKjz6YDDgc9IRP3NPzxNZ -SoWyXwrjatKOuEOAktYiTIVrdfRW1mkH3KW0J9xUkgoG0+n1VhR73OWadDFv -LRV2tz51GWw5jLsf9AeJyFDhRezmuAH6YfwcvDxa1lNhbeCyD7OSh/Ar+xv7 -TdWo4CM7/Iz7/QB+fa/HKk+DCs/byLJbTizE46q7RTZTYSB42jV7dD9+G1y6 -tYVEhUJ2xA/vH7a4J/2llimbCuoDMc6fpW1wX5/MPxMzKqT/6fI+3miF+zQc -/uTuokKO3Kza4BEr/NE995ewBRW+W7jYqS2zwv0CnOFmayqoPHQ1HNhhiQeV -DnSaHKbC3oHCp4dHLfCga0ZrrgMVtMjJFvybFnjowWi9sDMVPEz0JzO3WeBP -EFTZ7EqFzFd6opMZ5njE/naGiScVhj76Pqv6vAt/uTd0O9ebCqUHxEQS9i7E -49qJwmeocHxt4z3ppp14LBhFNAdS4Vtq+b3+IjP8Lf2Dj0koFSTi89RNs03x -zz5lY5NEKmzf1Nx9Z8YQE9p0k9tJVKiWZR97Em2IwwOMTX+kUGHb10nJFg1D -rLDmtNmtO1T42x352e3QdmxqVGU+kkcFcndDk/iHrXjtjWcW/AIqZL1U0Qy6 -tHWBr/49Mf9R4V1K9aLrm7Zi3wBha3YJFfBY4kxYgAG+W7DX9gqxUO9sYPtv -HX18cubY/l5MhfLMtIyaD4BZRmcPUJ5QYb51sfxsDCz4KcPuTcPC/22yeUed -2IJnJH84bOqgwnpBG7nCR3y8J+Da8eZ+KpwXit5tXcTG8o2pbvJDC/4LDqzs -4bLxsGTRCY/PC36raRwKbWThcwWvT8mOUeHUHTdPqSEmzuvb6HVsggobqDNI -g8XAPtpsb2KKCgLXYw1KO+kYAsx8Vs8s1GtgvJA9SccvJb3OVPylgutu50Mm -uTQsaFQdKLycBq6PWb12DCp+GtcdZCdCA6MKckp9ry5O7Pt09uEKGmz98imr -PkwX6wSIBduupsEbp5d2Hr0UvL9gf0iuHA0MdyrMPUwh44eSExEm2jSQtlYf -VavUwoMkH8MOEg104r+uPK+phWXMJv7t1aUBqG0yyLq9GQeHTHg6M2mQr0IW -U43QxOYTEzbn9WmwdOrfqFe4Bg5Z7SuxbBsNrLOHSbViGrhce7I1wpAGM7+l -W8/Eq2Mll0m9pB00uB/Z7PQxXw2Pv5xULbWmwWEnF2+fX6pY9Zfve64NDfbo -zUkVXFXFNiunbj7ZTwOnNs+kcRVVXG00JdJxmAbHDyyJ8TyogqPLp8a/HKOB -jPGAifmgMiYlTVcpnaOBXex2/myUwsL94+ebE0wDjn+g14ZJeZzQNU3SuUSD -gpBvs9vt5fFfkT93ueE0UN9EuW3IX4/bA/+E742lwWnXdRapMnJYMNHfoPcG -DeKVl2tJJchiRsmfWaebNMjrTGyXk5LFqWN/Tnmk0CBEPL3gprwMPmU3YxWR -TYO+3chcxEQK3/UPEJfMpcGBr/3SMW/W4pfxM4238mkgmEu1335iLdZrn+Hk -PKDB2U2t8qKJa7D4llmlJ5U0KCzdmvRZSBIXKM2NTbXTIGYoL9ANVuGDB32t -LDtpkF6dUSs8shKvSBx/XNhNg7b84dOLrFbi4yuHrh55TYOTtOlvorriWO3v -U43ujzSYrc3R1BVbgV+wjaN1BmkQkCIxpHNVFIf4PJm68okGiaRf7teFRXH/ -WFkDjC7k71W4vnulCE59l+Zc+JsGw//eSqTTl+Od0nJtwlM0GDW3F4uqE8Jz -e25Qj/yhQe2Qm2SEtRDe3xIuuP4vDRqyhodjzi7D0hUe6VeE6BDzTupHzeAS -HJ2wtcdZjg7lL0NebVwuiLd0EVur19Mh1Gjlja/Fi/A3MVb+OkU65NwkZek5 -LMJmoVoBXSp0qGL0Uu2rBbCw91oZ0KZDmj7hW634D5X/d/18MokOu0Me1jlE -/UWuo8KfJyl0OHtoz6K8f/OowfFvaQGDDjUmQZPzI3PoosVny3VAB49ZSdGj -PTOIEunw2NeADp3XZFx+HJpBfU3vNnRto4OIDam0fuAP0oOOH+EmdNCD32nK -v6fRrE7F9ck9dBgqaPG8rDOFvFdca+08QgeTcmfp3EW/UYS05+hhVzoIabpp -uaf8QpkbbEW/HadD4K5Vh5jsX+g5S32HiDsdvIIint32+4loR2pbDAIW+j8n -O/5Y7Acyc8/70hFEh4N2UwFej8aRc2CMyOHzdJAl1UZ9cBxHN2IOmwaG0OH6 -vMLkkbPf0QQx21wcRYddby48wxJfkXhz/4h+DB1eK0XOZZ8fQ2rPm4U74ujQ -FS/k6Pt9FO39ctNkLJEOcso2ZnGvvqAyKVqzagYdPk5ff8ptGka+p080xT+i -w69LnMI3ikMoKsByWKWSDpRL89unSwZRdihneVEVHbRWfUyjmg2il8nLjdtr -FvT6WbPqZfAAYjRlNi5ro0PQIQOUv6gf7eq+9vlGOx36+qJLo7M/Ipf3nkIq -nXS44/sozWDnR5TwG4y2vKTD5kWmIiNpfWhKqbfhTB8d5O/8i08seo9WadV9 -WjpAhxRRe7aR9HukwcxfdmOIDj0JNkVC53uRzU5/wwdf6HAR77EK3teDyv3X -Ngz/psNohMjZB5pvkV/XznpbYQY8JVt2zex8iUTndeKqRBkQuCdmUfjgC5Sq -vspBUZwB5U3xpUJnX6D6oK65QQkGnH/nv6Sy+DmSUN9Hc1+/EHeMLvrF6EZZ -FizBbgUGOAUq9q3r6UKsINkOujIDHr4vov682IUOd75zm93IgMKo/TmXX3Si -+4H2GWEkBlxxO1MXHNmBtmTre4xQGOCnkK+/ZUsH6urYsMWMxoCTEu1uHwaf -oT8bh96uZjMg/vmONKnKdmTYcUzitgEDdtC2Jo2GtKE+Va8LxdYMqBPvsA6K -aUJeu612S9kwILveO89avgktC6DL++9nQNtGloJVfiPSfjZVrneYATdcfwkm -Pm1AAf5B482uDBB7XOC2WbMeiWXaIS03BqS2U5evb6hD6e16EddPMoCkE/5w -yKkONaos0rD2ZICcuqXjx8xatKY99HBfIAM6UobSr3OfoJxpF+2t5xjA6f/e -c3CoBnFUjGezghlwfUL/dk10DXLwE7npFsqAA4IzxdSxalS44Xr7ZBQDyM+T -eH3HMDI6k8gXu8uAqn+jGi0rH6PM7G0SzpkMqJ+vGbSOrUSCL8c/VWYzoEkk -naEuXYkQzSTaNZ8BeV8b7rurVyDazz/9tSUMGFkr2HXJ4RGKVc5+JPeIAXev -5bYqTpShcfM9ER4VDJjFf6DoahnK/y+ProgYsC5NwinhcSnacPJAeEAjA+xt -3H67UEtQcIqQXWczA/6dExKueVGMeluLKRptDDi1kqb/1L8YJWquePeigwEb -+3e39zQUoZXDVdqUtwt6/7MVX+r9EM05KnR/HlvQ0z9b5bZGIdof25Kj932B -P87dI09TCtCjGt+g+B8M0Hqw5mmoZAHyVHq2ceskA0JYk7vtl99HI73n/VL/ -McBfROe/YPE8ZCimtXNiERNi1tHWl8bnokzea2WzJUz4ry4tTFYxF9knk1v/ -LGeCt9T1nyase+ilzUd5awkm3EzyT2Rdyka08Mif+WuYIHOqUeydXDaKfcRu -FJRmwseXv6wdSrLQTqlY9wfrmBDt1xw4OZaJ6roNakU3MkGjb/udfV4Z6OGu -TNcnTCZ4XB+dWtOejvx2EhM7OEwwPrw4LNM/HemZvbz4gseEZ7aCB3rU0lGb -yfLbw/pMoMW7uRqtSEOftp3oFDdjgsl2DW3nwhR0f2voocRdTGgqVtczUkhB -Xgapo8oWTDj5XODk3+hkJAAdS+l7mQt6zsQ8OJeE5Lg0zgF7Joivu2ia45+I -+tg7GwcdmbDijVD8/b83UQ7LxerUESZsUf3bti7sJqIxEk9dOM6E2uJKJJSS -gHZT5u7meC/gXdBr7+i/gULU60R/hzOhiz39pbwrBpmq9SaevcYExX/PX2j6 -x6DVGyc3CkUxQbl2c9Uh5RiUukED5OKYkD2dYzniG40q5CO84TYTPKWLORy3 -KBS8PmtRSxoT8gR2bXDsikSG61CU5V0mOHzrWHaVF4mey4zfc8lhwjXJlw23 -ZSPQN0mr3oiHTLA2aXfSn7iCSiROHpcqYUJk5fGd3Z5XUODqsKm0Mib8/hR0 -4/fPcLR8Zfnq4sdMkLKqEiqauYxURNYbvqlnQtzF59NYLQzZCAwWbnzLhIah -o8vUP19ESQpTI5d6mOBra5jjGXUR9fBENva/Z4LlB/LVQ8yL6LA/OTl1gAml -x26WTEdeQC4/gy5Lf2VCXZDdnWM7g9G9VdFPfL4zwUihw2pEIBh90cmY7/7B -hM3ODivS3c6jk27NXtGTTFhqv+OQu9E55D241l5YgAWe8kZZoQpBqExwU/JR -QRZoq8ylxCQFomkl3sv6JSxwUhFoWS4biALtHM0uCrPgkeWBWFH5AHTxZSFr -VoIFzgXEDwr4oZgmo9VfN7KgKF3Sbf0Xb9T1ab/ZDg0WPAybvzx12RutWXrq -cq4mC/5Qn+qmqXujRP0b80dILDBI6L+he8ILpVf2jbxnseBe1NnqMGFP1P/6 -lyqfu1D/yyqn/hIPpDq1zD6Zz4LlnbbMVgcPlEPVfrnPgAUfVuafUa92R4X3 -/Z907GDBot32wZHrT6Pxloh5nV0sENI+XRt19RTSHUljRZqzoDveT4k/exKV -bmwoNLFmAYP/UP304AlUlSqR/OQQC1ZMnBJ79fw4aonO9yrxYIHahJPte5Wj -yOfc5qPbvVkQM7NX36TQBSmdyN//0pcFER0Fd4W5LsjHKF9/OpAFyXm/bh84 -cAQp/c1byQtjgQxHfmZZmRNqHdVc/DScBWulLga8t3BCvm/yJu2usSBgX8yX -ou+OqLUkr/d8NAsSFhPOmhRH5OuWl1+bxILBdw/Mt7fYI2VbzTSr2yyoiWh1 -/e1tj9oM82KH0liwtDF5qbXywv6GPH+hrIV+B46sW/33EGp7nWu04z8WZFsJ -T2QmHUQbDHMHumpZ0OOVWBVqZ4OeUje9cmpgwQBtb2/Zx33ITzm35XcTCy53 -zMraue5DT+fuPZRqZ0HISCr1VdBe5Fd87/z+1yx4cWZtCrXGCqnc0fAafbug -j2HzRWKfFWqPuucS1MuCz1KxOw6PWyKV4/d2pvazQK7OS7ta3RK1K91b1z/G -AtnpTe5vCyyQv7jGSq/vLLBR8lq/1MoCqc7lCC75yYIn0kn607PmyP9VzsjG -KRYUW9z+JGlhjlSjch4dW8SGnqpQ6YMKu5D/bLblj7Vs2Pt3JKwpxwR9+/pj -p68MG5JnTzXUq5sg5z6e8awcGzwKbmL9PGO0q76Lt1SJDc1VE+YhZUZow/W/ -G2U12dAZSXf89GU7unnBRClViw1ikaIKV89uRyu8b8ipkNjwOzorZLfEdjRl -o7lSm8aGs0/D5tYYbENtG/ZOgx4bvsQL3T1ZYYD01975WQ9sUBTP4AscNEBl -QmNjplvZIGLwZ/ERAQOUPnbho5UxG1xDSZ+Cd+kjn7KCFtc9bBBMn1GU/7sF -KZguvR3twgY7T7MV7624KI5nfnPtMTbsLlG3OtfGQctJyTFJbmwIj9i+qtGQ -g35KUsIy3dmQY58uJ7+VjRp7D54uD2DDwPtART9bJuJ15Bzjn2XDqchzHZOD -DFT05KfTk/NsCPUO7qr0ZKCUnHCbthA2DNa8/m/oBh25e5To90Wx4eHxxfyb -P6loyOkf90gMGyxVE4xXXqei/XtNGV/i2NBVEPTrjDYVbef2af5OZINSWVXa -79O6SG7pijXLM9jQ9Kzqz00RCqpNdPpEesQGFVPrn7Py2qgk717UlQo2lG5M -jz+UoIUyq74yBh6z4XmR8DvWai0U0nfmckI1GwKDt19VE9+MDDUiNOab2bBy -40z+Q5VNiMHp7NjbxgbJ3GXiyYUaSM1Myv9BOxsyPsc3ZXE1kJB7erNT90I8 -cLl+6oA6anpUcrylhw01Dye3XCrZiMqb/0iofmCDhtZFP7fdG1HuO73HZz+y -4Xxt6hXNMVV09V+TKOUTGyYp/rKim1XRDqPe+ze/s6Han0ucJjag9pdLvzsL -csBU1bdNXEcJoWHTm2gJB9is2DdH6hVR4cz1LTJCHLjcB2tOUBTRdQW56FZR -DlwzYd4+v1oBmbvoUHTXcmDeTbTVbXwdAj+vN9ekObD4RuCM6al1iHK1/MKQ -LAfmvhvphX+TQxKFBl2JChw4JPhF7seELOqe2Ov1T50DudnU15aKMqhOKGWd -rSYHUt8ZffpTKI1KZD/WFmlxQHFREy8fpNENvtsaFwoHnOcvvBU+LoX2hp4v -beNw4L9X3osfda9Br9fcm7q1kwNX/U9q286uRpRJWxs184V9iX87ktNXo6uv -RCuK9nBguPOyZY7RasRPOh3Quo+zMF+FyX+SVqG7isz5OQcOKIyxWlXzxdGs -wIjdFWcOLOVEXHdYJY6s+pPQ2qMcEF7jsSvfTwwJZf09r3OCA38FXX009qxA -JzQbBO19OTAi9l5FW10E1Yv6OY35cSCnQn0bNUMYKXzdVOcXuMCXiZJjt7Iw -6vwvMjQmmAOFgrS9BWrLEYNuvbz2Kge2dc9Fuu5chhbBoJhaGgesyz50Ny5Z -jPYrJ5wqusMBmbDF59szBVGJoPEzvUwOxDOdAyoMBZFLfX70vlwOiFpKOEpF -L0Jtpl6SV4o5IHalc8cYUwBt1NrovbaMAz5jEgMabf+IcwtT4U45B3oeMyjF -m/8RlA5OQiXBgYmnccvov+eJBGtB2bFGDhBzP66xc2eJ74wSf78WDhgoHIjK -kJ8ljGVc3i55ygGdLO7E0xszxOzb5mT5Lg6UWqvd17r2h7C3j1HY3bPgh0D6 -8O2EKULTTUm1aJwD1T5fo0LkfxN/3dp0JX9xYLdnseID9IvoPuGn7z3BgVia -Jk5y+EUEneo4xJjhwAbJEseI+z+Jdo/gW5WLufBZtkl+yd4fxF1PrXvrlnHh -U5T5mMmSH8QZr9dlQcu5ELbq1pLVJeOEkg/5uZ4YF6QFnLuWyYwTHn594rVS -XIg6YZOR+fErYegfIa8qywWxXOkX9VZfCbkAllboOi4oNG7acL5ljHgSGG1i -pMQFX4+Sg1eIUWLNeQhp3cSFAnHVt8XVI0R5aPqfbh4XSqynjdson4iIMLPl -9C1cWDP+95Jm8xDhcHlaKkGfCy82BC/2dRwiRK6Y02wMuTAuI5f1IGmQOBgh -cLpnNxews5x/tdIAQY68f5a/hwujkvM5cQ39xNIom4hUKy5s4g//Wnmqnyi8 -/iDX3pYLmgNGjwZrPhICcfaDg45ciIs3uqcV1Ec8j1vxa/sRLkxnLXX30ekj -cm+UL8o5yl2YP2vJtnUfiD0JqxSPneDCXRu0LyH5PZF5q9r2qw8XOky32Wgc -7yGM0pWeTYRz4WznllGZs6+JT1k3B02vcUEk/PnmT6KviZB88Zm0SC7QVk0U -oJRXxJOyOVXTWC4wd8S+cqt7Seg9fR2QmsyFlPrtjeWaL4jert3Rv25zAX0c -eN/X9JwIet2QZZzOBZVXr/hPXZ8TlQMlHT8zuTDc/cWsq6CboM9EqxkVckEw -VVizaEcX8fyfEC/lARfoJ0lDilOdhOfS8xY/irhAfaQZtSazk3iw6mRQ8iMu -CEcujfIV7CS01E26vldzYWqpihhOf0aoWC06l9jNhQ85Z3f47G0lntj6xX19 -wYXtW7gy0q9bCPvD3+8ZvObCU+c/yxYdbCFSj/d2j/VwIa0x1/TS8WZC7kLF -Jv1PXFD6lze08U4jURFG3pIwzAUd2dU9o9RGwiYix2r0CxdIvB3leU0NRMLN -+PPx37lw0KH3+bepemJ1oceLkWkufBRJjko+UUc8KB7+ojfLhZu7znvqitcR -uyoOC9yY54JaZjA++7CWiKjbuVlPkAffV0rTJOafEMvfbboQK8oDR63I0kM5 -NcQ/oX4trgIP2GHU+/dDELGst37miRIPgvw3cxfsSYgX5TaZqvBAdvV/5DZr -glA46OG8X4O38L6fvJmrW0XoPRBI8dflweUoO+8OsUrCMHTw2CI6DyKW++nC -tQpi1/4m5hUmDyLXZHD0RCsIuyXR3Yk8HpQprNIpkigngmwURcsNeXBmbFP4 -Br0yIkR78ZstJjyQ0Q/Iz28vJSIEP2c37uCBpkOto5NDKZFyv9DglTkPbKzM -hKiRJcRjAb2Ayf08kF9xc4vOfBExc+/gCO00DxRq9BokGA8IwXPwqMqDB9NL -9kF+83+EiKVq6DZvHlhbRGod1vyPkJ0fVbLy50F6QydPYqKAYFkE2nhd4oHI -uLbhTEE+AWqH1WZDF/g6w7m4TSWfMJ41+H0xnAcNGs7vtifnETZZItGxkTzI -2XrnMTMulzjz51bjw5s8KDxnVuR2J4c41342np3EA2/yJReBzTlEWIaDU00K -Dw4rjod/KssmEnZu+tdxZ6GfTdvf+b3IIsrulDPG8xfyo6LCzmllEr9NXmXp -VPOgiD/gvoR9hzijV6p87QkPHm36fuvkcDoxoxt3+3MdD8zwjXe7b6UTAut3 -x6c386DmasHJpr9pxIpvDSES3Ty4NxrFVSu/TVzvzxQ4/YIHB37+GFyrfZuQ -eHUxqPUVDzJ66rdFZ6YQMtV63iE9PJhMWdE2kZRMqMaWOU0O8eC45CG3bZm3 -iJywGx/2DPOgJUA/x1jrFqEZ6Hngvy88ONl60eJcWSJBdtaxdP3Og/rYnjXW -nTcJHiPb4O00DwYKTtxJUUwgrN7GKyNRPpDcbCTDpeKIV+1et+XE+RAo5viC -QcQS+2stZM+s4sMtkT2XLx+JJezvi60mr+XD8bfK5uOVMcSJc6ECdxX4IPgz -hynhF01893QK+qvEh8v+gizBzdGE51H96f0qfBDWKksvRdcJP/P575IafNBD -O9fuS4wiQjb4fAil8KG7o0yZ5hZBCElbHuin8uHGldIK9qdrxFVRyis9Bh9S -Z+hRBU7XiOjfY+1THD68k0/IKDpylUhpcEbHtvHhms7qbwKh4UTJcavbO/fx -4cRdbVKteihRLVjmMm7LBx/bzWftK0KI1iRpctxBPliekavn7wwh+lvePnnt -wIe/hreuXgm8RKze7DDsdIIP+tu6Fmv9uECsr33ycNlpPnTyLgZGxl0gNA6o -BuZ68MFugOPxinmBgGufxb778sHhEYk5HxpMnBo9SQ24wAfuKvMh0dPniIBL -z+bWh/Ch/4qn2ZaOs0TYOkoDDuODhJPOjv9oZ4nbO37bLI3gw0p2zptFQkFE -W37AuegEPohctc0qeOZPbDpxuTk7f4GvArWaFYM+BG3JSKxJIR9+yokldXv4 -EJBienDsAR8UXFhe3xb5EDZtYt8pZXxosLRt/67hTYRp3VhDVPMhXjLTuifa -k4itm+g9XMuHz9suxMyRPInUg/tyBBv4wC+RNZLq9CBKI+Q4xq18mPfkK4rJ -ehCDY+mHu1/wwTE+Q/zL2dPEeIjgJt/XfJA6sWR94ptTxOx6558y7/iQbZ97 -PY11ipDYqR56qG8hf3G9vI/ASUK/oCBv5AsfVJc8jThaepww277SO+IrH5aW -x4yJaB4nbHrd+aRxPhhWC/qF3jlGuIvROrwnFvTeoCZVn+hKBGXF35Ke5sMR -xcrjJ2Vcicv8KcfKGT64fEx1K046SsS+sNGym+eDQWSM5xXFo0TqycqJf//4 -wH5zWak/24X4H/+2Qd4= - "]]}, {}}, {{}, {}, {}}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - AxesStyle->GrayLevel[0], - BaseStyle->{FontFamily -> "Times"}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameStyle->GrayLevel[0], - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - FrameTicksStyle->GrayLevel[0], - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0], - AbsoluteThickness[1], - AbsoluteDashing[{1, 2}]], - ImageSize->350, - LabelStyle->{FontFamily -> "Helvetica", - GrayLevel[0]}, - Method->{ - "DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{0, 30}, {-0.2178017478481, 1.2357930531487291`}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.02], - Scaled[0.02]}}, - Ticks->{Automatic, Automatic}, - TicksStyle->GrayLevel[0]]} - }, - AutoDelete->False, - GridBoxFrame->{"Columns" -> {{True}}, "Rows" -> {{True}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], - "Grid"]], "Output", - CellChangeTimes->{ - 3.6227616610341873`*^9, {3.622761751786191*^9, 3.622761783086574*^9}, - 3.622761817461001*^9, {3.622761942937003*^9, 3.622762035798162*^9}, { - 3.622780807156261*^9, 3.622780807475968*^9}, 3.622780895486866*^9, - 3.6235549127334023`*^9, 3.6235549605463676`*^9, 3.632018651895236*^9, - 3.632064119900522*^9, 3.6320641803128843`*^9, 3.632064316422812*^9, - 3.632064520708897*^9, {3.63206464456371*^9, 3.632064667987813*^9}, - 3.6320647431047583`*^9, 3.6320647847323847`*^9, {3.63206960551151*^9, - 3.632069632831252*^9}, {3.6320697612109537`*^9, 3.632069788241972*^9}, - 3.632069983651532*^9, 3.6320700158402157`*^9, 3.632070338160265*^9, { - 3.632070369320245*^9, 3.632070390305233*^9}, {3.632070426718523*^9, - 3.63207047061552*^9}, {3.6320705072857533`*^9, 3.6320705253475723`*^9}, - 3.632070576117486*^9, {3.632070611521137*^9, 3.632070671388166*^9}, { - 3.6320707329265223`*^9, 3.632070755920149*^9}, 3.632070838167204*^9, - 3.632070890820634*^9, 3.632070982927902*^9, 3.632071174667068*^9, - 3.6320712201920156`*^9, 3.6320713910618677`*^9, {3.6320714440045853`*^9, - 3.632071474720243*^9}, 3.632071579689601*^9, 3.632071787404614*^9, - 3.6320719680480824`*^9, 3.6320720223617*^9, 3.6320720985392427`*^9, - 3.63209533079461*^9, 3.632100930299376*^9, {3.632101408516047*^9, - 3.632101425700108*^9}, 3.632101494800438*^9, 3.632101530477899*^9, { - 3.632101716977216*^9, 3.632101740782269*^9}, 3.632101804478817*^9, - 3.6321021977778997`*^9, 3.632102239343174*^9, 3.632102542031672*^9, - 3.632102628017846*^9, {3.632102961635336*^9, 3.632102980328308*^9}, { - 3.632103137982574*^9, 3.632103154597677*^9}, 3.632103199255734*^9, { - 3.6321032524085484`*^9, 3.6321032963845463`*^9}, 3.632103555377936*^9, - 3.632148005188685*^9, 3.632148144271183*^9, {3.6914609207155867`*^9, - 3.691460943633375*^9}, {3.698168637970812*^9, 3.698168659727675*^9}}], - -Cell[BoxData[ - TagBox[GridBox[{ - {"", "\<\"original\"\>", "\<\"simulation\"\>"}, - {"\<\"A11\"\>", "0", "1.3588746479825233`*^-26"}, - {"\<\"A22\"\>", "0.7`", "0.7000000000003218`"}, - {"\<\"Kaa\"\>", "1", "1"}, - {"\<\"B11\"\>", "1", "1.2357946920021134`"}, - {"\<\"M11\"\>", "15", "14.928824397555484`"}, - {"\<\"M11_mid\"\>", "15", "14.850184065703333`"}, - {"\<\"B22\"\>", - RowBox[{"-", "0.15000000000000002`"}], - RowBox[{"-", "0.21780205009476195`"}]}, - {"\<\"LL\"\>", "1", "1.1935853204300138`"}, - {"\<\"LL_mid\"\>", "1", "1.5185748104731847`"} - }, - AutoDelete->False, - GridBoxFrame->{"Columns" -> {{True}}, "Rows" -> {{True}}}, - GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], - "Grid"]], "Output", - CellChangeTimes->{ - 3.6227616610341873`*^9, {3.622761751786191*^9, 3.622761783086574*^9}, - 3.622761817461001*^9, {3.622761942937003*^9, 3.622762035798162*^9}, { - 3.622780807156261*^9, 3.622780807475968*^9}, 3.622780895486866*^9, - 3.6235549127334023`*^9, 3.6235549605463676`*^9, 3.632018651895236*^9, - 3.632064119900522*^9, 3.6320641803128843`*^9, 3.632064316422812*^9, - 3.632064520708897*^9, {3.63206464456371*^9, 3.632064667987813*^9}, - 3.6320647431047583`*^9, 3.6320647847323847`*^9, {3.63206960551151*^9, - 3.632069632831252*^9}, {3.6320697612109537`*^9, 3.632069788241972*^9}, - 3.632069983651532*^9, 3.6320700158402157`*^9, 3.632070338160265*^9, { - 3.632070369320245*^9, 3.632070390305233*^9}, {3.632070426718523*^9, - 3.63207047061552*^9}, {3.6320705072857533`*^9, 3.6320705253475723`*^9}, - 3.632070576117486*^9, {3.632070611521137*^9, 3.632070671388166*^9}, { - 3.6320707329265223`*^9, 3.632070755920149*^9}, 3.632070838167204*^9, - 3.632070890820634*^9, 3.632070982927902*^9, 3.632071174667068*^9, - 3.6320712201920156`*^9, 3.6320713910618677`*^9, {3.6320714440045853`*^9, - 3.632071474720243*^9}, 3.632071579689601*^9, 3.632071787404614*^9, - 3.6320719680480824`*^9, 3.6320720223617*^9, 3.6320720985392427`*^9, - 3.63209533079461*^9, 3.632100930299376*^9, {3.632101408516047*^9, - 3.632101425700108*^9}, 3.632101494800438*^9, 3.632101530477899*^9, { - 3.632101716977216*^9, 3.632101740782269*^9}, 3.632101804478817*^9, - 3.6321021977778997`*^9, 3.632102239343174*^9, 3.632102542031672*^9, - 3.632102628017846*^9, {3.632102961635336*^9, 3.632102980328308*^9}, { - 3.632103137982574*^9, 3.632103154597677*^9}, 3.632103199255734*^9, { - 3.6321032524085484`*^9, 3.6321032963845463`*^9}, 3.632103555377936*^9, - 3.632148005188685*^9, 3.632148144271183*^9, {3.6914609207155867`*^9, - 3.691460943633375*^9}, {3.698168637970812*^9, 3.6981686597436657`*^9}}] -}, Open ]], - -Cell["", "Text", - CellChangeTimes->{{3.6321018993148212`*^9, 3.6321018993184643`*^9}}] -}, Open ]] -}, Open ]] -}, Open ]] -}, -AutoGeneratedPackage->Automatic, -WindowToolbars->{}, -WindowSize->{1403, 759}, -WindowMargins->{{1, Automatic}, {Automatic, 0}}, -PrintingCopies->1, -PrintingPageRange->{Automatic, Automatic}, -PrintingOptions->{"PrintingMargins"->{{72, 72}, {54, 54}}}, -Magnification->1.5, -FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (September 9, \ -2014)", -StyleDefinitions->FrontEnd`FileName[{"Article"}, "JournalArticle.nb", - CharacterEncoding -> "UTF-8"] -] -(* End of Notebook Content *) - -(* Internal cache information *) -(*CellTagsOutline -CellTagsIndex->{ - "multiplication sigmoidal"->{ - Cell[28439, 682, 932, 28, 97, "EquationNumbered", - CellTags->"multiplication sigmoidal"]} - } -*) -(*CellTagsIndex -CellTagsIndex->{ - {"multiplication sigmoidal", 466762, 10036} - } -*) -(*NotebookFileOutline -Notebook[{ -Cell[CellGroupData[{ -Cell[567, 22, 151, 2, 40, "Subtitle"], -Cell[CellGroupData[{ -Cell[743, 28, 151, 2, 49, "Subsection"], -Cell[897, 32, 124, 2, 31, "Text"], -Cell[CellGroupData[{ -Cell[1046, 38, 193, 3, 23, "Item1"], -Cell[1242, 43, 242, 5, 23, "Item1"] -}, Open ]], -Cell[1499, 51, 110, 1, 31, "Text"], -Cell[1612, 54, 60, 1, 31, "Text"], -Cell[1675, 57, 319, 5, 72, "Code"], -Cell[1997, 64, 16, 0, 31, "Text"], -Cell[2016, 66, 312, 7, 78, "Text"], -Cell[CellGroupData[{ -Cell[2353, 77, 109, 1, 23, "Item1"], -Cell[2465, 80, 161, 3, 23, "Item1"], -Cell[2629, 85, 140, 1, 23, "Item1"] -}, Open ]], -Cell[2784, 89, 60, 1, 31, "Text"], -Cell[2847, 92, 115, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[2987, 97, 134, 1, 23, "Item1"], -Cell[3124, 100, 247, 5, 23, "Item1"], -Cell[3374, 107, 201, 4, 23, "Item1"] -}, Open ]], -Cell[3590, 114, 84, 1, 31, "Text"], -Cell[3677, 117, 182, 4, 31, "Text"], -Cell[3862, 123, 271, 9, 12, "Text"] -}, Open ]], -Cell[CellGroupData[{ -Cell[4170, 137, 108, 1, 49, "Subsection"], -Cell[4281, 140, 289, 5, 31, "Text"], -Cell[4573, 147, 413, 13, 65, "EquationNumbered"], -Cell[4989, 162, 168, 3, 31, "Text"], -Cell[CellGroupData[{ -Cell[5182, 169, 140, 1, 23, "Item1"], -Cell[5325, 172, 198, 2, 23, "Item1"], -Cell[5526, 176, 204, 4, 23, "Item1"], -Cell[5733, 182, 135, 3, 23, "Item1"] -}, Open ]], -Cell[5883, 188, 86, 1, 31, "Text"], -Cell[5972, 191, 146, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[6143, 196, 1620, 48, 241, "Code"], -Cell[7766, 246, 3738, 65, 627, "Output"] -}, Open ]], -Cell[11519, 314, 16, 0, 31, "Text"], -Cell[11538, 316, 157, 2, 31, "Text"], -Cell[CellGroupData[{ -Cell[11720, 322, 354, 6, 23, "Item1"], -Cell[12077, 330, 414, 7, 23, "Item1"], -Cell[12494, 339, 158, 3, 23, "Item1"] -}, Open ]], -Cell[CellGroupData[{ -Cell[12689, 347, 2392, 59, 188, "Code"], -Cell[15084, 408, 1464, 20, 40, "Output"], -Cell[16551, 430, 1465, 20, 40, "Output"], -Cell[18019, 452, 1877, 33, 63, "Output"], -Cell[19899, 487, 1585, 25, 63, "Output"] -}, Open ]], -Cell[21499, 515, 308, 6, 31, "Text"], -Cell[21810, 523, 389, 12, 65, "EquationNumbered"], -Cell[22202, 537, 84, 1, 31, "Text"], -Cell[22289, 540, 128, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[22442, 545, 1561, 46, 241, "Code"], -Cell[24006, 593, 3701, 65, 627, "Output"] -}, Open ]] -}, Open ]], -Cell[CellGroupData[{ -Cell[27756, 664, 166, 2, 73, "Subsection"], -Cell[CellGroupData[{ -Cell[27947, 670, 182, 2, 52, "Subsubsection"], -Cell[28132, 674, 304, 6, 46, "Text"], -Cell[28439, 682, 932, 28, 97, "EquationNumbered", - CellTags->"multiplication sigmoidal"], -Cell[29374, 712, 238, 4, 46, "Text"], -Cell[29615, 718, 116, 1, 46, "Text"], -Cell[CellGroupData[{ -Cell[29756, 723, 154, 2, 34, "Item1"], -Cell[29913, 727, 123, 1, 34, "Item1"], -Cell[30039, 730, 192, 2, 34, "Item1"], -Cell[30234, 734, 134, 1, 34, "Item1"], -Cell[30371, 737, 182, 4, 34, "Item1"], -Cell[30556, 743, 324, 5, 66, "Item1"] -}, Open ]], -Cell[30895, 751, 131, 2, 46, "Text"], -Cell[31029, 755, 178, 4, 46, "Text"], -Cell[31210, 761, 83, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[31318, 766, 3007, 85, 349, "Code"], -Cell[34328, 853, 4617, 80, 750, "Output"] -}, Open ]], -Cell[38960, 936, 58, 1, 46, "Text"], -Cell[39021, 939, 157, 2, 31, "Text"], -Cell[CellGroupData[{ -Cell[39203, 945, 1028, 28, 96, "Code"], -Cell[40234, 975, 1260, 18, 40, "Output"], -Cell[41497, 995, 1283, 19, 40, "Output"] -}, Open ]], -Cell[42795, 1017, 323, 6, 46, "Text"], -Cell[CellGroupData[{ -Cell[43143, 1027, 222, 3, 34, "Item1"], -Cell[43368, 1032, 168, 2, 34, "Item1"], -Cell[43539, 1036, 139, 1, 34, "Item1"], -Cell[43681, 1039, 105, 1, 34, "Item1"] -}, Open ]], -Cell[43801, 1043, 86, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[43912, 1048, 2449, 69, 211, "Code"], -Cell[46364, 1119, 1648, 27, 34, "Message"], -Cell[48015, 1148, 3368, 83, 90, "Output"], -Cell[51386, 1233, 1651, 27, 34, "Message"], -Cell[53040, 1262, 3739, 91, 134, "Output"], -Cell[56782, 1355, 1646, 27, 34, "Message"], -Cell[58431, 1384, 6161, 168, 194, "Output"], -Cell[64595, 1554, 1650, 27, 34, "Message"], -Cell[66248, 1583, 6701, 176, 237, "Output"] -}, Open ]], -Cell[72964, 1762, 130, 1, 46, "Text"], -Cell[73097, 1765, 86, 1, 46, "Text"], -Cell[73186, 1768, 314, 6, 31, "Text"], -Cell[CellGroupData[{ -Cell[73525, 1778, 501, 12, 96, "Code"], -Cell[74029, 1792, 17101, 291, 374, "Output"] -}, Open ]], -Cell[91145, 2086, 848, 13, 153, "Text"], -Cell[91996, 2101, 84, 1, 46, "Text"], -Cell[92083, 2104, 292, 6, 31, "Text"], -Cell[CellGroupData[{ -Cell[92400, 2114, 1650, 40, 188, "Code"], -Cell[94053, 2156, 22117, 374, 343, "Output"] -}, Open ]], -Cell[116185, 2533, 455, 7, 55, "Text"], -Cell[CellGroupData[{ -Cell[116665, 2544, 5057, 117, 625, "Code"], -Cell[121725, 2663, 6567, 111, 1147, "Output"] -}, Open ]], -Cell[128307, 2777, 426, 7, 31, "Text"], -Cell[CellGroupData[{ -Cell[128758, 2788, 6108, 151, 492, "Code"], -Cell[134869, 2941, 41665, 718, 766, "Output"] -}, Open ]], -Cell[176549, 3662, 85, 1, 46, "Text"], -Cell[176637, 3665, 180, 2, 46, "Text"], -Cell[176820, 3669, 16, 0, 46, "Text"] -}, Open ]], -Cell[CellGroupData[{ -Cell[176873, 3674, 128, 1, 52, "Subsubsection"], -Cell[177004, 3677, 492, 10, 46, "Text"], -Cell[177499, 3689, 634, 20, 106, "EquationNumbered"], -Cell[178136, 3711, 86, 1, 46, "Text"], -Cell[178225, 3714, 284, 5, 31, "Text"], -Cell[CellGroupData[{ -Cell[178534, 3723, 5189, 134, 712, "Code"], -Cell[183726, 3859, 4028, 77, 1060, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[187791, 3941, 3964, 75, 1098, "Input"], -Cell[191758, 4018, 3903, 75, 1060, "Output"] -}, Open ]], -Cell[195676, 4096, 239, 3, 31, "Text"], -Cell[CellGroupData[{ -Cell[195940, 4103, 391, 7, 72, "Code"], -Cell[196334, 4112, 882, 26, 79, "Output"] -}, Open ]], -Cell[197231, 4141, 140, 2, 40, "Input"] -}, Open ]], -Cell[CellGroupData[{ -Cell[197408, 4148, 200, 3, 78, "Subsubsection"], -Cell[197611, 4153, 403, 7, 123, "Text"], -Cell[198017, 4162, 84, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[198126, 4167, 3425, 81, 357, "Code"], -Cell[201554, 4250, 1923, 35, 72, "Output"] -}, Open ]], -Cell[203492, 4288, 596, 9, 55, "Text"], -Cell[CellGroupData[{ -Cell[204113, 4301, 880, 15, 72, "Code"], -Cell[204996, 4318, 2420, 66, 79, "Output"] -}, Open ]], -Cell[207431, 4387, 161, 2, 69, "Text"], -Cell[207595, 4391, 133, 2, 69, "Text"], -Cell[207731, 4395, 1812, 57, 171, "Equation"], -Cell[209546, 4454, 1694, 55, 171, "Equation"], -Cell[211243, 4511, 1116, 37, 168, "Equation"], -Cell[212362, 4550, 1155, 37, 105, "Equation"], -Cell[213520, 4589, 1631, 52, 105, "Equation"], -Cell[215154, 4643, 1488, 47, 105, "Equation"], -Cell[216645, 4692, 1418, 45, 105, "Equation"], -Cell[218066, 4739, 1172, 36, 105, "Equation"], -Cell[219241, 4777, 1084, 32, 105, "Equation"], -Cell[220328, 4811, 1096, 30, 105, "Equation"], -Cell[221427, 4843, 84, 1, 69, "Text"], -Cell[221514, 4846, 179, 2, 31, "Text"], -Cell[CellGroupData[{ -Cell[221718, 4852, 3267, 75, 127, "Code"], -Cell[224988, 4929, 1781, 29, 63, "Message"], -Cell[226772, 4960, 1781, 29, 63, "Message"], -Cell[228556, 4991, 1780, 29, 63, "Message"], -Cell[230339, 5022, 1521, 25, 34, "Message"], -Cell[231863, 5049, 1707, 27, 40, "Output"], -Cell[233573, 5078, 1584, 22, 40, "Output"] -}, Open ]], -Cell[235172, 5103, 492, 8, 123, "Text"], -Cell[235667, 5113, 579, 14, 90, "EquationNumbered"], -Cell[236249, 5129, 132, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[236406, 5134, 1953, 57, 218, "Code"], -Cell[238362, 5193, 646, 10, 63, "Output"], -Cell[239011, 5205, 645, 10, 63, "Output"], -Cell[239659, 5217, 664, 11, 63, "Output"], -Cell[240326, 5230, 716, 13, 63, "Output"] -}, Open ]], -Cell[241057, 5246, 127, 1, 69, "Text"], -Cell[241187, 5249, 419, 13, 145, "EquationNumbered"], -Cell[241609, 5264, 124, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[241758, 5269, 366, 8, 103, "Code"], -Cell[242127, 5279, 651, 12, 63, "Output"] -}, Open ]], -Cell[242793, 5294, 127, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[242945, 5299, 3959, 100, 208, "Code"], -Cell[246907, 5401, 2152, 34, 63, "Message"], -Cell[249062, 5437, 2152, 34, 63, "Message"], -Cell[251217, 5473, 2152, 34, 63, "Message"], -Cell[253372, 5509, 1892, 30, 34, "Message"], -Cell[255267, 5541, 1580, 25, 40, "Output"], -Cell[256850, 5568, 1459, 20, 40, "Output"], -Cell[258312, 5590, 1504, 22, 40, "Output"] -}, Open ]] -}, Open ]], -Cell[CellGroupData[{ -Cell[259865, 5618, 113, 1, 78, "Subsubsection"], -Cell[259981, 5621, 353, 6, 55, "Text"], -Cell[CellGroupData[{ -Cell[260359, 5631, 413, 9, 72, "Code"], -Cell[260775, 5642, 1207, 18, 40, "Output"] -}, Open ]], -Cell[261997, 5663, 308, 6, 31, "Text"], -Cell[CellGroupData[{ -Cell[262330, 5673, 3194, 81, 418, "Code"], -Cell[265527, 5756, 4395, 79, 890, "Output"] -}, Open ]], -Cell[269937, 5838, 601, 9, 123, "Text"], -Cell[270541, 5849, 879, 28, 71, "EquationNumbered"], -Cell[CellGroupData[{ -Cell[271445, 5881, 5432, 142, 590, "Code"], -Cell[276880, 6025, 4658, 81, 914, "Output"] -}, Open ]], -Cell[281553, 6109, 400, 7, 123, "Text"], -Cell[281956, 6118, 964, 31, 71, "EquationNumbered"], -Cell[CellGroupData[{ -Cell[282945, 6153, 4926, 136, 590, "Code"], -Cell[287874, 6291, 4665, 81, 914, "Output"] -}, Open ]], -Cell[292554, 6375, 86, 1, 69, "Text"] -}, Open ]], -Cell[CellGroupData[{ -Cell[292677, 6381, 122, 1, 78, "Subsubsection"], -Cell[292802, 6384, 82, 1, 69, "Text"], -Cell[292887, 6387, 324, 6, 69, "Text"], -Cell[293214, 6395, 16, 0, 69, "Text"], -Cell[293233, 6397, 1259, 41, 159, "EquationNumbered"], -Cell[294495, 6440, 16, 0, 69, "Text"], -Cell[294514, 6442, 189, 4, 69, "Text"], -Cell[CellGroupData[{ -Cell[294728, 6450, 208, 2, 51, "Item1"], -Cell[294939, 6454, 180, 2, 51, "Item1"], -Cell[295122, 6458, 264, 5, 51, "Item1"], -Cell[295389, 6465, 208, 4, 51, "Item1"], -Cell[295600, 6471, 182, 4, 51, "Item1"], -Cell[295785, 6477, 324, 5, 99, "Item1"] -}, Open ]], -Cell[296124, 6485, 131, 2, 69, "Text"], -Cell[296258, 6489, 214, 4, 69, "Text"], -Cell[296475, 6495, 83, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[296583, 6500, 3380, 101, 395, "Code"], -Cell[299966, 6603, 4288, 75, 750, "Output"] -}, Open ]], -Cell[304269, 6681, 58, 1, 69, "Text"], -Cell[304330, 6684, 157, 2, 31, "Text"], -Cell[CellGroupData[{ -Cell[304512, 6690, 1071, 29, 96, "Code"], -Cell[305586, 6721, 1097, 16, 40, "Output"], -Cell[306686, 6739, 1097, 16, 40, "Output"] -}, Open ]], -Cell[307798, 6758, 323, 6, 69, "Text"], -Cell[CellGroupData[{ -Cell[308146, 6768, 222, 3, 51, "Item1"], -Cell[308371, 6773, 168, 2, 51, "Item1"], -Cell[308542, 6777, 139, 1, 51, "Item1"], -Cell[308684, 6780, 105, 1, 51, "Item1"] -}, Open ]], -Cell[308804, 6784, 86, 1, 31, "Text"], -Cell[CellGroupData[{ -Cell[308915, 6789, 2339, 68, 211, "Code"], -Cell[311257, 6859, 1454, 25, 34, "Message"], -Cell[312714, 6886, 3954, 106, 120, "Output"], -Cell[316671, 6994, 1461, 25, 34, "Message"], -Cell[318135, 7021, 4373, 114, 122, "Output"], -Cell[322511, 7137, 1457, 25, 34, "Message"], -Cell[323971, 7164, 8253, 224, 183, "Output"], -Cell[332227, 7390, 1458, 25, 34, "Message"], -Cell[333688, 7417, 8925, 233, 230, "Output"] -}, Open ]], -Cell[342628, 7653, 183, 2, 69, "Text"], -Cell[342814, 7657, 135, 2, 69, "Text"], -Cell[342952, 7661, 208, 4, 69, "Text"], -Cell[343163, 7667, 186, 3, 31, "Text"], -Cell[343352, 7672, 635, 16, 96, "Code"], -Cell[343990, 7690, 16, 0, 69, "Text"], -Cell[344009, 7692, 269, 5, 69, "Text"], -Cell[344281, 7699, 16, 0, 31, "Text"], -Cell[CellGroupData[{ -Cell[344322, 7703, 4252, 107, 625, "Code"], -Cell[348577, 7812, 5699, 101, 1149, "Output"] -}, Open ]], -Cell[354291, 7916, 86, 1, 69, "Text"], -Cell[354380, 7919, 232, 4, 69, "Text"], -Cell[354615, 7925, 82, 1, 69, "Text"] -}, Open ]], -Cell[CellGroupData[{ -Cell[354734, 7931, 160, 2, 78, "Subsubsection"], -Cell[354897, 7935, 372, 7, 31, "Text"], -Cell[CellGroupData[{ -Cell[355294, 7946, 904, 19, 72, "Code"], -Cell[356201, 7967, 8220, 148, 364, "Output"] -}, Open ]], -Cell[364436, 8118, 84, 1, 69, "Text"], -Cell[364523, 8121, 589, 10, 31, "Text"], -Cell[CellGroupData[{ -Cell[365137, 8135, 25081, 576, 1681, "Code"], -Cell[390221, 8713, 1957, 27, 40, "Output"], -Cell[392181, 8742, 1957, 27, 40, "Output"], -Cell[394141, 8771, 1385, 23, 84, "Message"], -Cell[395529, 8796, 1957, 27, 40, "Output"], -Cell[397489, 8825, 1959, 27, 40, "Output"], -Cell[399451, 8854, 63893, 1108, 968, "Output"], -Cell[463347, 9964, 2684, 45, 284, "Output"] -}, Open ]], -Cell[466046, 10012, 86, 1, 69, "Text"] -}, Open ]] -}, Open ]] -}, Open ]] -} -] -*) - -(* End of internal cache information *) diff --git a/mathematica/new candidate functions.nb b/mathematica/new candidate functions.nb deleted file mode 100644 index 3c0324f..0000000 --- a/mathematica/new candidate functions.nb +++ /dev/null @@ -1,3524 +0,0 @@ -(* Content-type: application/mathematica *) - -(*** Wolfram Notebook File ***) -(* http://www.wolfram.com/nb *) - -(* CreatedBy='Mathematica 7.0' *) - -(*CacheID: 234*) -(* Internal cache information: -NotebookFileLineBreakTest -NotebookFileLineBreakTest -NotebookDataPosition[ 145, 7] -NotebookDataLength[ 175194, 3515] -NotebookOptionsPosition[ 173199, 3453] -NotebookOutlinePosition[ 173654, 3471] -CellTagsIndexPosition[ 173611, 3468] -WindowFrame->Normal*) - -(* Beginning of Notebook Content *) -Notebook[{ - -Cell[CellGroupData[{ -Cell[BoxData[ - RowBox[{ - RowBox[{"(*", " ", - RowBox[{ - "Traditional", " ", "sigmoidal", " ", "function", " ", "and", " ", "its", - " ", "graphs"}], "*)"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"f1", "[", - RowBox[{"a_", ",", "b_", ",", "x_"}], "]"}], "=", - FractionBox["1", - RowBox[{ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", - RowBox[{"(", - RowBox[{"a", " ", "x"}], ")"}]}], "-", "b"}]], "+", "1"}]]}], - ";"}], "\[IndentingNewLine]", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f1", "[", - RowBox[{"3", ",", "0", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], "\n", - RowBox[{"Manipulate", "[", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f1", "[", - RowBox[{"a", ",", "b", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "1"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", - RowBox[{"{", - RowBox[{"a", ",", - RowBox[{"-", "100"}], ",", "100", ",", "0.1"}], "}"}], ",", - RowBox[{"{", - RowBox[{"b", ",", - RowBox[{"-", "40"}], ",", "0", ",", "0.1"}], "}"}]}], - "]"}]}]}]], "Input", - CellChangeTimes->{{3.6192768465649447`*^9, 3.6192768958657646`*^9}, { - 3.61927696693983*^9, 3.619277166457241*^9}, {3.619277260182602*^9, - 3.6192772656729164`*^9}, {3.6192773369809947`*^9, 3.6192775698863163`*^9}, { - 3.619277601925149*^9, 3.619277683269801*^9}, {3.619277973929426*^9, - 3.619277987667212*^9}, {3.619278077128329*^9, 3.619278133286541*^9}, { - 3.6192781663174305`*^9, 3.6192781706436777`*^9}, {3.6192782170253305`*^9, - 3.6192782192784595`*^9}, {3.6192783196642013`*^9, 3.6192783291177416`*^9}, { - 3.619278393549427*^9, 3.6192784089803095`*^9}, {3.61927894834616*^9, - 3.619278979017914*^9}, {3.61927905168007*^9, 3.6192790596485257`*^9}, { - 3.6217786586532965`*^9, 3.621778734853655*^9}, {3.621778792140931*^9, - 3.6217788245717864`*^9}}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJwVy3lYzAkAxvGmQsqWJuWZ0tjaKTpsuSLkXbJFB5rYsh3StRlFJVTaR5Op -1UE9nlm66aBsy7CV1WGF2dATI5XKjpqmMc35+7GMlN1mZ/94n+/z+eO1iz7C -jNPX09ML1O3/+sXJ+rrkezfvalxnpKcngqG3dfIYbQ1ifd8miikirL5UWtlM -24YcTkUf30AE/6dDv1XR9oAI4pbnzxMhJHbq7nlaLMwKSp0szER47faT91la -GiypHu6OdBEuW+7KK6Bx0BBOz/HfJALbqHlZPo2L1VkT/iXpIoTuq+G9fVeP -ugX2V+Z+FsFEyw73pfPwt6PFgZi0cTgEEbKHhS0o7DZd0KkYx4lnnij90Abj -qgiqK0uMxS3moxTKPRh/apw1EIlxW+zdK9j0AD07s6m7IyfwgFVls0/FhzSe -53NteAIaRy+z60mPsE7BLbDfIYH+dNNCG4ceZOULNTb3JfDQRt0OvtELP9kk -w8rtDXo5a551OwtQXV1b/Lr0DZaWKKevEc9xv5RtvX6+FMqpsdFB9xfYMCc0 -uemIFPWKjh7Tc/1IvJl9myKUwtS2gZRIBnCL5dxw2nsSRQdb4y8zXqI2KScz -qWYSH79pkiScGsL4vZnucEMZ0lbxW6weDgPW55PkETKM3eAX9tm9QvC+andh -hwyfWQMVTpl/wXSGh/eL5HDZMm82vkMIhpcgwCtODt9aux9uLR6FyUpSubZN -jhO2++3Hw8dw50CyvN1QAVfVXpOhQBGo+Qq2ZYACFmZvjfgzIoS3Ux9xLihg -eK+C91XlOIxDfQo9RxQ4tKZjZL6/GD5MYUMJXYmmHdGX//goRtJ36zXN+5XQ -KK0XSi9MwPRQuaWkTInWYF8D7jYJGk84DGx5qcSp7bmXWqQSfH++K8x6gQp2 -r/2G63Lf4JN0Kr58swob1nG4tFVS8A8WWClSVQinC6Yp/VJ4vbTcfaxGBU3P -WXEyexJzNZHv8/pUKDWMTGMyZIjKZ2k2/6OCxWhrrT5fhmamQ58zQ405P7L3 -eKbIEdpnbxgWqIbetUiemKpArGCvUpyiRmo57yz1gQIs7Y60jItq3HU5Y2R+ -WAnu8zb95HY1zP1SXXNMVXDSRpyOHVFDuOJ5f0anCnFN8y96TqtxsxoMSaQa -Xy4LsoyxJBDB8zC3nVVj+e9Lnpa5EcjOrWELfyFQupjTWORH4LrMtsI0gITw -/pnpsGgCZ6pyo0Z3ktCmPT76UOdYptrhRhCJIS1n0DmGwJLOzpuBISS2WuXv -mta5oDisuyiaRGNyAP3nOAIJHmXvjDNIVAo8XB4nELDnLNo+7yqJiBoXxyVH -CMyuz/piqJGEb/pEWbbOI+qJF1ebSHSVtGskOpeENEf43CJxtfZV3PVkAlpn -5tHcThLuk4eXe6USEPYVVxv0k2Cm+G0MPUbgTt5UTP8gieOuu1d36MzduN+p -bpiE+bd/WtCPE/C/8nXL1lES4pPm5yZ0bk9/+oQtJ+ESfDchKZ3AhRVri4NU -JA4wn9QLdE4RV+6xI0nsPJ74ZGUGgeUBiWNdH3R/SlGvRmdDykB9yRSJTCa1 -KSSTgKh1IytqhsSvZd6pbTp3surc3P8lYd3DsLc5SeDiUhONVkuifrC9PUvn -/wB3zXA+ - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - PlotRange->{{0, 1}, {0, 1}}, - PlotRangeClipping->True, - PlotRangePadding->{ - Scaled[0.02], Automatic}]], "Output", - CellChangeTimes->{{3.619277050979636*^9, 3.6192770614482355`*^9}, { - 3.619277124540844*^9, 3.619277167773317*^9}, 3.6192772681280565`*^9, { - 3.6192774151964684`*^9, 3.619277432285446*^9}, {3.619277467948486*^9, - 3.619277484246418*^9}, {3.6192775165622663`*^9, 3.6192775401486154`*^9}, { - 3.619277610970666*^9, 3.619277684167853*^9}, 3.6192779765485764`*^9, - 3.6192781351696486`*^9, 3.6192781788131447`*^9, 3.6192782211155643`*^9, - 3.619278331867899*^9, 3.619278410054371*^9, {3.6192789537934713`*^9, - 3.6192789802809863`*^9}, 3.619279061245617*^9, 3.6198855411344433`*^9, - 3.62177877918119*^9}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`a$$ = -100, $CellContext`b$$ = -40, - Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ - Hold[$CellContext`a$$], -100, 100, 0.1}, { - Hold[$CellContext`b$$], -40, 0, 0.1}}, Typeset`size$$ = { - 540., {175., 186.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`a$731$$ = - 0, $CellContext`b$732$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`a$$ = -100, $CellContext`b$$ = -40}, - "ControllerVariables" :> { - Hold[$CellContext`a$$, $CellContext`a$731$$, 0], - Hold[$CellContext`b$$, $CellContext`b$732$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`f1[$CellContext`a$$, $CellContext`b$$, $CellContext`x], \ -{$CellContext`x, 0, 1}, PlotRange -> {0, 1}], - "Specifications" :> {{$CellContext`a$$, -100, 100, - 0.1}, {$CellContext`b$$, -40, 0, 0.1}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{606., {262., 271.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{{3.619277050979636*^9, 3.6192770614482355`*^9}, { - 3.619277124540844*^9, 3.619277167773317*^9}, 3.6192772681280565`*^9, { - 3.6192774151964684`*^9, 3.619277432285446*^9}, {3.619277467948486*^9, - 3.619277484246418*^9}, {3.6192775165622663`*^9, 3.6192775401486154`*^9}, { - 3.619277610970666*^9, 3.619277684167853*^9}, 3.6192779765485764`*^9, - 3.6192781351696486`*^9, 3.6192781788131447`*^9, 3.6192782211155643`*^9, - 3.619278331867899*^9, 3.619278410054371*^9, {3.6192789537934713`*^9, - 3.6192789802809863`*^9}, 3.619279061245617*^9, 3.6198855411344433`*^9, - 3.6217787792541943`*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"(*", " ", - RowBox[{ - "Main", " ", "sigmoidal", " ", "function", " ", "that", " ", "we", " ", - "are", " ", "implementing", " ", "and", " ", "its", " ", "graphs"}], " ", - "*)"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Clear", "[", "\"\\"", "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"f2", "[", - RowBox[{"A_", ",", "Ka_", ",", "B_", ",", "M_", ",", "x_"}], "]"}], "=", - RowBox[{"A", "+", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M"}], ")"}]}]]}]]}]}], ";"}], - "\[IndentingNewLine]", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f2", "[", - RowBox[{"0", ",", "1", ",", "1", ",", "8", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f2", "[", - RowBox[{"A", ",", "Ka", ",", "B", ",", "M", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A", ",", "0"}], "}"}], ",", - RowBox[{"-", "10"}], ",", "10", ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", - RowBox[{"-", "10"}], ",", "10", ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B", ",", "1"}], "}"}], ",", - RowBox[{"-", "10"}], ",", "10", ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M", ",", "8"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}]}], "]"}]}]}]], "Input",\ - - CellChangeTimes->{{3.619365764439367*^9, 3.619365854251504*^9}, { - 3.619365885045265*^9, 3.619365931971949*^9}, {3.6193659823098283`*^9, - 3.6193660819965305`*^9}, {3.6193661575978546`*^9, 3.6193662671731215`*^9}, - 3.6193663041092343`*^9, {3.6193664251541576`*^9, 3.6193664623542852`*^9}, { - 3.619374352933601*^9, 3.6193743650352926`*^9}, {3.619374466460094*^9, - 3.6193744731644773`*^9}, {3.6195461333033347`*^9, - 3.6195461857023315`*^9}, {3.6217788351933937`*^9, 3.621778863706025*^9}}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJwV13c81d8bAHB7J5vseY3rIjOU57GLSpTVUvbISCKjsqMkpEi+QlFairKV -VVlJVkqpKJn32qTk9/n9dV7vv85znvE658i4Btp5MNDR0Y3R09H9f10ebmuR -v5RpZLBxb6fRmg705YmEGw8Gg2WvzEmKgC6g4DtXkcFYOKXtutVQTRdC993/ -wDiYAR8SitjLXXWBlyqc8ftDIUQonRMUeasLX+v2Bi5+KAPWqmqOwbt6YCE/ -+WXuQxMwSvht3h6qD3f27XV6GtAM/Y1kN8tMfaA/W9YTxNwCWz//IoWW6UNd -f8QbmuYr6Hh3tciIpg9bL3A+nbn8Bk5K2UpE+xqA+KRq/IRpJ/hpRFyY9DKE -3x/0rs1+6AHR7/eOZ57fAVWabMfuKvfCF+h/Z1u0A0IvD6ocjewFTm75GOjY -AfMm4Q0dkn3A6S1x56GwEUw+qpkq9uiH1Mqw+r4yI/gct8PkyMIHWNtg6b86 -D9Cgbkpr4/4CCVMJxW93G8O5i/w10ce+QHbu2HGaqzFs/zkar1f2BSZ3JPtQ -wo2hOidetMh+GBro7an/ioyhjPm1eXTuV7Bt93v7h84Eevzl94oJfocT5gJh -Z+tMoNn07p33haPw8Mg7oVIrM9BILZ1YaR2FmpfdtyZdzSBvsFJNkjYKgzbR -AqaRZnDGv7XK1/AHfL+1bGX90AzUsiY6Gft+QJFLTm3dZnPImSQv6TCPwSn3 -J6Umn80hKP2JeY7XOHAxJ/cNpVjC8FDVxYbL4xC2/Ldn7Z4lWJMa342Vj0N4 -ZZCL4StLINW+d9aimwD3uOAmmX+WMPRj3r8zewLO7OEUTzq5Eyy26Vz/1zYJ -h5YGBL8e3QXiX6vHXFVnoD1jp+S3A9ZAt3Ayu812BkbPTHV8CbGGHywqVhph -M7Ajcu8o3TVreKSW82i9cQZk9fBfZb81GJ2LCMl2pMJDA/8qqtNucJEwZOiK -pUFVf2V8keceeE8ZTs2dngWRZb78s/k20KJX88tmYxYMXg5Lx7yygQrj68jI -NwePeWG8dNIGcuz3zvvozcEiYyRHq+g+cD37wl4vdg6mpx13PPHcB/OdeeI9 -wvMwxXQ9sJLBFgROuNxnNV0AnSKDxcO77UCF9fbrfY4LsFv7Bm+2mx1g4djI -Db8FqD337M5shB2cGPQXU81cgLtyPo1rJXbQYhaVsu/nAtRf4V8MZd8PIRI3 -Am5cWIQT4tR+ja790NvVo0nuXIJHSa3ejYH2MO4jZBPybQlOa/nIr1y0h39M -B/3qF5dgm4foUZtie1Ax/H7bRmIZWHP2r3l9sYfYuzSBkIBlqK0sv2e0xwE0 -o7lW6nhWQJDsqlyi5QgZWy1q99qvQnhT4myVuDOoDzlb7vBehWLlUwmnDZyh -M96/lxy5ClvSh0zsnZyBZTBziq1gFRTo+b6cy3SGyHOjYs3Tq+C8eFDuPPdB -cO+IjtKL/w2jXgOGzuyHQNejdod0+RrQOc+p3RM7Ar3c79q4X6/BlHjHuITR -EQiqGrFfH1wDnm+Zh+qOHYH7nBwBn/6twSW3v+SQ4iMgVeaUl2n1ByR4k1r6 -tI4C28bSP7aRP2Bw32Uh3sEFPmZrNMzxrMM8x5p83PAxyOl9sDlUYR1OM+Wq -Ky4eg4Pcii5r+usQaZ5AHWM/TsynxD8Gt3XIunpLqEbnOHwL4Ngu8Hwd5KS+ -r5SlHodxsx+Vus7/4NlAXC+3hSuszmaVRhZswJULZXphHW5QTebf2Hi+AXv7 -l6o+/nCDCM/UvfHtG/BZNrr88D83+DsUP5OysAE18SvVLVvdIXq0SvCdLB1q -bnuVJ5PjDvFdRfu/hdChAWWCTfukB1y6c/4dwxZ6fOEdcHtW3wustH34BOXo -cdOQmBzZ0QvYWuzsFSn0eIJl1OZiiBfEjyoMWRvTo5jqX6/KUi+Iku0cy/Sh -R+nVgIL3it4QkC/yj1RDj6cjWwPUpXzANvepqvUhBlzxqzEbI/sBj+rNwCMe -DHjE2Dicf68fdNXGlwUGMmBJ1J0EvyA/sBpy3JYZx4BUqYI/uc/9wET0n+mX -Bwwos2pkwmlyArSzrQ4F/mXAkcpMU3M3fxDOHE2++h8jMovtjKpvDQQR8vP4 -1WJGdG+WlqWnBoJoU+L5I08Y0aRUn1TFHgSSs8qnFZsZcZWi89dbPQgUdgcd -qx1nxLD99VJ9kUGgxbSuO6rFhL6UqOkxkZNgEyL0Q7OdCXO9nOhr3INhH+f4 -cFYvE5I+Z2y1jAgGu8Lqj38/M+GgVn/8zJVgcOg+/O41jQnZrFrYEmuD4Yjq -7ZqDgsyYfKajdoL/FPj9UE+PPcaMZo1R49faTsGFA7uMepaZcV77lqHzrtMg -+qxLlIGeBSvex+kfdz8Nj/kPrGzlZEHWz+mHL50/DQM9R5+kS7FgwHOueouK -0yBvGyJru5MFR6/L3zqqEApNe26xdN9gwR0Hovfrc4TBusVS19vtrDhx3I/n -I+0MpBVHPFi3YMVlcmBI1OZwkGehS6LYsmKve3+dpXo47H7FYXzZgxWnBZ82 -OgSGQ46pdPnuVFbk2aa/5fBcOGxD66yOr6zYWH3pucZ6BJzSL3Bpi2VDX79H -piE6Z8Eqn3vROoUN8+cy6BiczoIsa1RS1zU29HdnsquKOAvdfQ5Pe++xoSZj -RsCthrOgFsTFONzFhnKqoi8O7z0H48VhxfOi7PizvuZH/cnzcFhg74xYOTsO -L8/F1E5Hg1ZkbUxeHTsyGT/SqqWLAY4RJSGZ1+xoOiF1oEcgBqpLGYH0kR3z -Z/T3WO6IASHr6jSNDXYsjDEUs7kSA90x8trm1hzIPm7iStWLBTPaWkTAKAfG -q+OIVm4chO/MVGmc5sB/9aWGo2Vx8LiA8ol/mQP1xqLTH7bFgciBY/rVbJzI -Ibzl7uWVOJiuerXCqMaJ5lhXlnIgHq7GpoXcOMOJedKm4dn8CTAiSApo2cSF -K988vr0oTgThwJcSwsJc6B/MXj/ekAi7W53e+khzYYtvU4TGUCJURFxS3azF -hT5cM5KiPBfg4tfZSWcnLpzq06pyjrwAmiW1XrRCLnS2eidwzzEJYrbbHhfd -tgmVfcs0zihdhJ1H8+b1TDbhn4aiEK1dF4E7eirOfvcm5FtKlRf2vQi5zQnF -acc2oZZH60WnhxehyqpmiiV5E5Z3pHe1al6CWSe50IWPm5Blo2bwomUKHD29 -dLEzkhv3tPl8WU9PBYUsE/HJBG48zvSKWbkqlTj/lUesadwo/x+KxQ2nQsRf -5W6TO9z4QWbfTAv5ClyLOypY3cmNtKwTzgmtV6Az/c2tIonNWNbt++JaQhoY -PL7x7NzLzXiu6G6d/VA6mH3oWqe2bka7nvivArPpsJeOydKlZzPqtiQ9nmLK -ADe7gI/wczNuE1Go/qaWARaRMuejmXmQvsXWZSouA4Kklm8bk3kwp7PeMEfz -KrR43ZppDuXBlLTn8pK3M2HXX32+qEgeHJZa0WWtzYSutD5d7WgetHiy7MPZ -mwkfq9mj7yTzoEk+3z0PxmtA5QzhS8jlweQe8xZ3j2sg8mSnnkUTD55sKBm8 -q3YdTqzORbdu4sX6bZ4+oh+ywOCkp9AYHy82pbMKLC5mAdvkpweMIry4/jF4 -2zxfNhQNNQ8YyfLitJlA9mGbbBh+cU31uS4vik4wHqW2ZYNNgv5ggQsvWvx6 -Pkt+fQM0+WLUI5/yoowNZ7Xl55tAd2mpJbuCF9nJWvPMGzehi9H3YEUtLw6m -p5hTZXLBb8kuYe4VL950/by2wzsX7gzKD3l94kU1pjOTw8u5IHSrNfEAIx/G -Voa9tRXPg99knmGKPR92/Qs++9gsH5b/E43ROsiHk2LwKtopHxY3K8jru/Ch -T3aTp++JfKAu6Pua+fCh8wkjifjMfBipdVs+eJYPxzzNlft+5kO7dSV3UhEf -vu9kyFxPKYAcv6MwssSH468NDLdSCyHri/fIrzU+zHnTziDLfBsybU4lzGzw -oWvaoTiK+G1I1UrqWGXnR9Lr2zLXrG5D7J+njpsl+XGTLO9Kyb3b4HeJOWi7 -BT9O77oZyuh7B7Y/eJh//To/fnU+vtOCoRiGpB/cMr/JjxfXz29aFy2GiOsl -eYu3+LGIQ8i2S6sYKmOKc+1K+PHVL+aaBo9i0HTKz+au48dI6/jRX+3FoMyc -mZb4nR+jTAPsHXLugpBLZHSoqgAO3Hx2yn9vCTzvCz+vsFUAneKPLhX7lsAB -qzPn+nQE8MiAoPW/xBLI0DkdpQkCmHhHYISloQQ2cQWeodoKYJY/W1es1n1g -qnYN8gwTwG17RO2NpB/AHJ/VMYcmAbyhNOV1mfcRDJ6Q7fZ9I4D6A15zwdqP -oIF4q5zvFMBvB+d6zzs+grSIB1L3BgTwv5btO3jyHoHGCNfX35MCaKHH37+Z -8hgCnr478h+/IGZf62R6aFcKkzb2h364C+JK4xxXxfAT6CmhdKz6CKJATTe2 -zD+BGkYWw02BgriHrfnGOMtTSK6sENUNF8RXU5e5QtSfgpKUyKcLlwUxssFf -KzvmKXhRPzmRKwRxwvdhmqJKGfxIOeYQzCqEN11qLi6mlEPApKqsBpcQbhi9 -+uBZWA4rlr9nZniE0FbD7Dm1shw4GDMSfESFUOw/aS8YLQeN8OZnxyhCKPhn -8PKYwTM460Hit9kvhCdZhjQOUZ+BkNH0O/ItIdS4K/LeybMC8m9W3Zy4LYQz -z/5K3jpXAcq/473u3hNC72t8GuvXK2D7M4kN2TIhrNjWOULXWgFuKjZqoq+E -8OBUZKQSuRKeCJWlsE0JYbgTNxPbciXsooXt+qkrjKc/5NfG51WD+FbJRLbt -wljG8O61Rl01UINbmsjGwrhkGXngz8dqyFzm2R5sLYwOEfS204I1MLxeorbh -Iozx9IXGeKUGgrk+829JFkYZerbE5gu1kKOMw7uHhHH9xymbnrR6mHZjO/Xs -vAhuPaSgPcLYCNQ8s/qX8SLYEz2amCDUCLSP0awdySJoOjgiZqDcCPM2v29+ -vyqCBaGfND7sbYQVw8kW7nsi+NSnjn4kpxEYBDqFfLpFcHc117yxbhNsablS -IyGzBU9d8+H1jGgm/q/CDBeatuAr1uQ9v/Rfw4Sr5T3DN1uQI2P+z0Wb15BS -ELZ3tmMLOpT2m4PHa+iVHMxx7t+CEqU6dR/TXsOxLTe0VMe3oJbG9/yB8dcQ -zi3m8X6TKPqUj0Ut3HwDD1clW8WcRfFRTpTzO+424HtLSn1CE0UmoUGRs4qd -IJ5Uuk9XVxwTWjuvzo+8h2yyPg+/lwRR/2N0v5f6oV3UWGchXRLncoQYNR0/ -gYF4U5r6gBQeih3RaXH6CtyMhSHHY6UxzGh1o4plBCRjpLY7k2QwC/pa6SJ+ -ALvC4Qq7NzL4w6e7kuvxGKjt2FIadkQWE3cvi+ueG4dyOZ8/DMdk0dj2bHts -wjhs46i2THWVxZf7HlxoTxkHkw9O3+54yaLmvasU65vj4HAym7fnJGHXSl7e -qnE4XyQcopooiz1320sez45D9yYh/e+PZdGNIdVB7egEBA/zNVvRyaF1S5ud -mcoktL4+XH+fQQ4D5AxjptUnQbK0uJKDWQ7Tldx803Qmof28wcN2djk0rXcI -6sBJkJVxvWbFL4f+WXvcuR0n4b3bUy8rkhwun/B+0xo7CRoTNlxWu+Wwwc9T -W/jDJNAWUux3ZcshtZ5jm8epKfg8WODwX44cVl78bUkNm4L2+grHuVw5lJWs -TDsVNQV3LnxzvlEgh97yVr3BCVNwUEz76MR9Obw2QLfbLGsKXpkMeSbXy2EK -T0iKds0U3ExXPtM2IofX7c1rHNanICnUKFzipxyqcQhb+tJPQ+ih/REnf8mh -L/2qeQTzNOxTOBu1ZVoOGbISCq5smgaW6u5onyVivxsnmdMkpuHkt7BkdjZ5 -3NkuqTmxfRos1V/n7KLIYylv9RRH+DQ4sew80K0ujzOPHd9tRE2D75e2TY6a -8qgjbdk1Gz0NqZfeRrvryePEuWSlN0nTMPCrz/O8sTwmVU5lmWdPg3v+qOZz -e3k0ZSksvVQxDbG89B3S5+TRyszG3mZ2GjLHY+PvRsuj+lfrxs6FaSh+yWSk -FiePO7Ze/s9iZRra/dmeGibJ4x9azlP1f9PA2745yyFDHs0rBK9+4JyB/FhJ -t5RieUxMOHQtmjQDLxYM/6x0yeMVRztXK+cZKOisdN3/Xh4FYhiukQ7PQHyR -VvvjXnkMFrq8unF0BnY5km94DMqjfcLgwfvuM9BXI6rX+10e6za1tH4JnIHJ -mN/Bjxfl8c2Gt2pjwgwI8VROuosq4LHEBa7k0hn4Pa5p1yCugHNzmnGby2bg -c+PjajEpBeSUygq4+ozY/1RxUo+cAi70qT26Wj0Dqh+ukZCigApkMabQ5hkw -yQtxFUMFfH84eLJ5YAYCVDU/vfdQQGmOzj8Zf2bg9Iromou3Aia39/f8WZ+B -qCZGUaqvAhq6a68dp6PCJad+Z44gBZzsFjAjMVPhXvyZjyYRCqgvJMp5hZsK -I59fDJanKuA5h4ysUWkqOFy2/nCtUgGLFUumS0ypcMRJe0WuRgE7TgXlNZpT -wV1OQrisTgGbMvloA5ZUOFVNdehqVMA/2o6ha9ZUSPuZPsDSqYA/D+QeVThA -hfYdg/1h3xRw+4exPC53Kuyguvc5s5OQIaGgVyOWCkK1loV1nCQ8ovecPBJH -BeoFlSApbhL+XXtTmp5AhTyZWc6ffCSM010xmUqiwr8DkaZB4iScTb7yOukK -FV7WppclqpPQbLvBm4BcKhgnv0grtyehwc+TGfPPqCDqUHBUyImE3I6m9Scq -qDAvG68afpCE9P1SVj8rqVBYt6vVyIWEN197p72voQLDbN9GmzcJTbas/7ne -QIVmh6mAb5EklPDZ9nSggwrm8iJ7NhWSEG48c9P+ToVnM69k3O+Q8OenNPew -ESrIV55arikmIVt1NUv1KBWYrN7d8n5Awplcf+1tY1RoCkycb35GwqDuhEOk -KSoY1S5mRbwh4SoLL0vzIhV07d6P/Jom4b+v4RssrDQoFjtfaUQj8lViUC/N -RgPBn6op1+ZIOJXDY6HPToPFsCQd02USLptM13ty0qDsP0jK2yBh6XKVd/lm -GqhPPCKeh4q4oPKtWkCEBkrRF8806SnilZeylzcUaVBnWMS820AR08JO1LIr -02DfysuM/u2KmCF+7j6fCg3OBCw9HDdWxPnk3G5pVRq0Hj72nXu3Ik5N0NzU -NGjgra9rdeiYIuptejG0eRsNSua/iy0mKaK5p0PgkgUNjB7/vXf2kiJi27rj -J0sa9PgI67KmKqKL1QL5xU4arH3bvU/0qiLmazbmxFrRwOpdZTz+p4icW/wr -/u2hweSDyzMpTxUxlJl5ueUADVQ89F8qfFJETW6Z/vTjNLgiu3ct7rMittHi -XHe5Evn46qozMqyISQc9pejcaPDiYMqDvFFFZB3UIfu508Bu39cs4RlFPFBQ -eFvPiwbhhglB7HRKOBA+//H+CeJ8vO9lZhSU8P7f68Z0YTSgvPt52FpJCVln -ozxvEc5IWcsqUVHCh4KF/TvO0OAwqzy3p7oSnshov3YmnAa0v6Frw9uUcJhz -d/nPSBoIjYv3dlsrYSPFgPtWNA08XnjHPzuphH5CWSFXk2lA9Z8MMw9RQtf8 -6EGli0S+JU74DYQqYeujsth6whejAu1WI5UwbGfgox+XaPDEIFR6e6ISzoqn -hKik0uBvRVxdc44SFpVpJGVmEPGV5i32NCuhkZ3axfEcGoi7SI+7vVbCfY2x -Dt43aVDEXTi02KqEEmct434RrvIvahLqUsKXT5Tpf+TS4Av5YdrBQSVsU3a8 -3Z9H9Mu9atWRaSVc+PyclFtIg5f5fe5zgsqo6HZWqbaEBt92y7iEiijjMVaB -ANJ9GtD99nf+I6qMP/RL1dMJm9iy7mWWVkYp5QBljwc0eE1voLdFRRmDo03Y -WB/RoNP1FruxkTIePpSzpvmEBp/kfR+neSrjVZ83reoVNPjTXXFP0EcZT5xw -eX6JsPhZxts5fsro1RSv8Yvwkf7crDtByng8M7cvt5KIJ+FddFWEMkoqjIww -VNPg15j2/m+pykjW6UipqSX6497GinqlMk529OYNNdBgzMEiP7laGWNlBwUU -GmkwyHR552itMv5L2KQbQLj2mOiN6w3KSJeWErlBOFZEx2C9TRmdXXZLSDbT -gCfJN6r9szLu8mHg3v2KBqpe/XQeDCrYHDUp7d9GA0lB8ZIXTCoYeJjhyUPC -PM2utiKsKrggm7E0RXhBcragg1MFbWu9i3zaaVAzwGGqKaiCG2rsBcc7aLDT -AhM2FFWQ1+e2jdlbGrgpPGDP2aOCb6Vsnw100yDi1VFf0j4V9LQp3cP3ngZp -HnwdZXYqWDeskruHcF1ReEqHowoalc44NxMWIO3cvH5cBW9cKnN90EPUg/RT -4FioCoY32q769xHzpSQlTbqlgow+N66//EADbO2JLitQwX6pjPPzhB28E78b -3VHBN25hSgqDNIi7N1PoWKKC5jkWtcmEPyvVKSSXq6Bw9c0Zm480SFV2Jk+/ -UUHFmyxt3Z9oMKdyVbdsVgW7tv31LP5C5LsTzfkXVDD2eeVGF+GGAOr+kCUV -lG554L1COLVs10ndNRUMPS7+0HKYiM+A7mENIxnf6ipv/CTsustfplmIjDbM -Qcyi32jQ52XJ1bedjNFXJBiOjxD1Y18S1QEyxjKYsscTLnxQqHzdmIzqBbK/ -igkH0dYtnCzIKLHzveI04U1hz2I+25Dxux+pKWSUBhaJMis/XAkbd8Wd+0HM -y50/35eSyPiVXTL89BgNdE1DVqwukXE02GTLVcLPv09z5V8m43NFhawnhMsk -h/WsMsjI9KJJdYrww+yGy3k3ydg/WtB89BcN8lMS9C0fk5HjcEQjjNMgOWRz -enYvGXN15eknJ2jAxp9UPNNPxjpbnkLGSRokPqWrMxkkI/35/QoShOOpc2PT -n8loHu7Va0P4nHffduMxMto6nHlfTjj48I3xiVUy3m/aHxw6RYODZnJoKKmK -7/cwKv2apsF6Hxt3s7QqvnNg1N4gnO9BHbKSU8W6ircywjPEfCRWhx1UUsU5 -T6fbFoSD22xKwzVVMb3tkMkdwhf3RklWWaiimqguz0Eq0b9O/X+1A1Xx3Jn5 -kSc0Yj4natrrTqrikV/0Aa8I00XkZ5uFqGLvxo6vHwlb3PTTPhCuitIu9SEM -s8T98IX+xKk4Vfx0yinQjvCkq9rQ0yxVnCyJfDFDWMz/QrVagyq+5TqbzTdP -9MeGp86lJlV8tV3qtyxhhgyLp79aVHEo+YKFFuHJCuaS/DZVFD/EdG8/4Rq6 -+Gy+XlV8ZCGZdJXwwczosOWfqlgftfZu8wINsmvDdV5wUjBxbxDfH8Jce52f -inJTcK05Wod9kQbR37ZRwngoqFi+bClM2Jt5VV5DkIKxj48ZahHWswkVKJSk -oPia5VFfwgMjwQsJWynYzjZ/p5+wIMeJp3scKdg4XvE8f4kGd0zPRsw6U1D4 -5cD+x4Q1z6aaXj1MwWlPsW+1hPfOPukfPE5B1zNBzQOEEweWfrudoCCLbHcl -5zINVgvPm0TEULD2l55fMOFPhld7ix9Q8G2i7TWtFSK+03dydz2m4J46fjkg -vPz4ucf0EwqWbHlcYEWYT3ZwZWsFBZ1Sak4eJ2zNJiFe30DBJ6ccXVIJ1/UV -u/f2U9DeOizmJ2Er7ipK6CAFTWe6FWYJD1q2LYsMUVB7l3bdGuHFmqmko98o -OK93/OXmVeL+LNB4NDFJwcX1PTL6hOs+GYemzFCwXGHW0ZSwlcB+UJ+l4EA5 -OWYPYc8Lp9+HLFHQRer5g+OEFxsSc4RXKVj2XuGRH+HYtSy3mjUKRmeeLjhN -mEe7RPXIOgVv3XiedJ5wnn/N0sYGBc/+XXZNJvw/m5w4vw== - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - PlotRange->{{0, 15}, {0, 1}}, - PlotRangeClipping->True, - PlotRangePadding->{ - Scaled[0.02], Automatic}]], "Output", - CellChangeTimes->{ - 3.619365850894312*^9, 3.619365890747591*^9, {3.6193659856000166`*^9, - 3.6193660178568616`*^9}, 3.619366281801958*^9, 3.6193663135897765`*^9, - 3.619366430682474*^9, 3.6193664631983337`*^9, 3.619374294482258*^9, { - 3.619374357559865*^9, 3.619374365710332*^9}, 3.6193744738575172`*^9, { - 3.619546138528633*^9, 3.619546186947403*^9}, 3.6198031937548695`*^9, - 3.619885544775652*^9}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{Notebook$$13`A$$ = 0.3200000000000003, Notebook$$13`B$$ = - 1, Notebook$$13`Ka$$ = 0.8499999999999996, Notebook$$13`M$$ = 8, - Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ - Hold[Notebook$$13`A$$], 0}, -10, 10, 0.01}, {{ - Hold[Notebook$$13`Ka$$], 1}, -10, 10, 0.01}, {{ - Hold[Notebook$$13`B$$], 1}, -10, 10, 0.01}, {{ - Hold[Notebook$$13`M$$], 8}, -12.5, 27.5, 0.01}}, Typeset`size$$ = { - 540., {174., 183.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, Notebook$$13`A$609$$ = 0, - Notebook$$13`Ka$610$$ = 0, Notebook$$13`B$611$$ = 0, - Notebook$$13`M$612$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> { - Notebook$$13`A$$ = 0, Notebook$$13`B$$ = 1, Notebook$$13`Ka$$ = 1, - Notebook$$13`M$$ = 8}, "ControllerVariables" :> { - Hold[Notebook$$13`A$$, Notebook$$13`A$609$$, 0], - Hold[Notebook$$13`Ka$$, Notebook$$13`Ka$610$$, 0], - Hold[Notebook$$13`B$$, Notebook$$13`B$611$$, 0], - Hold[Notebook$$13`M$$, Notebook$$13`M$612$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - Notebook$$13`f2[ - Notebook$$13`A$$, Notebook$$13`Ka$$, Notebook$$13`B$$, - Notebook$$13`M$$, Notebook$$13`x], {Notebook$$13`x, 0, 15}, - PlotRange -> {0, 1}], - "Specifications" :> {{{Notebook$$13`A$$, 0}, -10, 10, 0.01}, {{ - Notebook$$13`Ka$$, 1}, -10, 10, 0.01}, {{Notebook$$13`B$$, 1}, -10, - 10, 0.01}, {{Notebook$$13`M$$, 8}, -12.5, 27.5, 0.01}}, - "Options" :> {}, "DefaultOptions" :> {}], - ImageSizeCache->{1084., {218., 225.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.619365850894312*^9, 3.619365890747591*^9, {3.6193659856000166`*^9, - 3.6193660178568616`*^9}, 3.619366281801958*^9, 3.6193663135897765`*^9, - 3.619366430682474*^9, 3.6193664631983337`*^9, 3.619374294482258*^9, { - 3.619374357559865*^9, 3.619374365710332*^9}, 3.6193744738575172`*^9, { - 3.619546138528633*^9, 3.619546186947403*^9}, 3.6198031937548695`*^9, - 3.6198855447926526`*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"(*", " ", - RowBox[{ - "Combination", " ", "of", " ", "standart", " ", "sigmoidal", " ", - "function", " ", "with", " ", "an", " ", "exponential", " ", - RowBox[{"decay", ".", " ", "\[IndentingNewLine]", " ", "They"}], " ", - "ate", " ", "combined", " ", "with", " ", "Unit", " ", "Step", " ", - RowBox[{"Function", ".", " ", "It"}], " ", "is", " ", "extremely", " ", - "slow", " ", "in", " ", "R", " ", "computations"}], " ", "*)"}], - "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Clear", "[", "\"\\"", "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"f3", "[", - RowBox[{ - "A_", ",", "Ka_", ",", "B_", ",", "M_", ",", "P_", ",", "alf_", ",", - "x_"}], "]"}], "=", - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{"1", "-", - RowBox[{"UnitStep", "[", - RowBox[{"x", "-", "P"}], "]"}]}], ")"}], "*", - RowBox[{"(", - RowBox[{"A", "+", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M"}], ")"}]}]]}]]}], ")"}]}], "+", - RowBox[{ - RowBox[{"UnitStep", "[", - RowBox[{"x", "-", "P"}], "]"}], "*", - RowBox[{"(", - RowBox[{"A", "+", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B"}], "*", - RowBox[{"(", - RowBox[{"P", "-", "M"}], ")"}]}]]}]]}], ")"}], "*", - FractionBox[ - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "alf"}], "*", "x"}]], - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "alf"}], "*", "P"}]]]}]}]}], ";"}], - "\[IndentingNewLine]", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f3", "[", - RowBox[{ - "0", ",", "1", ",", "1", ",", "8", ",", "10", ",", "1", ",", "x"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f3", "[", - RowBox[{ - "A", ",", "Ka", ",", "B", ",", "M", ",", "P", ",", "alf", ",", "x"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "15"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A", ",", "0"}], "}"}], ",", - RowBox[{"-", "10"}], ",", "10", ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", - RowBox[{"-", "10"}], ",", "10", ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B", ",", "1"}], "}"}], ",", - RowBox[{"-", "10"}], ",", "10", ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M", ",", "8"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"P", ",", "10"}], "}"}], ",", "0", ",", "15", ",", "0.01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"alf", ",", "1"}], "}"}], ",", - RowBox[{"1", "/", "100"}], ",", "10", ",", "0.001"}], "}"}]}], - "]"}]}]}]], "Input", - CellChangeTimes->{{3.6203542424307966`*^9, 3.620354253238415*^9}, { - 3.6203542868853393`*^9, 3.6203544563790336`*^9}, {3.6203545213947525`*^9, - 3.6203545513614664`*^9}, {3.6203545985681667`*^9, 3.6203547222862425`*^9}, { - 3.6203547569502254`*^9, 3.6203547990796347`*^9}, {3.6217788854922705`*^9, - 3.621778962509676*^9}}], - -Cell[BoxData[ - GraphicsBox[{{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJxll3c0Fo7/xe2VPR6beDRkJGTG+20XIoqojAghM5G9VZIQmaFBtISyfUJI -CNkiFRKPvaXw7ff376977p/3vM49514ROw9TBwoyMrJD5GRk/6frox8bxW4n -q6vsFhxX3zoKvdk8/hqD3qDXI+IlxakAyNVpxzMYAVfl7Y6oSiuA76lnA5SD -STAQnUdfaqcAbPPcSb8HHkHAwRAunk8K8K3GyGN1oARoKyoZBp8qgq4Y6evS -QANQCrqyHPNVhienjCyK3d9DX72EvV6yMpAHl3R7UjfCkZFf+31LlKGmL+DD -gmwTtHXey1NfUIYjN/YUz935AF7CJoJhLiogQJKMmtZqB1eZgBskJ1X4PaCY -sjjQDXw/Ci4mh6pBhSyd7VPxHvgKfZ0meWrge2fwkHVgD+xhFguHNjVY1vSv -axPqhT2XBZ+84FYH0suqmXyHPogv96vtLVGHkUg1TauVAdjapem7twxQd1hr -4SPzV4ieic7/ZKgBIbEcVWG2XyEta/Ligp0GHPs5HqVY8hVIarecpfw1oDIj -ii/PbBTqyM3md/I0oIS6WScs6xuYtLp++kOmCd1uYkb8XD/gig6nX3CNJrzX -evrk86NxeGHVSSjS1waZ+KLpjZZxqHrXlUOy04bswXJpoYVxGDQO49QK1Ibr -bi0VLqoT8CNnXd/ghTZIp063U/ZOQJ5NRnUNiw5kkCTWjlJPwtVLr4s0R3TA -M/G1TobTFDBS3+odjtOD0eGK2Lo7U+C3/rd7q0APDPbXd06WToF/uaeNapMe -7K/+bClHNg2XIr0bRHb0YHhi2a09bRqun9wjcNPrOOgqHb2/85EE59f6ub5Z -nwCBb5WTdpJz0Jp0XOj7GQMgW/FK+2gyB+PXZ9q++hjABM0hfRm/OVALNBon -SzGAl9IZL7fr50BUEXfK+wxAPSTAJ+3sPLxQcauYtzAEG0FVio6IBajoK4/K -czwJn6VG47NmF4FnnT03ONcYGhWrfhnvLoLKu9G94U3GUKZxHynZl+AVG0wV -kYwhw8xo2VlxCVYpAxla+E6BXfB/ZooRSzA7e1btteMpWG7PFujmXoYZqvse -5RQmwHnF5hmt1goczVNZvWBoCodoHzefOrsChvLpbGn2poCPJsfSXVegOuTN -k8UAU7gy6MYvmbwCT4nO9VuFptCoHRR36ucK1N7lWPWlPw0+gunu6TdW4YrA -fJ9Mx2no6eiWlWhfg5c3Wy7Xe5jBlDPB2Of7GlyTcxbbiDWDHapzrrWra6Dk -wGdtnG8Gh1R/PDYWXAfajNNbTl/NIOLpAqeP+zpUl5cWqJ80B9kwxo0a1g3g -krATL5Q7C0lHdKuNzDbBvyFmsULAEg4PW+qpXd6EfPGr0ddULKE9yq1HInAT -eBOHNc0sLIFmMHmG7uEm7CNn/xqSbAmBIeP872c3wXL1HDGU+RxcagsLUoz6 -DeNO/aqW9OdBwaFabW/pFpBZLkkX8FtBD3PnR+bmLZgRaJsSVLcCz4oxs+3B -LWD9nny+xtYKnu1hcP+yswW37f9K+ORbgXCJRXay/h8QZLvZ2CtnDXS7azt0 -Y39A5ZnNSpS5DQylydQtsW7DMsOWWOSoLWT0PGfx3bcN16iyDh9YtYVzzAds -tpS3IVAnen6S/uK/fgruUNhvQ+q9HELV0Yvw3Z3hGOfbbSAK/9goib8IU9oT -5QqWO/CmP7KHWdcONhdTiwIf7sLdGyWKfm32UCnBsbv7dheM+tYqhibsIcAx -3iiqdRdGRMNKL+zYw9/hqLm4lV2oitqobDxyCcLGK7g6RclQVqkpWyTjEkR1 -5J3+7kOGKlLTdPJeDnD7SWgnBS85/nfZ/fGishPoyzuzcxHJkWmYnyhx1gno -Gk3NDkiR4xWaceNYHyeIGt83bKBBjvySf53Ki5wgSLR9MtmZHPduuj/8fOAy -uOfy7OyvIsdrgS3uh4WdwSSrWNLgPAVuuFZpT0q4AqtkpoeVAwVaaWj4cxi5 -Qkd1VImHBwUWBj2JdvV0Bf3hs0rJkRQ4L/zwT9ZbV9Dk29H6+pwCRTbVNfdo -XgH5NP3zHn8pcKw8WUvH3g24k8dv3XtAidT8x4NqWzyAR+Jt1GY+JV56v1eU -fN4D+BpiQq1eU6JmkfL+CnpPEFoUv3bgPSVuSh39e/mwJ+wz9LStnqJEv9O1 -wr2BniBHta0wLkeFLlJBs5M8XmDsQ5iQbaXCLCcL8qpL3nBqz9Roag8V7h9J -OqIX4A2mjyqH/o5Q4aBcX9TcXW8w77rQ2bxAhXT6jXQx1d5gJfm46hwXNd66 -3lY9zXEVXCcOJ0bYUqN2fdBUysercOPMCfXudWpcls9RtTxxDfjedPBRkNNg -2edI5YuXrsErjjMbR/bQIO1I4oXbodegv9v6daIwDbq/ZazVLbsGYiY+oibH -aXD8vliO9T5faDiZQ9OVToNqZ8JOKzP4wbbuWsenY7Q4fdGVdWjhOiTkBzzf -1qXFdQkPnyAWfxCjIbspZUKLPZf6avQO+4NhE4PGHQdanOUqrjf38IcMrb2l -hvG0yKqkzHthyR+U0CC17Rst1lfefiuzHQBXlR/afIygQxfXl1o+R4NBP5d5 -1SCODnOXksgoLIJBlDboZkcKHbpdojKtCAiGrl7z4p4COpSlTHLPqQsGaU9G -ytEOOiRK8v13wSgEpvL98pf56PFnbdVErVcoXOA0muMvpcfR9aXw6tkwkAus -Ds+uoUcqjZdy1WThwDB2kCDSTI9a08JnujnDobKIEvYP0WPunPJJPbVwIBhU -Jsjs0uOjcFV+47vh0BUuJq9jwID0U5p284oRoL2wFeA+zoBRh3FMLisS/I8n -H6qfZcCd2iLV8ZJIePVQ6gvHOgMqToYlvvgYCTxnbJUr6fYgAzfv0zsbkTBb -0bRBKb0HdbCmJO5MFNyLSPBJv74Hs/dq+adxRMMY1373RiZG3Pju8P2//Bjg -9ngnyM3NiG7e9LVTdTFg2GLxyXkvIza6NATIDMdAWcBtSRY5RnRmnBPiY70B -sd8WSZYWjDjTK1dhGXgDZAurnRYeMaKlfidnwdmbEH7M5CKfEhOKu5TIXD8Y -C8ets5cVNZnwT12ej9yJWGAOm4k0M2RC9rV4MW6XWMh6H52fYMuEcg4tsRYv -YqFCv2qG5hYTlrYldrTI3oZFC6LvyhAT0uxWDcbqxYH1tbXY9kBmPPnR+et2 -YjzsS9UUIEUz40WqJmrxivh/+e++pE1gRrEHyB85Gg8Bf8W7NJ8w44DIqblG -ibuQEmnNVdnOjAupVyyjW+5Ce+KHnDxBFizpcvkvJToBVF6lvwl5x4IheU9r -zIYTQXugY3u+hQVNu6O+cS4mghEZlZ5NNwsqNN58NUOVBPam7kPwkwWVePZV -fpdOAt1AkdAwalYkbzSxmYlMAk/h9ccaEqyY0V6rmiF7Dxqdcube+7JiXMJb -MaHHyXDirzJ7UCArjgpvKNBWJ0NHQq+CfBgr6r5ed97TkwxDlfRhT26xomYu -e4EDZQrM7/Fhj85ixVvdOo2XHFKA5/VxRd0GVvSqKxx8Kn0frmwuhbUwsWGt -kqMz30AqqHg5EibZ2bAhkZZzdTUV6EhfnlPysOH2kLfSMnsa5A2/71cXZcNZ -bc60C8ZpMPpfiuRbBTbkm6a0nv+YBsbRyoMPbdhQ99fbRYnmdJBlDz8cWMyG -IsZ7KvVGMoHs9lpjWhkb0kvILVPvZkIHpcu5smo2HEyM05kXyQLXNdPopSY2 -zLQb2VK7nAVPBsWGnb6woTTVddLoehYQclpizlCyY0S53ycTgWz4LcE6KmXG -jh073sGvtHNh/QFfuNw5diTxQ1OYRS6ssuwTU7ZhR+e0BkeXK7kwv6Lsou3M -jpZX1AWjknNhrNp+/VwwO0466oj3/syFVoNy5pt57Pi5nSJ5O+4hZLhaw9ga -O041q6gemX8EqV8vj/3aYseMD60UotSPIdn4avTcLjvaJZyPlBJ4DPFyN9s2 -6Tlwf/NjkRT9xxDxp/gsixAHMomybRQWPAbX29Sex3Q5cPZEpi+lyxM49vxF -7v37HPjN8uJxXYp8GN77PEcnkwNjt0OZtvnyIeB+YfZqDgfmMRBMOuTyoTw8 -P8u0kAObflFX1Tnkg6xFbhpzDQcGGkSN/2rNB3Hq5ISYHxwYpOVuZp7xFAg2 -gWG+kpzYn/nmqptRIbzt9Q/dd4QTLaKs1/JdCuGM/vWQ3qOcaNXPZbATUwhJ -R68FyQInxjzhHKOpKwQmRo/r8yacmOpG1xEh9wyoKu08Hf04Uekkn5n63uew -xK5va97AiekHZ5zusL2EwSuiXS4fOFG532nJW/4l1P3bKqHtnPj93FJP6NmX -kBDwXLignxMfNB5TY81+CTJjjN9+kzhRV5Gjj0XqFbgXd1o94ODCtJR2qhem -RUAyNjs/cYkLN+qXGMtGX0N3oVTbpjMXclZ1YePya6iipFFl8uDCk3Tv06do -iuFWeRmfgj8XNs3cYfQ5XAwHhXm+3LjDhYF1bnJp4cXgNP/FQqKMC6ddXiQc -OFQCE3G25t60BMy0qYpdjSsFd5KkqAwjAXfVmwYcH5XCht7vuTlWAprIaL+d -Ly8FBsqkaGc+AvI/2OsE46Ug4//+ja0UAbn+DN6ZVHkDwQ77OYxPE9CLZljm -/PwbIKjPdkrkEFDmKc9nC8cyyM2syJx+TMC5N3+FckLKQPx3lNPTAgJeTmGX -2b5fBsfeCO6KlhCwTKl9jKylDOwPGUvzNRHw3Exg4EGJcnhNKImjmyGgvwUz -Fd16OZxY8DvxU4Ebrw3kVkdlV4LAEaEYumPcWELR2SxTUwnz3o0NEhrcuKYX -eObPUCUkr7Me8zbgRvMAcpNZrioY3S6U3rXhxijyRxp4twq8GUc4eG9xowg5 -Xcz7G9WQIY6jhsPcuD1x1bg7oRZm7emuvgnlwSPn98mPUdbDfLZ27bsoHuwO -G4+JJtTDwlAYbdstHtQaHONXEa+HZePfmT/u8eBD3y8yA0b1sKFKamQu4MFi -5xrysYx6oOBsJzh38aBhJeOyhkID8DberRIU4cWrKc5sjgHv//1XboobDbzY -RHvr5C/lZpi20ytQ/cCLDEnLf2KNmyHuoZ/RYhsvmhf16YBDM/QIDWZY9vGi -YNHRmqGEZrDlTZeTnOJFOZkfuf1TzeDPzO/wmYkPnUsng1YyP8CLTaEWfks+ -fJkRZNnJ/BHYP+2Pf73Ah1SEQZ7gA+0gcLPolIKCAEa3tN9bHvsMaRLKrBxO -gv/425L9XuuDVj6NoyuJQriUQaCUPfsFVAQaEg73C+P5iLGjjRbfgJnykc/F -iL3op765W0EzBkLhwscs94tgKvS2kAVMAP2+C2WmH0RwwrmrnPHVJEir8Rb5 -WYlijOG6gELIFJQSnf9Q2Iqihklwa0T0FCgxVOrF24niu1PPb7TGTYHmgMX3 -J06iKFtwT8ogcwrMvdLYur3+ebtyNraKKQjN4/aRjBHF7qetha8Wp6CLiaD8 -45Uo2lPEm0tbT4P3KPt7fTIiGjR+NNU+RIKW5gu1zyiI6E5UDZ89TAKhovxy -BmoiJh60d0k4SoLWUJUXrfRE1Ko192xDEoiK2KXocxDRLfXkJeazJPhsX+yk -v5+I61cuf2iJIIHMtDGjviER61wd5bkHSBDzOZ3mmREReUPI3ymNkGCkcpyM -wYSIC/3xB81/kOBmrN/aRzMiCsewZkfNkOC7RM7oCRsiDmU6qrzeJUGC+/zr -E95EvIaG4VoHZmBhJc7sRBoR52sZlByuzsDI4EPzBxlELI/9rTfvNwOttWVn -l7KIKCpUnnA1aAae3Phumf6QiJfF9Hu8o2fgHL+89fQzIqb0kxlqp85Ak+aw -461aIsax+sTJV81AyYFFp6/viFhsTLUe/t8M5DJSOx9pIKIZNcubtoYZCOiX -dh1qJuIgf7P8mbYZkHGJ8BDvImJMV0Sg8sgMZCaKX/84RsT7ZjpV5tszcNNX -3V/wJxGlGbj1XMhnwff86QCvX0R0Id/UCaCehVP7goN4Z4lIkRr98C7TLKgz -JAW7zRMx7BMVRQrbLEgs5IfULxLxgovSyH2uWaCp7ApzXvuXJ92LOkFwFlYf -/Ayv3SCiyMYZixsis/AjYiuCbYuIHLoFkoH7ZqHDiSXK4e8/PlVWUa7is1Bj -KBZduUNE5+7LFy2k/r//H0tZdkY= - "]], LineBox[CompressedData[" -1:eJwVkWk41YvXhh3VKUIyJTmG2uNv750InSZrociQDCWUyNCgaJIpJPNcRKYO -mxB/Q20JIWSXUGSmKEPHPKQiMhyv98O61pfnWvf9XEve5oqxPS8PD0/L6vz/ -fiBhEHR2DQlvztV2r6yMg/+iTfDzdSTc0Lr80qN3HK71uYbwbSBh0fzf9tsq -x+HMm/BQS34SdgQ9zOhPHgf9/6WGcQRIeCXay6TBexwozu8izDeT8OJLPl0x -GIee9bLR2VIkbDzhP3nq1RhoK9Qk6rBIWPnAgj/v/SiY/XnkeJMCCWm7tFeI -3FFw+FwneFKJhNRZYqw5bBQiwxp87PaQMPlDZmuC3ih0DLedu61OwhZdsBZo -GAE79lel5ydIGM11DjLsHAbfzX+8k/Mm4fkc0i/eDUMQM+Lr/9hnlT/W64AT -g5BZuVZtpx8JS1+t+cRuGoR6xw2c/cEklC68NleXMAib6zfFmUaTUL3I2aGE -NQhsXxnb8EwSup5eV9V36l+o+Ll/ca6RhM7PxG6oNQ1A6vtiG5NmEg6zM67I -lg6Af8bu+vxWEtoufXGSSh8AnZOMBPsuEk6Gbl20dBuAtlKpPa39JLx2nba4 -ZfsAjN35fT1/hoTxMWpRBz36QUK4eMxOiowp2798DDjQB79HlIyrpMkYefBA -uBO9D3pe5b/YJktGTWRwHCX6IPVGZnDLDjJ2dEa2WPb3ArMzloIsMr4tE3Ny -1u8FjWRnm21IxsMvT6WVEV/Aian0qdmejOV3f2eb/tkDN+ekFqwukFGw1edx -ykA3eFavkZpyWL1XPEGTqOyGMLN2c/6rq3mH4g+hbt2Q5e/2UcODjOMZIufD -Jz/BQE9F17NIMh66v9+jsvcjmEbodcYWk9EoPdf34tdOsDRTnttRSsb5eQue -+dedYLfjry0F5WSsypTRzcvshBsvpkwbX5HxjKSVZ5hDJ9wbjOr48z0ZqYX1 -vJtnOqD+YFe7a98qb/l3goRQBxycsmsz56PgMSJDv/Z0G0iUaaeVb6SgYNMt -vvBDbTAVRFyVFaKgj3pG8mVmGyTLT28cFKEgV7Cm1m+pFf47fkvzqjQF/R4s -2v2Z3AqVZVEFgQoUtEyPCYShFlAPqbj37AQF5c4nPE8JbQYp09QzEmYUTHCV -+lVxsxl+bPdnultQMNb326Y562ZIK9epVbOiYHHeJXPOnmbgnW5bqbtAwUwX -RWG9oSbgmo479d2ioGy49cBv7SY4TJI8KphGwegYe711exuhcPKNvF06BTcT -u2urxBuBVHzjV2nmat71weWMHw2wVvdDyoUcCk5ZHrw8mtsA1VcCf3ALKUi6 -KCV2ckcDqJXNxHm8paBo8PB29pb3oGrcPDA8QUGT1NytedL1kLntdrHaNwre -lp6OU/6vDsQHmeGx3ym4nvI+vbe3DmZcg1U0f1HwGSPwdcqjOij4B4KTVyj4 -SnhLMpdZBwqjeawTIlRUk1Q853K4Fmg+oW7Ve6go3DhBcb1bA+X7M9bp76Ni -0pr3ymPXa8BwrjK6/QAV249r2N0xrQE3p9ncEXUq0uSOXNsmUwO1p637hfSp -OJ2bZPQ7/w1c2Kuqe8qait7eN4+rdL6G7B/922aCqbjXNuK7L3JBLX8pyyuM -io+VptvINC60XNyiuj6SijWFXhHDm7iw0KdvKHWfiqZuqgM1vdWg+6HYH/+h -oujO/P5pn2oYy4mYDOdQsStiQLS59hUQ9nsryZ+oWDsW8rLasQrubjdY8Ouh -ou9BcycLiyqY6bVRGfhCxbbDWgJ82lVQYRGek/yVuvqPQ4/+J1cFxoa9cVsm -V/vcykmez64E9/0BV/l4aGhk/I4c4FcBtZub5SfJNKyQ1NE0Mi0H1ofB03o0 -GorfMszuVC6H6PCFuGyChsythYkBouVwej1J6JwCDdu+jtudbC6Db0suC1/+ -pqHb6/TgBoMykBiRbm3So+GT/YJ6PYalYF9xwb/wGg1T936/YXi1BKYcx1wP -O9PQde1nXj6jEnD76/KlDhcaJjh5JY4qlkCo5xXj+Vs0nAqmbdk+UwxP97nI -HQikYeKIf5mDRzEsFfmVcxNp6FHxi6UQWQTRT5JnWrg01OMtuKTSXAjSVnIj -tjU0TP9LO+ZeUSFkCKV1z9TSMPdtR4fgw0IoccyolmikIX9p0KLj+UL4zMi9 -Z9FFQ+PrNfxVK8+AlvWCOTBBwyC+kV2Bqs+gkt1m912cjjVna5c9yzjQpy9v -5SJJRxkh4zDlDA7w/HY0X5Sio0ba3q0b7nJAw2i9wTo5OrI+Rmbz2nKg5o99 -e7YSdPz4Y7hBXYAD721S+NTV6GihQ8d626fwieSQf+8cHQ+6m97ep58Pi01F -WeIX6fiBf2sjlZIP0l5rHiVeouN8UMvMIZ58sGx/GJd+lY6Kur8/Cj7Pg76A -Dz4lHnQMYyn6tsrlwfCQsklfJB0lmUsqizy5MJO1MqdQTMcxo1l1pYFsGDLV -Yoe8oON+HaWYj9xs6FobceRrGR09P8d4pGdkQ5m1VMKDKjqSfOUt0y9mg6+k -yr7lOjoev2I5q/0zC4SDHTzre+iYeP3btwWBLGCeb+ex5yXQQvFY6LJZJsiI -S2dXrCXQgP8cqV4tE4S5NkaS6wl08jrj8pyUCT9lplPfbSRQwXJTwfB0BpR2 -8GsqiRO45rt1WlFoBhzRwoAVKoHPXjIqernpYEvO4Us8SmD45ju91/Qegceb -Mw4UQwLruLH140qP4J69yLsCYwL3LhH9/lKPoDzDPfzdSQJ5NaJ+iI6lgRjl -yKblswQaNlhYpoamQQ1lUMzahUCzcdm8k82pQNBk5SgpBE6Lq3bsdGYD1rb4 -FKQSeLklVfqwFRtMLwT2q6UTOKH3dO6mLhv8sibTTmYTuNvq5b8UeTb00MrJ -Ic8IZGsbDvmlpEAk3Zwx8ZZAZT4vKx/bZPhO3FctmCYQCwV+rGx6CF3v8bDo -TwI9W1W+caaSoMppysR5lsDCxxI3whqSILJA55rqAoEHDe6bFIYlAbGPJ7d0 -DQMlptNsu/iSwEbHUZ4rwcCY3Q/a1AUToe28tkDbAQamDNJu2yvEQxnfrJQK -MFBJTMuPIxIPaTlp9AfqDGySWxsv+ysOrn5b1jLTYiBVoMfo7Ms4EHQtvNNz -jIEcxYpMl6NxoBUoP/evDQPHqusda248gJL0xf7ZYAZ616THTnfGgKqm85xu -GAN1l4pFnlbGwPP+CQF2BAMXRu69DXscAwUyX/boRjPwaL/9iTjXGMiNr4pI -TmJg+POcG4uSMcAOD9irnc/A6jjpmm7r+xDivCkqvpWBMp/PxZHWRsMG0eDM -yXYGHjPiHtj5LQoCOTzlGl0MzF5cp2X4KQr8p74PTfQwcIDVLfL5aRR4X2g7 -oD7EQH8LDT8Jqyi4fjphZHSegVoW+2KnK++BxaEduF+GiR88jXQFyXdhuW2D -EFeOiQfzeE9ULEcC236qW3cHEyfUrZfYHZEwFPjC1YLGxK8u85SF4Ei4Xnfs -ibsSE0X5Ssiz3yIg1MBTpkSLibdU9eO7asKh1Kx9SfkKExM3Pd5Z9iAULEdL -68uvMVHfW0aTeTMUeDzY8YecmRhicKbgrUkoaCVdUj7uzkSn8cx3nptDoeXz -H5dv+DGRL1tK/lNkCIzZ7OzmxDFRwMZ8andUMGxzDHqxs4qJI6+EptY9C4TI -lXMqYdVMrEgb5NeJDwTeaC3O8Gsmmpk7ZuZ4BcJY0bpsdh0TCTPTN41HAqGU -xz9epJWJpdN+ycF9AWAR4+P6a5CJ7f88JHLEAyC+zF2lYiML/+VejiuO9QMB -A3OOlBALmeVVPRnefuDT9zfLVZiF0pKBBk/O+8GFdfOkXeIsXDLw3SO6zw/2 -HHMRS5Nh4e6nmlnb+nyhY+D6zwBFFsbbWdSIKvqCOP9lztGTLNz66qpV46AP -pGt6eUybs1Ah68qXuA8+oOQVqXn/NAuNT2Xc837hAwbTT9u7zrJw13HL2bQI -HwjsmP1te5mF/GIxCZp7fGA+7baGxx0WcvhjXYNkb8On/fdbM3NYyJD9bBaS -7QkXbqY/1Mlf9d1I5nb7ecKv/Of2E09X+frCz63OeILI9q45xSIWHtlRxFgU -9QS9DX9Jv6xi4egKycL9zi0ob8u0a21noYlZvNcpew/QFSphuXSt9tMRic3S -8IAu7bpfkt2rfrpJOjvkPGCmdDz4TB8L37UZJrK73YGVuitvdIyFL0bzzhQe -d4fyT+ou4ZMslOru6Du/2x10xUxAYXrV12GIpi3iDueCbjY7z7Lw+n8fScFN -bjBTFZi4ZZ6F5Xxh50afuIHvQpxt6QILvefLQm7edQNh5Wym5TILW7WFTJlX -3CDZsXR2ZYWFwZGO9wWPucH/AcuDDvI= - "]]}, {}}, {{}, {}, {}}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - PlotRange->{{0, 15}, {0, 1}}, - PlotRangeClipping->True, - PlotRangePadding->{ - Scaled[0.02], Automatic}]], "Output", - CellChangeTimes->{{3.620354463539443*^9, 3.620354484847662*^9}, - 3.620354524134909*^9, {3.620354613700032*^9, 3.620354635679289*^9}, - 3.62035472346031*^9, {3.6203547582362986`*^9, 3.6203547998906813`*^9}, - 3.6203902386990657`*^9, 3.621778922788404*^9}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A$$ = 0, $CellContext`alf$$ = - 1, $CellContext`B$$ = 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = - 8, $CellContext`P$$ = 10, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A$$], 0}, -10, 10, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, -10, 10, 0.01}, {{ - Hold[$CellContext`B$$], 1}, -10, 10, 0.01}, {{ - Hold[$CellContext`M$$], 8}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`P$$], 10}, 0, 15, 0.01}, {{ - Hold[$CellContext`alf$$], 1}, - Rational[1, 100], 10, 0.001}}, Typeset`size$$ = {540., {174., 183.}}, - Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = - True, $CellContext`A$924$$ = 0, $CellContext`Ka$925$$ = - 0, $CellContext`B$926$$ = 0, $CellContext`M$927$$ = - 0, $CellContext`P$928$$ = 0, $CellContext`alf$929$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A$$ = 0, $CellContext`alf$$ = - 1, $CellContext`B$$ = 1, $CellContext`Ka$$ = 1, $CellContext`M$$ = - 8, $CellContext`P$$ = 10}, "ControllerVariables" :> { - Hold[$CellContext`A$$, $CellContext`A$924$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$925$$, 0], - Hold[$CellContext`B$$, $CellContext`B$926$$, 0], - Hold[$CellContext`M$$, $CellContext`M$927$$, 0], - Hold[$CellContext`P$$, $CellContext`P$928$$, 0], - Hold[$CellContext`alf$$, $CellContext`alf$929$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`f3[$CellContext`A$$, $CellContext`Ka$$, \ -$CellContext`B$$, $CellContext`M$$, $CellContext`P$$, $CellContext`alf$$, \ -$CellContext`x], {$CellContext`x, 0, 15}, PlotRange -> {0, 1}], - "Specifications" :> {{{$CellContext`A$$, 0}, -10, 10, - 0.01}, {{$CellContext`Ka$$, 1}, -10, 10, - 0.01}, {{$CellContext`B$$, 1}, -10, 10, - 0.01}, {{$CellContext`M$$, 8}, -12.5, 27.5, - 0.01}, {{$CellContext`P$$, 10}, 0, 15, - 0.01}, {{$CellContext`alf$$, 1}, - Rational[1, 100], 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{967., {218., 225.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{{3.620354463539443*^9, 3.620354484847662*^9}, - 3.620354524134909*^9, {3.620354613700032*^9, 3.620354635679289*^9}, - 3.62035472346031*^9, {3.6203547582362986`*^9, 3.6203547998906813`*^9}, - 3.6203902386990657`*^9, 3.6217789228974104`*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"(*", " ", - RowBox[{ - RowBox[{ - RowBox[{ - "Current", " ", "double", " ", "sigmodal", " ", "function", " ", "that", - " ", "we", " ", "are", " ", - RowBox[{"using", ".", " ", "\[IndentingNewLine]", "An"}], " ", - "example", " ", "problematic", " ", "case", " ", "is", " ", "shown"}], - ";", " ", - RowBox[{ - RowBox[{ - "tha", " ", "case", " ", "is", " ", "coming", " ", "from", " ", - "original", " ", "data", " ", - RowBox[{"set", ".", " ", "MOI"}]}], "<", - RowBox[{"-", "\"\<500\>\""}]}]}], ",", " ", - RowBox[{"Cell", "<", - RowBox[{"-", "36"}]}], ",", " ", - RowBox[{"Group", "<", - RowBox[{ - RowBox[{"-", - RowBox[{"\"\\"", ".", " ", "Note"}]}], " ", "in", " ", "the", " ", - "original", " ", "function", " ", "A1", " ", "is", " ", "not", " ", - "a", " ", "variable", " ", "but", " ", "fixed", " ", "to", " ", - "0"}]}]}], "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Clear", "[", "\"\\"", "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"f4", "[", - RowBox[{ - "A1_", ",", "A2_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", - "L_", ",", "x_"}], "]"}], "=", - RowBox[{ - RowBox[{"(", - RowBox[{"A1", "+", - FractionBox[ - RowBox[{"Ka", "-", "A1"}], - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"A2", "+", - FractionBox[ - RowBox[{"Ka", "-", "A2"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]]}], - ")"}]}]}], ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"$Assumptions", "=", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], "&&", - RowBox[{"B2", ">", "0"}], "&&", - RowBox[{"L", ">", "0"}]}], "}"}]}], ";"}], "\n", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"f4", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", - RowBox[{"-", "\[Infinity]"}]}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"f4", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", "\[Infinity]"}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - "\[IndentingNewLine]", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f4", "[", - RowBox[{ - "0", ",", "0.5368628", ",", "1.454867", ",", "1.084971", ",", - "11.11337", ",", "8.529749", ",", "1.13329", ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "2"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f4", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "2"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A1", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A2", ",", "0.5368628"}], "}"}], ",", "0", ",", "1", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1.454867"}], "}"}], ",", "0", ",", "2", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1.084971"}], "}"}], ",", "0", ",", "10", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "11.11337"}], "}"}], ",", "0", ",", "20", ",", - ".01"}], "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "8.529749"}], "}"}], ",", "0", ",", "10", ",", - "0.01"}], "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "1.13329"}], "}"}], ",", "0", ",", "10", ",", - "0.001"}], "}"}]}], "]"}]}]}]], "Input", - CellChangeTimes->{{3.6203902991691523`*^9, 3.62039044910437*^9}, { - 3.6203905099174566`*^9, 3.6203905203734727`*^9}, {3.6203906920217247`*^9, - 3.620390700537737*^9}, {3.621779193940913*^9, 3.6217792255397205`*^9}, { - 3.6217792592266474`*^9, 3.6217793049182606`*^9}, {3.621779424513101*^9, - 3.6217798679694653`*^9}, {3.6217806627709255`*^9, 3.621780698076945*^9}}], - -Cell[BoxData[ - RowBox[{"A1", " ", "Ka"}]], "Output", - CellChangeTimes->{{3.620390427329338*^9, 3.6203905219734755`*^9}, - 3.62039070258774*^9, {3.621779682955883*^9, 3.621779738597066*^9}, - 3.6217797960013485`*^9, 3.6217806586376886`*^9, 3.6217807156299486`*^9}], - -Cell[BoxData[ - RowBox[{"A2", " ", "Ka"}]], "Output", - CellChangeTimes->{{3.620390427329338*^9, 3.6203905219734755`*^9}, - 3.62039070258774*^9, {3.621779682955883*^9, 3.621779738597066*^9}, - 3.6217797960013485`*^9, 3.6217806586376886`*^9, 3.6217807159569674`*^9}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJwd13c81d8bAHDJzsjesu+99ry28yANyoqMiBSJMrKKykiSJEoZ2YTyzcwK -EalIISojs3DJ3mT8Pvf3z72v9+tzPuec53nOPfccEWcvCxdKCgqKCeyD/L02 -1Ppe/H6urtX5jbD8t1O6Pek81/V6w9G5g4cqPlBM6wJnhzNP7yM0L6JZ+9Bg -WjfA7OXP/b3ZyK3qFKfk52ld1jnuR5s/y9DQRNPnhLG/usN1Jl4rP5uQhnRf -HIvKnG4KJ/cFX+r36KPFplF22JyupeewzZJSC2q9K6q33TGn23bIW3/hwUd0 -LSxonMlrXrcyPJ5zxqAdveGgyvM+s6B7RHx6cPHnNxSmf4zuUdWibq6ZiU2p -ZzcqyHxDwT6+qLvvZtk3b+oedLf/xU869iXduu9BH+eVvqOlLxk91t5Luop3 -D5TOPviJtO7mpOcqLOsKTMtETBn8QovdIo4HW1d0N3+qPVn4OYYmhupDEp03 -dKuV6JzyCb9R1gA+OSJvQzfgQa/U2eDfqMbAkST3d0N3Sf9642ehP+izBKt7 -c8Cm7vSrN3/zXMaR8uBZRlzilu6v2zr6DsuTiPKbN1PL7rZuyhATE4chCZUW -/X54z3RH10Zj6GfbUxI6VM3MJJ+1o/t97tYVdc0pJHKYvlXy6K7uV9vGJPaw -aSQhtHSbJX1Pt1HeYL6VeRZpbf55QauzD92KZn8T6jSLOm11zzBe2Ye0x39H -qJXNou/nx788TduHalIi+J5bzSH2HPcv+hSUqIz6g2Fo6jziDJxbE26nRN+u -iJvwcy4i0WO/Z8xDqFCzQX5uV/YyGjJRT7Z0pEMKscVT65+W0SXi+V9l6XQo -vbdKTmh+Gamyh45UDNGha1c+VbtrraD8Ua3REid6JJc41b6/ZwX1lYaWvbzM -gFKmpVdVqddQa/vhSa08RkSnqqJpL72GFJ45/KxeYET+Idoh4eZr6DSB6LOu -xYTMOE7Sd6StoRghxTvvepgQta6noBtxHaWmd0W8Y2FB3vElhikXN5BPkUFM -9o+DaGigOrrxwQaq35Hgd6dkRcaS7zomyjfQ2cPRN3LkWJFkbZetMsUmqsgM -tvWOYkUDf5autCdtooxhr6THemzoiLrq093WLWRvsWzN/pkdCQzXTDjL7CBZ -v4lCOMyNKJZ9klrNd9CvvvbTD0K40R8aKSOFwB1EcWlW1KeWG72SS3m1824H -sSZq4ahUeZDurSC/JOtddIDbezlcnhc5CmpRfg3fQ80mxRbHDfjRYcXlcpWC -PST+4Z9+SxQ/whsWujz7sodyD5YfW/rKj65VPrigwkgBbn3Tz10dBBAM7Xzc -Z00Bqz+Q8N9wQdQlOxSbOoM9H2RUp1k6hN6rvZk03aMAhrwTT6tFhFGl3lPY -z7YPzHzfdXw3EkYpViZLl9T2Qd8h81zjdGHkfPOtlVr4PjgsFeuibySCltrT -Bb5xU8Ln1pke8ypRxHHZ8SWtwX54kveFTndOAknR5nwws94P6Y3/msalJBFk -T4wle+wHoumYlqqbJLrce4VfJmE/dAzKFX37I4neH74RYza+H3Zw2bFaEzjk -J5jsmXyXCq4fXkYBB6RQdPWv6LFnVIBn5Sm8dUoKZZ4SzpcuoYKU+TQjk1Qp -1H4vf7i+lwrkX41/NFaQRuJrFWZjBGrwly/x3Tkng7q/flOSbqeGSzNa9Tpz -coh0icvUb4QaNBu6uFoN5NEulZ1H/Qo1nEqRpdBLkUdSWqM5poI0wPCzzIlC -QgGF589z+HnSwJLYaE5EvwJSCmVcrztICx1cQdc6HZTQI8UjtSZWdBAnd337 -a4cqkh+wParjRgf2e7LJnHRE1B5xpVs6mA4StbfOzQIR0fQm/KXLooMTSMDq -9GsiCr71m795hg4Mh2Jy1LLV0IXPoTfUIughQKj+5+NnGmiffwKdZCI9JPBM -qz0f1EDpQgUJHC/pIT7TmuqcsCbq9en4b7GDHoauir8fytdEJ3mEBgv5GeCp -DhW9eIMWIrrU6giXM0B/8WFuz4O6qJu5o5X5AwOoHOBT33XQRd7VY1Y7vQxQ -/qXC7fR/uujlAQbP/l0GEPfLZrpojNChMpv0BKMDYH3k2IOs44Do9lZ36cYO -wPt8se6x53qoL0mhcfEgE1yXzJVkqT6MUroLWQIkmGBUB9ezb+kwsmPGOW5p -MAHzCY+7T2UM0a/bgruU55lAcJKb+1WOIRrxZNDmqGCCXtuk5HfJRxDp8J8q -oi0zROgkssvnH0MvQhxpa68wQ25LzR2RmWPI/U3/aRTODG0Pvlb3KB5HM/Jd -q0cLmcEt8VnXnYbjaIHvrbLtDjOUBN3Dm/4xQhsLicXBWSxAUzfm5m91EtVI -s+/tVbDATidr1s38kyjINdYkoo0FWsxpcB5bJ9H2QMRszDILaAWNiFPkmKDQ -39WcHaIHIfL542LbPVMU8fX5qRG/gzAiZpwY52uO7ueGdFDysgLlb8lXec2W -yEjlEhunGCsEtbxpzt22RHTvLaxwsqwgFt8lj4hWKOK3xICxHiu4ap96a1po -hW6Itk8kXGIFhWu7xSxpp5FnJs+u5BusfWaRd0qmDZJRoNTTeM8KUnjdPYU/ -Nmi64e9t46+sIJhHMxWKt0UXh9/Se4+xgtz2/ibLclvkJOTCWcPABrelHF2p -v9kh89RSGeMzbEDPlbFwXtUBHZR55uXgwgbeC83no+84oK+1EWVeXmygcMPl -acwPB2Q0YK2ecJsNDqgcy5MNPov0+XYNBgvZIK3DolOiwxGpJBmd8dpmgzcv -zHJYLM4h7oTf9x6nscP9ujyeZ9EXEI90RcRGHjswU682SjRcQHxNkSEOJeyw -8UAzl7hyAQktEPxxzexAS3kpcMHRBUmc8HaqJbEDLk3y0bSOK1Km2iH+VuaA -B0zbOkRON6Ty7KviMR0OwAdMJLZbuCGiUqbMqyMcUDHLoE4R74Y0nQxEA205 -wMPod5whyyWkV3eP6UAIB6SVLVzxZ3dHpn5cf5TaOKD0VnLBoNZlZHaANJTY -zQGLC7msTBGXkUV2Td/2Lw4Qt1F5s9J+GZ3utO/4MM8BDQOmIitOV5CDTM4b -O05OkGARL52M90Qef+Tjw504YclcIehljDe6a3lc99saJwh/KhwKcPVFfK+/ -8lHu44KGI4lUOqm+qIjdcl3xABfk2juMJH7zRT++nS2JP8QFEvLaYmx6fkjc -3E/U/BgXOJSfKj0i4Y+aTmbQdCZzQWMF+xtZxkB0+pX4770cLriSe2SX7kQg -mmZ82SBfxAVBkyHlCTGBiLX99bWHTVxQvRZJ38JyDTkZtU2b/MXe30gtaxC6 -jnaOrH79os0NyWwnWUedglFcXlDhzhFuaOpoMS37LxiJ01BEyZpzA7sk83fL -zWB0ooVB74EL5pGMUq4nN1CKgXD5iVhuiBH8u/Hlx02kDsaJn4e5Aa5w/orT -D0W+GlmOreE8kG3USFtnehsZZTKvGMfwQFm6/bnHYbeRKO2NqK9PeCB/x/Xj -dPlt1NlzurS7gAd+DRV0C/FFIDlvxv1DX3nAgeKjfeNMBCLlBeYt8fHCWmzz -Pe7/IlED07imvzgvDA3PpD6ciERP/Sw61mV5IW5z4UWayF1kqC+7sQ28oDml -nR+WfBdlD44dp72IvT8lXPU4LgrZc5jM8pfzQhvDeQq9tGikHFwbll7HC69K -N+y7R6MRwxieS+QDL6RY2B7nxN1HNcX7kWQfL1xvTX9fVH4fcRnXxCns8UK8 -Le7Xpe8xqDNMXMXQmA9WBJe/PtN+iA7PbwV5/uaDnKJnFsOnHqHrxxKk3s3w -gU88HwdT+CNUlCXbz77GB7RFCzJFJY8Qj6WTRg0dPwyO83ebsDxGM9Ut6/vl -+OHif9LRhG+P0ePwOL/ka/zAztZxzMjrCfo0QBCfCeMHUs5xSvXnT9C2SnO3 -7n1+kJvwpPtv4AlynVxV+pPGD+0zD/hljJ4izRNnFuWa+SHHX+tviWwiGuOU -9HzPJADj7r6N/1iSEbdXgyA3twBc8vINmDNJRic+2Xy5JCwAE/24Czdjk1Fl -0H0ZFmUBaN9X+82fJQVFDy9M29oIAO6juMI/nmdI6UXtxflsAYhWZaSpME5D -Ydrm5/jUBeHPis65j4JZ6NjZ9CU1fUGYj3TO0TmRhZhD/962OiEINGf5l+WD -s1Bq8528OCdBYNVmfPugPwtVG735S3NPEJK7YurNM7LRgo1YwHKfINyP5bUT -089FVUHetKx/BOHTXoXQ+rVcdCu1PkluThC+8tU525fkIsYR69pLlEIg/ZCW -OCr8HOEuxlCMSAlBlM2jczt0eeis/2p0e7AQZH/uGPi+lo8kEvUFpu8IgYvI -ZGWAWgGW/4evaOOEoOvcvx/vrhWgoG1Cp36uEExrLCU47BSgJ7fPcta0CwHV -O5esfuaXqD3+Y8ZzwUMge+jKUT/L/5BmUfLrWw2HQOOz/qOM2hJ0+OfXnblP -h8D/l+VLq/ESZEJBddTx2yEwHig6481Sis5bePah8UOgdeYN288LpehIsEhI -KLUwxEVpTYdzlCHvQ2s5etLC8PMs73XRqHK0Wh73aVNeGHiFtp4+rC5HQcek -Z0tVhOHpo11F76lydMfHiSiqKwyJexXdD0+8RinNbZ8ozYXhm9dM9wWeCvT+ -YsZsc4AwBJaNjRh/rETHtzXYbgQLQ7kzP6XHXiX6GtdDVAkVhib35xrM6lWo -r4Y+NPeeMJy1f2gy/rIKzR3wY7uTKgzN1O3iq0+rEU/JMbUjTcLwQNOuO/ne -G3R5YzH0E5MIbLDMb+mPvkWaPq5cE2wi0KX63T1AqQHRTfcX7ucRAY4UWdWr -EQ3o+UDzD11REfhRYt5wgbMRDb19IlNBFIFKx33zjxobkekdjd4sRxHQ0f/A -xCDdhIR2X11puCACEPDb/oRdE5oJEN0/eEkEWms3n1BEN6EotwNyPH4isJqz -btk03YQajQdvx0aJQJEvie99aTNSYguTDy4VgWHftI77p1sQxf3V90mVIkC8 -N0Nj+6AFfd3vbldZKwL5c56Vee9bkMeqxZ3FFhE4oq1L/KjyAeX2ig9c7BeB -TGPPPiL/R8SV8SnScr8olAZU1mTva0Wb0geHZK1EYUL/bJa+1he0lsYXpmwn -ChooSS0l/AtaYZEQ13AUhYTCcv/oti9oblnD/fAlURDvTHBUt/+KxmrPr9nd -FIV/jeuro5EdqM24ijnquShQR70v4NjpRB/r35U+eCkKd47gs6slutB7+XbL -x8WicOadY2axSRd6yz6akl4jCp/SXkFSVhcqG2DAVXwRBaoB8fWzxt9QisdZ -NLYqCplhqqe5irtR4qDb2OSWKEwtfibyDHajBFPfO7N7oiBctbLP90APilWO -+rxBLwbz6tUvVC71oPB/pdYsQmLgo/5bbhH/HXncp/bWPiIGbMdXquNrfiDt -wv8ynz4Vg48vK+hkRfrRgHBhhuEzMUg/gwxnTvejoKcv0lcyxCCxYYa4F9OP -qsLyUi1eiIFJ2++7wlv9SMkmM4m5TgysTjQkWfQOIAJ1QlzkqBh8810oC84d -RFyOwaEBMuKwD6Zzv9ePoEU2I6fTTeJwMcf50TLTOOq9LNrp/lEcOOr7w6mI -46jxwxYKaReHWvWYNt2z4yguqPBQwQ9xcDrutC5bPI4UxhiHN6fF4XP1cuiM -xQTyLO1wSGOXgJr7fYPxWZNo2tTqzJ8LEnDcceOdjc00+hPjdPoqrSTkuuSE -Z9IsIM9pGVEFRkngvCNtYS2wgNaPbs7OHpQEmoXk1weVFhDD/kd3LvFJgplM -Nm20wwJSuN782klWEqhOrD+Pfb2AbrpIspuekgT3TDODVOdFxKU70yGdIQnn -iO8Mo+uWUOaz6mdTOZLwaMPlv/WuJUTYjLiYXyAJBmvRE/aTS0j7teCeaJkk -lF52P8jEtozOS5nK8bVIQqxoFtW66zIq4SqLofsrCQ7DhrqBzCvo+Hzg8XEi -DpSdAh1DTVaRgKJQJJ02DiYV/e04zq+iuavvm6T1cDBx3eN+YOAqSlg7qH3V -GAcvQ8supGesoqGdF3J7jjhsfxod2ze7ikqQmYeoCw4OUQUt5e6tottha/mG -7jgwcPn8ZoV1DeGpDURi/HDQZMbXEaa6hq4y/mLnvYcD7NLSdDdwDR02CTfT -jsVBZuBtudbINcQdh3/g+BgHm6YRmwFP1tB019fW8CQczBZI7d7JWUN17P40 -eWnY+J0knemSNRRrxW/Qmo2D9eP6PU/r19C5xHchM/k4ePtzbupm6xpS6btY -x/IKB9RdygVxPWuIhp95U6kMBxv+RTINQ2uo1/616ukqHBwb+n5zY3INFabb -Xb1eh4OlK1GhUgtr6NYIRXHqOxwMBdHO662vITPR/L8NH3DweKLbXGpnDYle -OIn//RkH3+rnt77sW0erz5cv0HTh4IEKPxUX9Tr6NJmcRfiBg98ylWbTNOso -hQBDJwZwcMqOMkGRdh1d9pjg8x7BQatBgn0X1h69irF+PI4DzpUuiSLKdcQ2 -r5RQOY09H/bwLsTG+6PQ19k3j4ORxZaxwrU1VHk1hGlnBYuX3ehq/Owauvda -wkh4C4t3JOmpztgasl/7HGmwh9XH+NbdeCx+OfWrza5UeMiI8Iv0fL+GKIJ4 -KKLp8RBVb6lSWbqGumvfar9ixsPDyORlo9Q1lLdz4XonOx60hY9aH4xYQ9fQ -gcplHjwMrRLS/7qtIeOw0iUuITxUsmdrvDdaQ0LN1vKaYnhIDco9G0FYQwtU -ux4OeDz4C/5L56VeQ81HcgtCZfHg6C4U5T+4ip5GGY3nKOEhncbkcGzZKnJr -WxD5qIaHL0X9Go4Rq4jZROcZkz4etvZCDqkKraKRh79/KhzFA43zlqTZxAoq -77rHYXkCD+vangFmhSvIxurHg5TTeKD+s7/4pswKkkq80VZ/Bg8b0xKEbdIy -2ukVpR11woPUA/YhypxllG3vFYrzwEPwB4bU1IPLaOY8ne/rEDyYZ8nXL/Yt -orn0w/UNEXjo4fbw6ru/iOb7Qmk/38MDwcql4qXOIloy3Xw2+hgPBw1n1Yyz -F9BytOrETBIeWB3tIyqsFtBKi4/CRhoexOQTbukwYPuD1vR75gI8/BerSec4 -P4c2AiRZ+F7hwTXlG5Ww8xzaKnW2lSjDAz9vP2GldxZt4wZmterwIH3uZrtI -zwzadeZWP/oOy1fOFas9mxm0l3Yq3OIDHl706nhtjP1FlBztXJc68cDY+PdY -Jc1fRGVKd87vOx74MhxkUjKnEXX04cKQfjxU2D152YemEU1L6Gr0MB58zm/w -e/yZQnQU9ejpHzwsau0+1Y6dQgxam/eypvDQzPhwR0VnCh0IUO35bw4P7cU3 -aFQXSYh55pVb8wYezo1bb1RcJKGDuOmyrzt4KHMbUh0jkBCrs+ROHyUBitrv -XvVcmERsac5Hx2kJkLAQdl6qdhJx9KbHLzASYMuHKfPPvUnEyT4w8I+VAIql -l4ke9pOIy4RbkpabAMG2p2VjlCYRz71T3mwCBDAz/7bEyTiJeN8/fCMoQgBi -5Muan6QJxLf3mYogScDuWy0fsj5NIAFNOlMVaQJcNu8tNiycQIL+h5ORAgGE -+mZjnsZNIKGS0N9GqgToLFcSunRtAgn/rZM9rYk56frkY+cJJCK5GXgOESAM -vujPm0wg0XOqTZcPE4A+wtLDSmcCiaf6MF47TgA++rKwbNkJJPnz1enbJgR4 -uDMb/frQBMKxTWfGnsLGpxp092CfQPiTkn+TbQjw9uGv/gK6CSQV5az63AHr -nz3HwWxvHMk0p4eUOBMgUrFN4ej6OJLd7W+tvUiA5GvZ2n4L40hOg5vj42UC -eFd9pmycxv6//E6d/eZDgEX9rfscE+NIqfhhwWAAAdbHwMphbBwpT39eIgUT -gNUUr3N3eBypSNDprIQSoF6s0zt0cBwRnQ7f3btDgLMjx23Vf40jtWehXQz3 -CXC90PJexsA4Uv9Rx88VR4A4QlJhPmZN1k0XkScEuBLi72OAtdc6oVoig21q -DCEh4a5Yf9p3fbbUMgiwM/T8MjU2nm7Tq8MGudh8uPifcI6OI7QzFWvyggA3 -VzcID36PI1CX7LMtIkCeyHOO89j89X2dxVzKCXD44spM7NQ4MihKv+JdTYDi -LvpZutlxdEScm/JuEwFqZbtVPq+MoynnowVaHwmgfc/CvG5jHMVkBZosfCbA -ZsGXoIHtcdQt1Jti+50AB/z15B5TTyAn3mRlGRIBlEdiB8N5JtB1Zn6XLiYp -IOamSG7rTaD/NoQ+8dtKwbByCIdA0gQyVTP17HSQAiGOP57OaRNoyT+E446z -FEjus7qbnT2BNJaHneY8pOCnoGA186sJ9GE2c7PxlhQMFs1uPnw3gYbHRKVd -c6UgNuHCFeapCcT2RTK2ZF4KOG700lxVnES78wrP21akoOMYJxstETtvsGnV -/dmUgiXl8vp4zUnUZGM6zUMlDRuRiSJRBpPI90/gkTAeaagSF/TbspxEPf8+ -7ZrrSUOkhGP9voBJ1CjUzXn5CGbLWu7165PoP71BmUhjabg2HPFv7OYkunN3 -0e6NFWb2tZz0O5OIyM5XJeouDb/fxZ3NT5hEiVIeXsuPpOHXkXfDTKWTKOKk -fyRTkjT43Hq9z+/1JPL2DknDpUlDmshWS1fVJDpW+fjzmXxpMKUoCPZ7O4k2 -9Opw72uloc2m+7bN50lkZ8s0kvBHGpZS/2N7+XsSCUQVmxGJMiATuyc/yUxC -L4teNW9qyoAExTFjdVYSUv9eSKxHMtD5InvsNjsJWYoWCBw+LgPizA8rGHhI -KKYuk2RuLwPxhj/VeoVJ6N9CfOiVcBl4eAr36YYiCUVxxy0r3JWBYxOZfMHK -JOw8Feu6cl8Gji/uZvipkpDS/egTwU9kYJrujKetBgm5S9zmuVcgA+4P+vX+ -Agn12/qV5H6VgWdeN1vUTUnILfSqmFu3DNQPNEnMm5HQWp73U+leGdhn/eVM -lgUJsa1cvlE2KgMvDhzx2rQiIaNYl2ONKzLwkk5L87o9CdU0nR4Z4JMFPylJ -6wY3EkqS1jjIflEW9PYkqrJukZCV8Ze4tx6yYB0tmz4YgvXncY7V3VsWFHs0 -orjCSOj+y3ts767LwkLAwbCQ2yR0i9DP4RUjC8Lq1u/lokjoAi6Y93OpLJy6 -mGFNF09CIkdZUgIqZWGPZuEh9yMSGnLN4ROtlYU6ziRl8cckZJ33mf/6e1lo -oxD/rvoEm6+EgBDupyzse9SC00omIUWxetHb27LAtXWQqzuThOb0zXPk9smB -7JmwhtosrF7O42L91HKwkWQnn51NQuLZTBKKLHJwksMx0C2XhHhEzuKGReTA -mPajxkA+Ce0K7UlrHZUDzfeefx2KSKiNT091OV4OUOblsY0aEuoUKpakSpSD -Qn9dqbI3JPRDVJCHM1UOgoZR+KVaEhqV2twi5snBbDFT4Lc6EtrQLG0MeiMH -JUdqdx80kJDkGZETlL/loHc+sKL4PQnJOD7UYSfJQWpSv+GJFqze53fkxGfl -YE32l+IkZh2PPtYj63KA86WU4/mIra/g+J/3DsjDC3FX2YutJBT+bN95VhV5 -yAyV76/7gq2nDC9LUQ15oAso59D7SkKxOYOGyrry0E0t87cZc3JhDd7qmDyM -cZQFtXSQUEmtz1ySvTysGtLcq+7C8j8wel34jjzw+Ty8fO47CWkKNMXJ/5CH -SB3O/p4BEhoTEx+a6peHiICfrTK/SOiedKR07rA8sBOfDtzG3Ktp9IFnSh7K -sXuv/CAJBdp++7dvWx4es2bfvTFEQnbGPsrTBxVg4OY7+4UREpIzFbU7yq4A -VVz/LmiNkhDlqe7QXE4FQPevFd/B/MJO9etZPgXo4Chg4xnD8nlp061bTAFw -BbWHVX6TsPNYWHodUQGmJ+xGjMex30eMUguvhgI8rtkYvY9ZN+733wAt7P3B -23qfMY8nGmooggIkbL8RPjZBQir59D3PjytA+B24rzlJQt9a4ukf2itATviw -0/4p7LywP9vvXLgCNF552yM3Q0I0mw2nFiMUYNL2kME5zLtzg0phdxVgzvSX -5GPM8/28i5kx2HinLSxXMXeWxV8ZeaoAX9cKvMpnSeiRc5irY6ECvFJCw9zz -JBRtk2E4/0oBeHjjT+hjDjepFw8pUQA3LQnDy5h9NTfH0isUYPc5y+BbzJZs -Po5DDQpww5e17ewCtl80Odk49CjAat/RjGjy+ab6ltrsDwXg3PQyLcJMU5TK -dbNPAWY0LdK6MK8n9/akDikAv881Lu4lrF4+Zua/SArQMsP+LA1ziggYndnB -8gdtbcnLJCQUdkjbVlIR7C+cwVmtklCRL53oIF4Rxr+LLVzBrOu6SHtOWhG2 -eH74R2J2MG7udlNQhIzbbW8qMadyXvS4pqkIKQ1GuhxrJMT7sigl0UQRRmK8 -G5sxF6QmhvKbK8KZ0fKCXszqD0NdM04pgrOyrc0sZhs/C6V8G0WYZpA5yLWO -1Vt3rbXSWREO8R1fuoCZo1tn83uAIhC86Hc3MOe2SA7bXlcEzbKaTIYNElKu -ZmkZDFYE9oc57AKYLdJG48ZDFWHpAu6yLub4i3fwq9GKEGFfuxqKmXm73Zoj -QxFuzsl938FML2FfafERm08E24++TWx98SKjwlZFqLZoiR7H3MYkOrS/XRFw -3IMii5hj1iapKzoVQWbAZYN2C+vvk68Vd78isC4PmKhskffL+ysDM4oQGUQz -fBfzVUfPKJV5RSimjhyIx9x9ylzgwSLW/62mt88wJ2hzH9ZdU4QckrdmMWZu -5pzHmXuKwBQZyPQds0DpGyUXNiU4kNZ5WuAfCd14nvahnkMJjCwqBsQxDyaH -2nFxK8HEIUZjWczp4UfCP/IrAY3L1JQOZmHLb10ECSWgv06UO4tZYn3Ke05N -Cbjx9LspmOV0eIsDHZRApzmWjnabhMrFLv2jdFKCsWfDjUyY1RlqjsY6K4H+ -dKMrB2b9nzYjuReV4Oed3WARzKd9kli/+SgBL/fnLk3MIc+5/WQilUA5StTS -HTNVzMXGqiglEKCl3fbCHH21itHgvhKwjrom+GNOQNbPbeOU4LeLfmIo5oK+ -pz8iU5SAoWZ56gnmTiYujdEiJXjLLTVRj9lqxeXO5VIl6BdsLGjC3N9f0bVe -rgTB5kfOfsT8J9/KnblGCb4SyrI7MW/oPXmm1awEL+r6E8YwiwRw7D75qQSB -3j1aVDtYfYbYmo0olOEix4MrCPOnD/b1LymVYZjv4WN9zELFeVUM1MqQGBRS -aoi5LUTzvzZ6ZbjRePO7MWZREecnRuzKcMBYstEac9f50otGkspwl0JB0ROz -5Il/517ilSGbx2bYG/MNFUN7BmllGEzKivTFjKfuM2uTV4aSA8ON1zCH5lFo -Gmkow9HY8fFwzApTpoxGJ5Th7PcsiqeYI7uSaV6aKMNt5nfHkjD/qvlNwWCu -DBrCtPdTMEdFB662WikDX5LBbjrmEemMoeOOyuDFyZOVjznOc67k+FVlYD4f -9acK8/xyjNXxJGX4coX4tofcX2/W6bQUZfh3UsPhBzne+krrxVRl7D5L2PiJ -OffuiG1yljK4H9oUGcBsx69yduqlMoie9DkyirlFf8D1Xr0yaDOrDsxgLsMt -XBxsUIbt8nSdOcyZjNSXFJuUwbHwQeo85qAfch59H5QB7yNktkSO1z3ci9Cp -DKktW7HrmJ/FE661jmHxdfdc3beLxRege11wXBkU+W5lUWIOOHMqyGdSGSrq -5L7sx2wmcfMG74wy0A0389NgpqnpDL20itWLPfopA2afkcB79HQqoLGvmI4d -81H5DynHZVXAMxLHJIrZhuaYZae8CryIeLhNtvtgK5O1kgoUjLlPiWGOvf8l -9IKaCsQGJNZKYP4x2eMaoqcC/xbu6BMwX8j8rVRhpQK+9pdH5MnzC3SZ0bJR -AXUp8ZcK5PmbTD5vslOBOLZKH0XM/21P83Q6qkBFbMiWEuZlm6Xd6UsqUK1/ -fFkVczjrvs/Ct1QgbO1OpBbmBFJ4RH6oCsiY31DQxpzXQKUrd1sFCKdzeslu -u0JXqhWlAnlMiWK6mFnbWBJPP1KBYpbUXMCcGS50PiZPBTi4CNaGmN8ua/1b -/6oCE/HaqScxZ7VXOZ/qUoGPS/2MJpgjniu3FXWrwECL3Q2yj1tLJ7v0Yv0d -YrAxxdzzhk+te1QFDqb6U5pjng7bvFq0ogK0b3olLDF/sfPvp19XgeW8njtk -lygv6rlsqgCD7a8/ZPuPkw4K7GL5qePJtMJMcby36B6tKjiu3D1gjZnrYNX0 -BT5VOOgB1baYN0lKFo0CqlA/xMxgh/nXu6Ia/kOqcFaK6QzZWb55Ud/EVKEu -OmuLbJmfTyRBVhXWOJwV7DHrp/s58wPmibXAs5g9ZZT6u1xUgeMvX4QzeT7r -fFuObqrAax7ynuwbTfv55txVwU1aieo85vs2320ZvLHxB6PDyC6IuNanH6QK -+4O1/S5gHvv1trc8VhXYBZW0XDFP5edv6MWrgi6/jQ/ZC1fjeDofq4JcOymP -7D06Z5uZJFW4X2J28CJmAVXqXvEcVZjzc/1F9ukHxj+fVKmC56N/dpcwO9io -rIu9UYUAq4gosi+ICXKX1alC3P2HFWT71syd/vpOFf5UKDG7Y44bj/9B064K -sN5ZQ3abTu/3wBFVSBG4988Ds87chR5beiKE2fEoepLzXXs0u+4AEXrEZEzJ -nrsr5X2ImQi3/Zcuk50usnBgnI0IFF+T88netQw28BYgQl+BG68X5oba+LJI -eSJQORXOk50U5Rc6pUiE8FWg98bsbWVtckKFCJ+eJ4iSLTwvMM2qQYShf9cs -yQ4VLRBJ0yfC65yjFWTr3XsbV25FBM3iKA8fzHyns85y2RBhbdQ4jOwl0QiZ -63ZEcKX9+ZTs7Lrjn3QdiXDZ/eg7sikXevZa3YiQTZHJfhVz8+m/niPBRPho -k19EtqE4z0mmbCKonQl754v59WyLyIVcIrR8WOwkW7zKd+1NHhHmVLRGyKYy -6shwK8TGz7LbJbvJK3Kp+TURJI7+UPfDrFu7khj0kQi9i6z5ZBdFZF/uaiXC -jwzd12QLmpjp4duxfNMZvSN7e6Rw+nsnEbhtd/vJfkNzXkexnwiHVsYZ/TET -LbrGJmeIYGG/5k52Hn9Ile48Ef5aqQSQzTkuE/NkEcvvX6swslcCo1QN1ohQ -RWeYSHZZGopK3yNCQmX/O7Llp17JWrGpAc2+Q2wBmPGh0dea1NSgvrMpk+w6 -refUJzTVwHUj+wXZZusNj75rq8Gjb+5lZF/zXP2PpKcGf/LLmsn+ZO80ynxC -DQwWCeNku2kQjc44qcFU8qxYIDm+FbOff5zVYDTZVZrsuBKPC54uatAi9lmJ -7Gpc1q0wdzXoem2tRzYdF2N5vp8anPwY4UD2i6VR/pUoNVDMt39Etm7RdsHN -+2rw6XB+EtnfLnETaWPVwLBgJJ3srZETZnyP1YDrpnAh2UYdVRGQpgYXL/Y1 -kT1d+GA2plQNGpZPz5Mt5aLRINGvBnqD6TrXMD8UNdm6/UsNbrd+0iN7ZdhZ -dWxIDVoPkgzJfmsXU5j+Ww1WBWhNyLYwG07knlWDTo42B7Kva93xpqdQB7v5 -68FkD20kF16kVIedGuoQsvUriyZaqNRhwjcqnGxGxV77cHp1oGLzvUd2pqT0 -8X9s6tDnM/yU7E+sXSKzEupwqA9XQrZsx7i9MV4d8tZlysl+FLOV+EJKHWod -pCrJtqcVZ3aVVwczU+Y6sue3A7aG1NUh5M+Nj2RzkQS6O43VoZmPepBsl7du -Ea991EEyTHP/dfLv/cp0oKEf1n4qmZrsa4KXPX4EqMO3hiVasqNveFlsBKvD -7m4cI9klmgHC2pHq8Kg6jJPs7crbdc0p6sBIZSBJdqQrdYllmjqsu+nhyWbh -upsznqEOt49pSpEt6h8dTftcHa6/5pcj+6hyvI1xsTpkjqarkv2oOH3lW7M6 -yPOVG5D9nDl7YOWTOnQR6Y6SXX3leRPXV3XAbxgZkT0o/V+cXa866P1LMSMb -X1AjMzajDlP3vezJbsjsubDIqQHqieo+ZFNsXrH9x6cBHNxRvmTrm9OaUAtr -wDXuz/5kf9inqcYrpQGdeTJBZLc7Z9Dr6WqAHaNLONnMteq7RgYacDHfOoJs -M/ZvS5bHNCCgBkWS3d1M9cvNQgPMJBbvkd0v7l4U56oBh5iG48h2+J6amOut -AdktQglkj9zpCK0O0oDbVVqJZE9OqJwaidWAOjr2NLJXCvbW5as0YNzVPp/s -Wie+5KeN2PxuRLwgO5xHVXOnVQNOUSYWkn0wyv1G2y8s3rJbxWSnr2e8TZzX -AL9O3nKyZS5+p3Ch1IRzmp6VZL/5wWCgxKkJ1nZhNWQfOwJ39nCacFfBpo7s -8xKF9CknNSFY8Pw7sjkkj7HsnNMEseQvzf/Pl+Q4h1OAJvwao/rw//WDC+dr -jtaEW2pMn8iWwh8SlszQBK6g6VayYwm20jMfNcGqUfEL2YtSj4llC1j778sd -ZPdcPMrYo60F8oLb3f+vd+6/0dUoLWCvnPxB9j0/lvikbi14wLXdS7bdYTHQ -EtKGC7yh/f+Px+b7toqXNuAOFA+QzX/lbo1cozb8/XfnF9lJtddV3x7QgZwf -nINkczJcLj1prQOrhrf+736tx915hTrA4tX1f6dfebO6t6cDbskHhsj+HzgA -EJg= - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - PlotRange->{{0, 30}, {0, 2}}, - PlotRangeClipping->True, - PlotRangePadding->{ - Scaled[0.02], Automatic}]], "Output", - CellChangeTimes->{{3.620390427329338*^9, 3.6203905219734755`*^9}, - 3.62039070258774*^9, {3.621779682955883*^9, 3.621779738597066*^9}, - 3.6217797960013485`*^9, 3.6217806586376886`*^9, 3.621780715985969*^9}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.5368628, $CellContext`B1$$ = 1.084971, $CellContext`B2$$ = - 8.529749, $CellContext`Ka$$ = 1.454867, $CellContext`L$$ = - 1.13329, $CellContext`M1$$ = 11.11337, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A1$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`A2$$], 0.5368628}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1.454867}, 0, 2, 0.01}, {{ - Hold[$CellContext`B1$$], 1.084971}, 0, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 11.11337}, 0, 20, 0.01}, {{ - Hold[$CellContext`B2$$], 8.529749}, 0, 10, 0.01}, {{ - Hold[$CellContext`L$$], 1.13329}, 0, 10, 0.001}}, Typeset`size$$ = { - 540., {174., 183.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A1$4527$$ = - 0, $CellContext`A2$4528$$ = 0, $CellContext`Ka$4529$$ = - 0, $CellContext`B1$4530$$ = 0, $CellContext`M1$4531$$ = - 0, $CellContext`B2$4532$$ = 0, $CellContext`L$4533$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0.5368628, $CellContext`B1$$ = 1.084971, $CellContext`B2$$ = - 8.529749, $CellContext`Ka$$ = 1.454867, $CellContext`L$$ = - 1.13329, $CellContext`M1$$ = 11.11337}, "ControllerVariables" :> { - Hold[$CellContext`A1$$, $CellContext`A1$4527$$, 0], - Hold[$CellContext`A2$$, $CellContext`A2$4528$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$4529$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$4530$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$4531$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$4532$$, 0], - Hold[$CellContext`L$$, $CellContext`L$4533$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`f4[$CellContext`A1$$, $CellContext`A2$$, \ -$CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, \ -$CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> {0, 2}], - "Specifications" :> {{{$CellContext`A1$$, 0}, 0, 1, - 0.01}, {{$CellContext`A2$$, 0.5368628}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1.454867}, 0, 2, - 0.01}, {{$CellContext`B1$$, 1.084971}, 0, 10, - 0.01}, {{$CellContext`M1$$, 11.11337}, 0, 20, - 0.01}, {{$CellContext`B2$$, 8.529749}, 0, 10, - 0.01}, {{$CellContext`L$$, 1.13329}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{972., {218., 225.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{{3.620390427329338*^9, 3.6203905219734755`*^9}, - 3.62039070258774*^9, {3.621779682955883*^9, 3.621779738597066*^9}, - 3.6217797960013485`*^9, 3.6217806586376886`*^9, 3.621780716088975*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"(*", " ", - RowBox[{ - "A", " ", "single", " ", "function", " ", "that", " ", "has", " ", "same", - " ", "minimum", " ", "on", " ", "both", " ", "ends", " ", "but", " ", - "variable", " ", "slopes", " ", "for", " ", "increase", " ", "and", " ", - RowBox[{"decrease", "."}]}], " ", "*)"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Clear", "[", "\"\\"", "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"f5a", "[", - RowBox[{ - "A_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", "L_", ",", - "x_"}], "]"}], "=", - RowBox[{"A", "+", - RowBox[{"(", - FractionBox[ - RowBox[{"Ka", "-", "A"}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], - ")"}]}]}], ";"}], "\[IndentingNewLine]", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f5a", "[", - RowBox[{ - "0", ",", "1", ",", "1", ",", "6", ",", "2", ",", "4", ",", "x"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f5a", "[", - RowBox[{ - "A", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", ",", "x"}], - "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "6"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0", ",", "10", ",", "0.01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "]"}]}]}]], "Input", - CellChangeTimes->{{3.6203905829125648`*^9, 3.6203906743216996`*^9}, { - 3.6203907146907573`*^9, 3.6203908611819677`*^9}, {3.620396740554017*^9, - 3.6203967448932657`*^9}, {3.620396784032504*^9, 3.620396792129967*^9}, { - 3.620396894749837*^9, 3.620396905946477*^9}, {3.620396952637148*^9, - 3.6203969816228056`*^9}, 3.6203970374900007`*^9, {3.6203970846246967`*^9, - 3.620397126780108*^9}, {3.62039718870365*^9, 3.620397196978123*^9}, - 3.62039724744401*^9, {3.620397888955702*^9, 3.620397930948104*^9}, { - 3.6205880266844196`*^9, 3.6205880448794603`*^9}, {3.621729609249158*^9, - 3.621729704545457*^9}, 3.6217298644389596`*^9, {3.6217353275878363`*^9, - 3.6217353362853336`*^9}, {3.621779996167798*^9, 3.6217800532680635`*^9}}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJwdV3c8lu/3lxXKzMreezzPY/Pc93WklPFB2ZLKiCIrW9k7SUJRVkbJyCiy -SjQQEg0rZWWPZFf8fH9/3a/365zrOuf9Puc6130J23uccqKkoKBYp6Kg+P/v -SPtrsesFeKJjn3aAtiP6lM0dqN0fgQpb9h884eWIgOODPXd/CgqN5HOJy3NE -fiaPv1L1P0DtMwwbdlROiHWRK2XraxXy/jk8EtbphL43Gnmsfm1Bchn8Htd9 -nVEmB5fjFZrXiNPa8tRkqTMyc/9utUJ6g1aJ0pdfTTijDkHPI8s33qEVOX8m -GgsXVBNxi2NepxMlTxH+DeEXka7Y7LdfX3vR8Yene0dlXFGBiZFVpXsfkrZW -FFy95Ir2Xavq9aT5hE4eHKXKKnFFjZ+D3i2RPqNiTVHO5wpuiBh7oHLhxlfk -+j0xQ5N8GfHNykXN6Awj41Tmume+Hmjrq1ra8tcxlNvyMOiJqjd6TqI791B6 -HPlU2LepOXkjvxv9MnbB44hriXRZNdUbrRwJbH4vMIGQd4nzvd/eaLasfq7I -aRIJcn+/Iv78ChqOxI6c+T2FbE1ybYysfVHmCCMj+7FpNKW9Ytt90xdZaYx8 -7UifRmc9Drb0v/VFnxdDLqtrziCZVA2JFFU/1G3dfPdQ+CzSJJEVXvD5o2ZF -naV2pgVUkhBvhdEEopCEQ/Vh5xbQALXbBuOxQESeHI9Sq1pAlm7tpmHRgagu -M4qn0HwR5RBy7pnQBaEqmrfHwu4vIdrGtZxOjmDUe1nMiJfjFzoduXq6+OQ1 -1KrzsODjg99oJc/oyBu5cERIejKz0fYbjeQWhySbh6Ps/loFgaXf6A+jTEdD -SDgKuNz2/JLWKnoo7ECv2huOFO7MdFJ9WkWx1ea/Pl6LQJmzsmsqNOtoTf2V -ls90JKJTUda0lV1HpX26c6VcUcg3lBwacXIdkdeVQsyORyET9v/oP2Sto/PN -lYarD6MQDe7O76K6gTJql/6muEcjz1sVxzKdNxFz/6lsNbZYNDL0PKH5xibi -S7fdGTwRiwwkXn34Wb2JHC3DdXZCY5FEw0drJYotFFMZwtK+FIuGJlYud97d -Qo+Xi04kf45Duuoq6Tvt26iO57f8Sn0C4vte99Ne7h/qHyul3FxLQhS/ve62 -n/yHLBNrfZOxm2iCVkaf4P8PHV3nGHsffROVKWSW/Xv1D/3ObH3AfTAZ4SFB -Pnctd9CCJSO3x4NkdJZfi7I7YhdF4M+po7/fQkeJv6uVH+0iIbvGs810KUjq -WInTva5ddGp/tZA1KQUF1NxwVD5IAW/sPamLYlIQjPx7t8+SAqgnIv+2Kt1G -H+VHku7PU0BqlYfp+9xU9Fqtfsp4lwLanWbooCcV1WinAxXbPqA1Y30gSJGG -Ms2NVi6q7YNXZzcPi55PQ/bXXpirReyDHXOjRjOpdLTSmc3Xy0UJl0QC4lU6 -7yB2t7OP9+tQAcX3dckJz3tIZn/+WxNLKlAkdRosPL2H4MHPsQxXKiCuXLXP -3LqH3Pov88qlUsGZUKTxM+o+en30aqLJJBWoibCPXs7PQj78Ge4ZsdRg2TCR -0UaRixKeDyeM3aOGaLvkDV2pXJRrKvRQtoIaNm7W3RE1yUWd8Q+/N/VTQ7D8 -6cnt3Fwktv7MZEyaBmijlX+rH89Dfd29JNlOGvBY/9tSWfQATV/kNPb5QQMR -tS/uB356gHaobVybVmkghEopvIwyH8lojeYb89OCpYsR25lz+Sji4RK7jzst -nPlbcmxNqACRwg5uNLLsh3M6HZkjtYUohajbYGROBxl5MJ+oU4wUh6yPYy50 -ELtx81XO1WLUGXW5TzaYDrS1vGrkaooRbX/qHF0eHdxW+5DxXOYxCg4Z522d -p4MSbffWysMlyPF92FW1KHrgfVymucVchvb5ptJJ3KGHKpo7cXwny1C2wKNU -9sf0YMwiNdGWUob6vT6U/vpAD5Upq4XNXOXoP26BbyW8DKDRhOqPSz1Bqk4N -mFA1A9R/e31Sr6oC9TF9aGd6ywB028Kldl8rkOfzMfN//Qzw6FNxQvPfCvT4 -AIP74M6ef8SfcdcTlUiwyio7Vf8AGN9suOExXonodtd26MYOgNiGDJ4rVY0G -7hKaf7EwwjW7hwpOv5+hzL4SZj9xRrCLd606JFmDbJgkz25r7Nmb8o8STtfs -zTf+HUoHRiAWRtrXvK5BP9wZyOzPGEE7kCDHkFWLpo9O1KpaM8FRzvPGlx3q -UHHo2f0Nl5nA24hl0yS7Dl2qH7RAEUywebBqumygDs0rflw7XsIEacyfXL+c -rEfLPC+UrP8xwazCafe14w1oc/nOk+A8ZhhMnK2mMWxCdbKHdnefMYOc9n+N -PUlNKOhCklFUBzNob89QCvU2ob9DUQuJv5mBrvzI7/9sXqCw8eccH0RYgOrU -pc4tz5coqrvQ9IcPC2j9efeeZbgZXS8I/UB5mBXm79/t2rJqRfrKF9k4RFlh -9kxXoX9EK6J7fcpcUp4VjsdM2+ClrShqXHzIQJsV3ulMH3tI8RpdFen8mXqR -FQrWXA0WSl8j91zuHYl6VohXiu/xP/QWnbxfKWdwmg1+dSnlVB1uRyxy9zzO -OLEBkS9x30PDdtTdEFXl4cEG4wZsCjOh7Uh/yFI9NZINGFeiBSyn2tERnh2d -byVsIGX/MWawrgMp39U/7fGXDRqONBVGXO5EXKnj8bezDsFQ6G+rqP09iFv2 -WdRm0SFIcTzW/V60B/G0xISeqTgEt+00yMrQgwSWpX0lWw+BsYdbqXNgDxI3 -9DzXMH0IeKOfmVos9CAl6n+q40rsIBWTdV5r6CMy9uGcIHWww0vrnE617j4U -a6aH965zwOpkBoULbT+6opF3tj2CG37l3f5jRjWK9HOZVg0SuSG360K5Buco -Etl/Na47jRtuBqQz8kqPop5PFpV9j7jhTcaBrV6jUaTgeZBqpJsbVsxN8lkz -R9F0kX/RCs9h0Ns52nhPcQzZshst8FYfhoWmJfFA83GkFNwQnt14GMg3NNiT -nMcRw5gUp/Dbw3CrXdQoI3Ac1T2hQhIDh6Gp5N3sraxxxGlQl0zYPQyFo6Ot -tJPjqCdcTPmYAQ/YZPyl6veaQEeXtoPcx3mg04nu32r4JAo8kSrzap4HrnLD -llzKJCrPkx88tM4Dx+2lGyweTCJus3MadXS8YCnjwhzaMonmn7/ZoFLghecf -9BMEKX+i2xHJPhkBvPBRTO1GdMhPNMYh4f6akQ9Gg5sMJV2nEJfHS34uLj54 -jejrzgVOIcM2q66LQnxgdF8qIy52CtUEXZdjVuKD09kJ5/Pzp1DC9+VZays+ -OJguMkw5NIVIxQ3OSw/4QJcz5ImV7jQKJ588z6PODy3PUq/+ZJpBJ+yyV9SO -8MN0LfrRyTuDmMLmIs0N+UFK/TXnfakZdL81uij5HD+YExyfrmrPoOf69XO0 -8fxQ6rrvVeKVGbRsJer3e4AffHe9B0/0zqDaIM/9rBP8cMyWXe7ptxkUcr/p -rsIiP0yGLKjvn5lBB39YNlykFIAmXWvccXcGSTonUvyQEYCVkwT6TZlZZOe7 -ltAZLACFOTHlftdmkfidI3yz0QJQYWCqZR47u6ffzbL9yQJACmu05rk1i4L+ -SvccKRAAHbqKTcuCWZQWacdR1ykA1ydrXbLbZ1HnrXc5hfyC8KF1+OBR5jl0 -u5qd2CopCCopOsrhXHPI5vP5lh9EQYg9muqdLziHprn/TvDqCkKaYkpruuIc -osolyKS4C4LIR5lwFaM5pFme8TTkpSBIxL4MUouZQ0e/dv9bbBOElrJIJr3E -OWREQX38bK8gUCfmuGinzCGHU+4DaFIQygKrFyaz5pBusHBoGI0Q9Pv3RG1X -z6H3zI356gxC0PfAPwOvm0MmBRZty0xCQD4ZcMblxRw63XWd9Ty3EPxyqLZ2 -a5tDnoLr+dqyQjBCNd9MHJpDa9XJbVuKQmDckv07+/scCjohu1CpLARfJhMT -l8fnULTXOVURXAh6WOXJMD+HGGj/2AweEQItB5F1bHkOJWemhaYcFwId6j5b -wdU5lNna0UZ5UghaThS5Jf6ZQ4JWTgv15kKwLziikmt3DhXM77JesRGCOyUx -g9GU8+gJh8rpcQchOGpZSMNAP4+UH38IveciBFN9cfcED86jevxSgellIfAn -CGFczPPotXPOQqufEHi257wsYZ9Hen812K4GC0FE6I7sCa551J38SVU5TAiu -Gm7Wvzk8jwbq6MMK4oUg5HWXgYPAPLIzKiiwTRKCqBdePRFC82hiDG9nvy0E -S0TytQiRebR4wIct+r4QnBmLPCEsMY+u5DKpYXlC8LPq3Y+XkvNoU7n49Fqh -ELyOq0/FpOdRSLtOWNljIYg9YyuQKTOPqOxGCpyeCMGTrHDVz7LzKG4loJ3/ -qRC8VPyYuig3j5hiDy1+fi4E9uktS5Py8+g2bzlbUpMQlCvc/1uvMI+4K06o -6bYIwcFEL4/LivMo6+j46Z23QsD6W/jP3z0sMnAtrOa9ENxftTh5kTCPHl3m -LnTvEYL3MpEiVXtYnrK6XeKzEPAcHuX/uoer0v9bHBnYqy/R+9f/sLrsNNud -ESGo2fmn93QPN72MUDMeF9q7T1n7XPfwETN+2/3TQiAVsaO6sxfv3XRt2Mt5 -Iei+PiTguocNr50q9P8lBOnukaSqvXx7WRfaFdeF4KRbGnffHh/LotjFqe29 -/nD09eva4zusKXIod3evHzUMl3P39LD/0KhmRS0MDm500v/t6TXlYGnLQi8M -ngt2LR+l5pHb5q+wNkZhcBfttFXY01vT6wLnTzZhkEz1EdUUn0d0s4MlVNzC -8LNP+B+H6Dz6Ym+sLcwvDBZbtq6v9upZONT6BRcRhhwO+kWtvXr7mKm72UoK -A9/DC1TRvHv8ukr3BckJw3owl9R97nk08iJN7pmqMNCq/4knsc2jUjWGll4t -YWCqDn9ewTSPgipCLJdBGLzLGQe2GeYR5wPnCFkDYTjIRNOyvNe/EzzDXHom -wkCkKvK4tzOHqm6blF0wF4bnK28HmLfnkHG0Rn/eWWGgkbPLNt07LwI7ZZdf -OgrDLcJYr/DcHJr3E6H6dnGPXxtHQO3kHIpzOaDA7SMM3Ncb6lUH55DFaGir -SqAwqAVZSAl+mkNiNqtWpiHCUPz3wMPOrjnUbPAtMilOGHbV9d18mudQ0uuT -h0tv7Om5UR50eW8e2GJvy9tThOHIYxoZ6ao5tKXwZIA6Sxhm25lXJh/MIRJb -uGJwpTBQ+LZWOITPIYrra6/v1vyPL5vFuYA51E11yaamQRiekd5l8njMIde1 -U9G/3ghDzA3p4Den985zv9iQ86AwnKCdmhojziHvkxme0d+F4e9f88F6iTkE -HYy0+RPCkBUpaG/AO4e+NawTRhaF4VVh3rPbVHOIM6ctxoxKBIqNWfGKnlk0 -wYXxedOJQHkKbbFW6yyqSq6svMkoAhE2kd1Bz2aRcUTmcAeXCEiTnDZZM2ZR -nJMbSVtOBAymGQ6k2s6iLVmWEXlzEbh1X4vN+9MMWs/iCVeyEQFs6j81k5YZ -tMosLqZxVgR41Z5JfXsygxZ/a1w6elEE6L4I0FMmzKCxBod1m2si4Ll+fc19 -753cYVDLFFcoAg7Lkfm516fRu6ZXlTcei0DjqqG8oc80eq3YaXb7iQj0is+d -ybedRi8OjWZm14kA1ek/783kplHVEIPksy4RsFf2U377bgplutqhsTURyHF9 -vc6y9BPd+eYyNrUtAuSKpuiE3p8o1fhK9MKuCCwVB32vfvYTJSnFvd+kFwXe -Z5wa3ME/UcSfSktmAVFYO7GUorF3/7tep/Ek64rCQcFNjmTKSUQuKc1NTxeF -iec3/gn3jaEhoZKcY/dEIVHe5/VExRgKSi/OXs0RhajIq8/Dk8ZQbXjR/VPF -opD6YbTFWG8Mkaxy7zI1isLImdinjk2jSJomNTlmVBROynY1tOT+QJxng8P8 -5MTgSaDtue4Xw+jZp8BQcaIYSPy1eNbjN4zM9ANCPqmIQaYV5dM5hWGUouJ7 -lYTEoEhLXjMgZwgxHvQIWDwpBqLhsl+0IwYRdZ295wV/MSg9rd1MONmPfrHp -n7NoEQN4on5cXPIT6ncT6bn0TgyIbv6memN9qPntNgrtFIMjGfbbM1l9KDmo -RPDRFzEI+jGUUMzZhwhjB79vzYrBqOF5FSumXuRe+eFM1iFxOH3SmjTG1YMs -DjzqquQWh3gGOX6d2g8IdwrD3vKLw+FUs+tz6ANiPEzkX5IUB2o1FuZms25U -GpYyDGRxCPtvjiIrsRPNGpufnnAUB3XXhesDKu2ot1j+/eZFcbgnjsRde9pQ -PRWtFqOHOJitwnGCWxuKr63hUQ0UB7JmgaLpw3dISpB7MPaGOJRdejExJfsW -OS8OWsnWiEPPJTFTu8utyOhEdRtqEAc/YRlyHU8rUn1wXd2sWRzUQk8OKbe3 -IFoLMve1DnG46y7fFiPdgoqasr52j4jD7IG6uTMbzWgi8ZyF934JWJdMEZq+ -3oTcZ+VECAclIFUlbciVtQltHN9aWGCRgJmjdZrFdxsRA1VK9EUeCej6bhEL -pQ2IENj69Jy8BKQfTOK4PFWH6r/cDBMgSUDrpcgVvaA6pKNsazisKgEDF8lU -L5nqkMXS6rglSICnzVLROfJzdM1J4pCx6d76m3ea6B/XINrWlZGDVhKgd1ec -j6BXg5KFXj7usN2LxzNn2DnzDBUMWR7RvSABkaLsC2aKz1DHyXgvLFAC6ibo -/yq8r0ac+PwH2RwJmOjQqjY6Uoly7z2/N5MvAYWe01x96xVIeivK+eEjCah5 -yj4cX1qByE/5d0WqJMBrJ9sshLcCOcgYK/C8kYCREyPREkzlaD6Wd/truwR8 -Vcly8Y0vQ36TU2/SuiWALGneMkNbhhJyw86w9kvAQk2YpRhdKargrEqkm5OA -rE+vmZhFHyNNnxCrt0sSYGo+CbXlxaj1o75Y1OpevKDxO3rkYvQlcbxh958E -IEoJc5Yzj9BfSo65dRZJoGv5z9HhaRHSW/LXm1SVhKsKX/t0n+YjPqJADB1Z -Ev5V1nXvN8tHi96vW2S1JcEb91NNXHuAUtdZyN4GkiBL91PkFfYAjfwrVtg9 -Kwln9rWMMY7logpk4iriJAmWlRuUfDdzUWT4+sNjlyRB67hYbzWWi6RodIQT -fSRhhSlkswPPQd4Hhw8djpeEVwzUlaTp++ioUYQJOUkS4s68VQq0vo+4kqVu -nL0tCcuKUdRuXfdQ4yFf2qKsvfw3KdMkmjIRLS/TFqlKEkyTGqqK6++iTGkY -MRySBEGVGc7/xNKQm+tPHs8fkhDaYZDJ2ZCKUFmi5e1JSXg5+1/FD9NUNEEY -6BlYkoR2RyXnk9dvIwV179YL1FKwqvDqWDFLCqII4qZIoJeCrhmh+KCaW6iv -4QW5jEkK7vfPTNPY3UIB6EDNb24pUKTyCpepSkatugWPwuSlQIRRsjx7KAml -x+lP5pOkYKFaLFRaOwm5dCwLv1OTAj6WH2llxTcQkxF2j/GIFIxAEO3FyERk -Zf7lRqaFFCSknK5VsEpA8w50V56GSoGpndj9t8ExaDH7aNPLKCkgamgGvj8Y -g5YGwva/j5cChyOF1Is50WjFeOve6G0pGFB5tOLQGYU2tGZfMz2Sgoiq3QdU -WCTa9JNg5imTgvPxVIKT3yLQdqW9tXiVFPTKCjvcDYtAfyWHFrQapUBn94b/ -yffhiJK9k/NijxSYHOqfFvENQ9TGdOd9PktB4HGhzCLRMESTcLQkdFAK8pXu -ffN5GIroKJpQ+oQU0FJ6TE57hiCm+TKX1k0peL71lKtb4io6/PpmPb+wNPhw -pXyoYQtAPLvvqaUlpEHU+28F3PNHfJp0xsqy0iDU397NJeGPBCrCxvVVpEFF -OJwz/IgfErvvdTBATxq2f9KVs6X5IImvZRaRRtIwXkfX9lXBB0myzeYmmUqD -ulsWVXrHFSQTZ69SeEYa7PN0fL7uv4IIPqZ2vV7SULoipeV61wuRntx89M1P -GjpvV7CtgRdSmn2/Mh0sDQtreXWKc55I9dzR2N1oafD7eNcr/agn0jJUqZDb -azLjYh6adHZ3pCvGRRnbIg1jo8FDJc8uohn744+03klDYHTysAZ+ESXm+Rst -v5cGcRGZreU2F9Qn0J9p/VkamsmEpaoJZ3TucIaS3LQ0xB4wdA1SvoCorNoH -fsxLw2pQdfbRLidUlL4VmvZLGlql5OUXnJ3Q/CGbzp1tadAeG2CufeCIApl4 -nT4yyoDt2TEDXXkHxPefwYEYNhlwnsu5x/PJHjVfD67U5JIBbOtGTOJVe0RL -P/wvX0gGvjU6Bcv2nkcpVFnpfkoy0GXPbnrj5jlUuinQxmstAwzJ4z50mbbI -WM3YveeMDCQ5FOf/ZrdFK76h7NH2MkDjmPbjRMpppPH7+7lFVxkoJcXQ0aTa -oLcLuVvNITIg95qn6k6VFboo9zHHN1IGShI+hRYiK3TQdZ+uTJwM/Pel1Lm9 -2xKdmj6fcvuWDMhEFzHI/7ZA38dEZC8UyEDdG/8PZ03NUYSw6UeeYhl49bzr -zOFlMyRxLtL/Q9lefC6ni7lJZsjt23ireq0MtGyerFzrMUWbXwtsD3TIwNTd -Vpvhi6cQW5dEUsWSDHxPwNXYO43RzhKhsGNVBraZrWkfyRqjWTatxoktGfAJ -LzB1TDJCLVbGs9zUslBVGKXIdeY/dGXCXzecWxZe0J2+3MhvgM7tjzhzj18W -3L/IXJ5O1UeGMok+z0RkgebcR/W3TPpIzDP3wYycLKiBqeZ5Bj306U/bzklt -WaDH+kuKBY+jZoE+DjddWbgpRxxbf6yLSrW/ycUY7NlDom8lq+ui6NhfNvXm -srB/2kUv2OYYUj3EUytySRY27jMf3qzVQXdkXD1+p8iC4/OV+qQeQFH/+cYw -3pUF19OdtOXBgDw9Q7Mks2TBb8g+KlAK0Ima2+9PP5QFe/sglilGhDa1GyVf -N8iCWEjEhGgZGU04vsVHmmXhd1Lyk7N8ZNQT22O++UYWSoeEF3yTtFBx10Sk -XI8sCNiyhm0GaSIba8YfqROywIz/6Px0RR3pXuXaKJ+RBbpsoZ/nNtUQKUeY -qX1RFqhPBuycDlVDDJMq5H+bsuCxw2funqqKGjzt7joxyoH7JttG/YAy4ot7 -YqKqKgf59foPLr4josflZa1bmnLw7SFlcMIVIlL/XKLahOSgjdd0SFWYiMxE -HvEd1dvDE/eUOcIJKLExd/qkrRzMu/y5oFeggHjGs09znJcDypZgn/pDCugR -fVZ3v5McqB9X1v8cLY9eW2Q8PeshBxy6Iae+eMmhP8u3wi5HyEFE7XjhU2cZ -FMeV/JsQKweJh8W4heek9+77pAur1+Xgu3uM0ICnNCJdTzAMTpOD502SIxSR -UuiSeCR3/CM5oD5m7XLwlQQatPapKOiWg+xdqosZ90SRS5i3qEufHDydejfM -gUTRepFnumy/HITuv1ivOyGC2FbdrlaNyoFYlXtloZII0k9yOtG8KgcXfS4X -hE0Kof6nDg2RW3v5XfK89C5NCF0YOq9wfEcO1miv6MUcF0IRUnbs3fvlQe9O -T0CenSCqa7H4McQjD8ypdC8aBfiR7oyZaY6gPOT0X+81T+NDn5hN39qLyUOy -h6iwPxMfWrY1Lp2RlwfJ3qLvInS8SGrjeMAGyEON+2uBEa7D6K6sBsshZ3kw -4HO6HpfDgcwNupJfuMoDffTLqKtaHIjN9TzrJU95CGHMtkAD7Oj643i2V4Hy -0G1xUY2Fhx2FSA+yeyTKw7SXgtjOEzakpeeexnNLHu6m3KSItWZDmy6UnG/T -5OGcYfh4DjUb8nokw8WfIw9Lw/JrjmdZkaNk8OH3lfKwUOu0EyjBgoSPM2f6 -1ciDA/Hbw9BaZjRyIZ9HpEEebs6jthdizHvv/fe8ga/loezbo0fi+5mQvjif -gORXeRj5GsasO3sAEUWbRCL/ygNLAJUXpRAdWjxyMl9hnwK0fvp16XzFfvTY -flJ0kEYBKpq6vr8+sh+JPWAUJzIrwG8PLRafy7SIW9hO8ruwAnAYBpUEDFCj -z7DyMEFCAaT9Khx2A6hRyrkYKVVZhb3/DdOgozzU6EBuufQNZQVI+8xYMHOe -Cu0I7MpqHVeAzN9XOd5RU6IG/HbpTwMF+LtO/f1C5T4UYCcpn2KiAMSka+5x -Z/ehX1nGCjPWCpDuF8yn0kyBJvhyCXfcFED+UXnWitgu3sGjrfL7lgIM/0cz -5zy7jfcIPJGgvqMAdq87vJ0ctvEvIvzcHPcVwOJflRTd9y18VGZrW7VIAU7u -EkzoRjbxTc3K5qB6BTCgFJZL3lrHd3DBqusvFcCVZ+f7yZh1nFrnRv791wow -fZMtx5xjHWc2uBjzolsBxLb+yKxrrOESp4UNKccVQOcIxu92/zcud/Ymdmha -AZQ5m4iMmr9xksM/BbEFBfD5G1R5b2AFx1wHWHU3FED22/4AG4EV3Cz41tf4 -A4pw7/ABedumZTzi3j4HVmVFUP/2WOXL7Xk8LsfDTERDEdJzf/y4Sj2PJ+V/ -O6aEK0Lc2mraiv8cnlFSJ2V+QhEcpUwYDjnP4hUNXot3bRVhfGyiodxxGq95 -+f178XlF0CTOm52ancIbW//7WH9BEbKdnKtOe0/h795LPx32VASzF8PDHvE/ -8ZGh0UChaEVw+dfcfbp3Ap/4buxKTFCEGIr/ns5cnMBnx5tsj9xUBL9oyYhI -qgl8bS4DOWYowvzzge1K8jh+8O9JmkdlinD/44Tz1JtRXJOvJVnxiyI079qx -elqO4GOiYiMzg4rwkd71jXH7NzxeNka24PseP5dhlXbsG96vqf+We0YRnuZ+ -fm+lMIz7W/f+2fdXEZxZnBPz5Qbxm4RMMTsKAnDv89KlqxrAHZQNDBooCWCY -MGZUojGAHyCX3fXdT4BN7r9XIoz7cRsDL6VZFgKIg1azTeoXXMFYxOb4IQJY -SNFppst8wSlN+8IKOAjQvHpX5FXLZ7zYRqXbjocAX0O2JV9tfsI3L2659IkS -wHiYIsgvqA9PjwvPblQlgKcU5e/Mrh78UiLpzWENArCY8YhPhvTgePL4nJ8W -ARJFW+hyiT345J1jGkQgQH51I0um6gdc+SH9p0I9Amii/ZZZ/zpxupL6bUpD -Aoz0lt7s8e3Eh8tdhc8ZEUCdrW4ydPk9HlnT5c5juocZd26JLXTgvW9u0d+0 -JUBpfrH6f5TteFH7EcK8HQG8Po0ISN5ow4O6flvonSfAZb0Tb8R52nDhz+YF -VBcIsG/goNVFzXe458RhFOBBAOTz6NOflDc4E9UDn/MRBLj04CeTx/0WnHbr -pemvKAK4GO0SaPAWfGfxGyk8lgDEarXjQaOv8KXBw79yEwnwXCcyfkj+Fd5T -devyj3QC3BzUTN+seYm3PXpi6JlBgOriSVkOzpd4c3aXLMV9Aijk0y2dD3iB -VybQzwrmEYBspJttoNuEp9iHXzhbQoDCC/33y2ka8ASrnGNLZXt6uhnrZlyt -xyOMmsRCKwhwbLDMRmu9Dr+iuTWW/YwAouXTs+6/nuNmbF5nR14SoFP/SY0I -bS3O2XLO6swnAkhLUAXRZVfjTM9D1Ba+EEAk/EVlpGY1Tlt+n/PaAAE4tvxf -b/RX4RsZ/Z/ujxDA8sOx4ge8VXi/l8nJ4WkCuB8j3NmoqcB7nN0JbnME4BHY -tJWzr8DbziQy/10gwMVhJgNm5gq8Tq+ti/c3AWYrI52Ch8rxTGHQP/2PAAdc -h5crgkvxFC476bldAoT8NuAnzZXgCYxX6YIpiaAq9tg4+UwJHrxV+zZzPxFu -0sevFes/xm0/KuoMshKhh6LGruvoI1wgXJBsLUEEt+7DC9fLCvDyK3Qi36SI -4DNI5r+uW4DjF37tPy9LBAtTMcfro/n4GYPWPhcCEUw2iwOc+fPx+xzOrgGa -RLCVq1WPKMnD5ehMTv4lEyFibpd4zTQPb9hWVwtDRPih9y9b4V8uPvidgSru -6J4/hdNIinkufvhxeeYdIyLISnNWbZKy8Uf374TxniRCiO7OkYT7Wbj6zbAL -OaZEeDO9I0tPn4Vb+ZwiPbQiwoKI9N/U2Xt4Or7eXmNPhN/5suNnujNw9j5s -67MfETqfVI/YMKbjBW8kvlsHEuH7PavY8Jw0XOk585tvwUTQeMZ9/r1SGn4q -azR5MowILqNsutn2qfgt52iptQQiJH0eixftT8GFbNyZAm8QYaVcfvFoUApe -YWi5+vcmEZ6ZX5nVEEjBe4jSzdRpRHAin70S5HoLZ/rbacmeQwQRbH77PE8y -nr34DLubRwT/m4jdIvUmrjCaLcpXQIRq82dW+zeS8P/eei6JFhPBYYvVPf7N -DTwxmT1WqZoI8vaJQq7R13F6cduaU++IMKd/Ozk+Kha/dBjpl7Tv5SstFUfi -isU7GEVGqDqJIBZLNfC1JAZPXJ+iedZDBE7Bl60rg9E4U9sVc67Bvfr30D7w -Mo7C3RstZjyGiWDkncJK/SsS/1Chca1thAiZM+wx/6VG4skZuwWB40RIXM1/ -Mfk9Amdzvb46NL8X78S8lHlCOO591j1OeYkID+xy3NvUw/E+05N8N34RITk5 -fKBmOgxPJXMdxdeJMBA1Xj1jGIZzMeXfzt0lwpNS5pFhgxCcr7Ke5MRGAr1k -6unDMkH41cKst03sJHC7uq/UpyIQ/5YRZsPJRYKVd7d2qTUC8ewI3Yh3vCSg -qbrikWUSgAuZ9X6UFieBouK1Sxl3/fCwE8+cIiRJ0DRuo3dd0Q8fJd/dGpQm -Aa/hWppTmy/+QNxOOFGBBPlMJhIVuz64+MaM56IaCaTDOF6VR17BY+Y6qY9r -koD6eXTYqtQV/Of3J3dzyCTwGu9l+fHBG3/U5ttsok2CGENB0QQRb1wmcx9L -tT4JjiYOKdgOeuIK2OEn/mdIsKamdG6W9zJeLXrxD+U5EnSszfjpxLvh6gx1 -x5PsSWB21tUhdMsVP/LV6keBMwmq8/aPOI1dwi287rL2epHgr5fHL+dPLviQ -5fSZMz4k0Px3WNPE0gU/h6s/nvYjwfS17vryYWf80oH+I7vBJJjnzaHNWryA -hxZy+cjFkGB9pjN7Rd4Jp050bq6NI0HR7zfP8VZHPMG79qDOdRJIsDY7Ftg4 -4qnIstA6mQR1Id8tUm464I8G0r/EZJJA2MvN+BuLPd7DyKkxWk6Cr1/GZuY+ -2uHmq07RbpV7+l27ZlCkaocPDj77uFG9l19ByLJ79hl84qH5JaY6EljqHHyx -4GeLb2qn3dNqJcHrww68NPo2+DWpyam3b0jwI7eT+/Yba5ySWUX5VBsJjrG6 -WTfqWOMHhz91unSR4BZP09nS41a4sB/7TtpXEvxjP/XxgZsFXmTrqC88uGef -87Mq/mOOy+k8TS8dJgGD1AOGmURzXJXFTLF1lAQzPMk2U8/McP3Ht88tz5HA -/MJmabWQKe49wtaqT6EEvEpV9Z9NTPC2t7ZNjymVwNBs6TIjtQku8KSoloFG -CdSIrsu2XsZ4R6hmaQe9Egjq+OFihka4iLB9mv4hJThB35xuI2yIB9CX3nzM -oQRpKuwfN+8b4N2/1uIZuJVgOzOenpbXAA9qiQ/p4FOChoCAISSgj390qHTW -l1CC9eFfjv/QCVzC8M/5x1J7eEnddaTrOH5V+Zgtg6wSRK0uhvafOY5L0QyY -dCgqQX97VPRypC4eVkShqa+hBOUuXR+Lpo7ihBnjg/qGSnCE9Sy7J80RPOZj -Bu1jIyU4sJHPm1ehjQ/XjVMwnFQC2hxTdP6MNh6X4L/Wbq4E79+nFHo1AP5D -NmdE76wSyPT71/CyIVyVfaa/+LwSKNlFeI+H4njiX1IfvaMS+L7vMTi9jOHq -XW/ftbsowX3WnE2pATKe7L5YoeetBF1BFT7TbZr4Twv1kmIfJaCoYy0c0tfE -ySiikN5fCQ5F2e0X+qCBTzNzZrYH7+ml+WTdc0Qdh0osUi9aCd4yG95l4lLD -l34nmuvdVQKdCxTXy6aU8OH+PIusTCWozv/K//m6Et7RVGP5674SjBj4BBcQ -lfCC2B/WGXlKMHjokhxfBAm34VW2m3msBIvbdYwPVIj4CQq9s1jZnh5e4zka -Pwm4yuSZc7eeKEHoBZ0MdJeAszyJtdd4usf3TKTvVQoC/ubI0IX4JiUYFmdK -Z2mRx6skl52/vVSC7vQz9q/U5fHcgzQXiS1KcFh9q3muUg4P+qLgOvBWCTir -eRpDS2RxwqUID+keJdi11irzqpfG792SDmgfU4KExY+j0bgEHueHB/JPKoGm -EH507Ks47nfaNMhrSgnmDS0R9xVx3ET82tXD83v+BT/3LZWL4bR1PWEX15Tg -ArMwstcSxVezJsObNpSAMdWkp2BMBB+N2I5g3VaCr/yM/WHXRfBGQ7Houh0l -6PkzMjU1Kox7/fCPp6dThuaIpw9KcoVwuzeJCWcYlOHftOf1FVMh3PBx3vXK -g8rw7dOU/z06IVzC5/0Na1ZlmDPbN/V7TgAf3i+YUsyjDCIHBAeDm/nw44pv -M/XklSGMx9j7xRA3bkV7wqxHURlS4+/lnjvLjV/61s5oSVKG8OuxVF6TXHjS -9a4wRzVlYGgIoyjd5MS/TH26EKqtDNLHctiPaXLg0y8shGiPKoP5xRpX1h52 -fDutfyBRVxnOPSnn/OXMjvMfHTbMNFCGIxonDr3KOoQ75o6TnpkrwyNnqcAb -Qmy4n7/TvJaVMnz12Nc2/IYVjzOaKmyxUYbe+D8ffrmx4qV/Z7l7zipDiuW7 -l3rNLPhvq5Wd2YvK8PAMJha7xoRHsO57LxSiDHmDnu6/PBjw1OmIqIdhe/4t -XhfK5ujxopfUuEKkMkwf0uDevUiPd1ymq9SKU4a2QGtFgjsdztrBfMciRRms -zHKfu9+mxUXybpl8S1WGvlvFKldFaHHlgEMMjneUYT6c/u2LahrcSoLrmtd9 -ZYh0aJGtHabGcyMEHBKLlOGs5Cjxv+NUeJV1Lt+hYmU45C78feAnJf6aIPIl -o0QZNmx5ufTiKPHpEXG9hxXKEHOgPau4Zx+uqCWv2FKvDE0Wn+39/CjwF7+1 -/mx0KwPN+YG8Hv6/WF5nrb3pR2WwkRRfDc78g0UVKnWU9+3Vf0ysNvHwH0zP -UjbDqV8Z3n4S3KkU2MY+1fOo9Y0qw+f0hd4RnU2s9nZ6tsKEMhzrmfOO7d3A -Mt3YaBN+KkOP45Wr2g4b2FkBhs8wpwzPst+btyasY7PhW97lq8qgdfhs+vby -KtZl4ztIv6EMelY+FdI3V7EKpV/aTlt79dUNeCKsuIr5Tk6z8O0ow/0nT2UM -fH5jFHr95fH7VeDAY1ruArYVjJOldtaRRwW+vGz2bCMuYVvTpFPNfCrw9oAq -6VDuIjb8qryOV1AFBP+IJdKyLmJ5V4riekVVIEjT5M6z7XlM7muaBMirQJZi -5PmpuVmMuYI16Z6iCtw+ypch6T6LrcTdWFsnqsD7OH7F6pUZrFYz+nWZqgok -XeDrCKecwY5k+9jzggqINFG/G9aawsT9l9v9jqhALZE3xeLDT4zOxI3Ye1QF -uj0e6753/Il17XOkiNdTgZ981nfD0iYxKyfT7PVTKsB3LMVGhHECc5cjDX50 -UgHxr+SkfUajmO8Gz/ZZFxUwR23iV9Z/YFdbqHgWL6lA1ybty5zcH9h1q8/W -DJ4qwKvDpsm0+h17FBUwcCRIBRoL6qVOhH3Dnhif3+q5qgLLxnX01HPDWA2P -/uGzoSpg+PCNZLXVMPamgtc6OEoF8tNCK5+Qh7Cx4Rf91Ul7etmcN0gRH8Bm -Hj7c1L6lAgruq8iiqB9b9k7m7rmtAu1i9zezpPuxXTp7q/m7KvAh5jprjNpX -jE+Fpl8sXwU6+BQIjh6fMYsbBl/TalXAe46ZwvdYL3bGSnlDtF4FfqTX3KKc -+Yg5ivJzVTWqwHe7qXGHpI/YlbpFi+5XKpB5fvvf1ZEeLHny1hfazj07qP4R -kfiA3akIWk/tVgFHgV6XuLhuLDvYgVP0owrQSwnpHFjswspYVSzQFxU4NVQb -IdPSiXVg/Z/9f6iAD8FKRvpGB/aR7tUazbgKWC1k13yk3bP2FXOkTu7p8yHj -r3BkOzZ1Mdi8YlYFckN/kKMi2zDqdIHP06sqID8t/nkq7y2GLTp+sqZXBSvB -0dF6/VaMs+H4g8YDqmA5LkIZs9SCLcbKeAoyqYKICqM5RXoLli28fGCSTRXq -PhNHxqZeYTtmwTqefKogbdX2ID67GfsibMfaJ6AKqke83TaMm7HyRfiuIqwK -Nne1SvspmzG7ONrgP+KqsH1lPvjpwAvsZcOtqhhF1T2+B78fedCI3Y3zCZsh -qsKVSc74cZ5GzNPc0shQWRUy93kpUac3YEJLfLOsGqpw/sFuYPrteixM5JFw -1hFVeLEy5fjq8XNMO/5FcrW5KvD75LItoWcYj0WeHaeVKjDpCjwMGHqKrYhE -yQXaqMJwawfhW8BT7EGjXht+VhVeshirsddVY5TLn3bbXVThXy1vhJFRFTbY -WNsl56oKDz/HU7duVGJV8Zn3bl7e249Y/KTnQSVmL3pOzdxbFYyTZC9l/KvA -Wi3m3H8Eq4JJ6AKtbMIT7L5oN1knRBUqFs/WMq2VYz7LFQxFYXv6lZ05XW1f -jokl+BW5RqvChpLJowO6ZVhU076R9SRVoP7FUpMpW4IdE+P+j/HBnv/uQgyF -y0Ps6cIbYccCVShqf28V8qcIE6u9sl5fpApNVCOk38lFGLX+hxyXElVID/lR -l/WqEGvxiFlpfaoKz4aSsX0aBRhJQ/kdT60q8LVZ6GkP5WN5lGP3vOpUgaV4 -4ZdSaD4WloYdE3yhCoVYVwtr5wMMb1i9E/ROdW++3x0cCsjDyqMeuH1sVwWL -d/1aw5J5GL+RibZUpyr0v/zGZ9afi/39UTL7uUcVSOTH+jexXKye1gEjDqpC -7HF1sS1CNqZ66uPY1PxevS68kK7jyMSKeENr8SVVoNK2YOm8n4FxTMolpv36 -n76qycwSGdiqf5yKzroqOAo6L+3id7GqLBSXvbvXn3rLJr7x6ZiI84Lt2j41 -cPPX7N0WSsduEe4RDanVQLxordSxPg3zbF0f3KJTg5u238NbVlIxxZkyeXM2 -NeC+dXOuPuA2ll11mrKUXQ1SyN9N/QRuY0xX6b9ScqnBE/sW5U9vUrBFJqew -Cl416LEJVLI+nIKVKvP1HRBXA873sv6NvcmYVFhCQIuaGiSqp1LPsd7AGrUK -aQw11UD9b+T6QGgiZrLxMuUzWQ2MXVO+Fi1fxwLc10qntdXg14gdS95gAtZm -e26UyVANtDnvRqV1x2G23MHud4328vNOpV8+GYct96X9ET6pBpOtucONX2Mx -boP3HCoWahBY8zHk6mwM5qKhqn/6nBpIHCj11JeNxv6umnydsFeDtOyb9vPN -UVhyhauju5MaPCPTdhRYRWHPJfNCwi+pwURsiLpiUiRGx3mw+qGPGsitVGbc -YonAildGeVfj9tavveh49ykEw8v/Prp2XQ3QJ2PjbxohWO9FLtX9SWqQu/5H -41/eNWz7h6EJz201KPpV5iUYfBXT/1AbBVlqEO3EQTIzDsJGEnpZO3LU4H2Q -f7jw+0DMW3ch2/SBGngmZLPE6gVimU0idRceqkHeb236qf8CsNmSGwuJlXt8 -F48oZF3xw0KcHwVxPlUDMzC91EXph7GJtu7PrVEDmmuK15RTfTHNzE3h6gY1 -gGPRI0FNPlhCnIPFwBs1+Eg3f/OF1BVMxknjpfigGhxer8kKsvbEbooYbUcO -qwGDALni1UFPbPW7vcrYiBrcV/mVOhrhgb2wSSzJHleDtStK2QNn3LFTJt/v -cC3s6c1UnGWu5IbVMq72+i6pgfKF1endcleM7z0d06dfamCkta3EJe+K/TxG -ikpeVwPvQlG/s4RLWKBWtCc9hToUroaMiJ1ywUY2M0qcKdXBb/FgP9UPZ+xI -TfnPN9TqICDsa7/t4YwdJPbbRtCrg4ot/aH96RewXAlZvT9s6jBGrpa6s+WI -tbF+FF4QVwfuI876PzjtMfkPk7YGUupwI6tJ99+r81hK4vadYhl1yNP6kPnI -/Txmu1+M6YKiOnw2NFS70XkOW/rrtz2irg7We4+QVKWzmFn9dRVMSx06Zy84 -S+fZYc/9cz3vYergmOZYcZnVDotYaf9peUQdODgmT3/cssU4p/n6egzUgSV6 -7lXVtA0WXEhkUjRSh5O7J+65XbLBftjr6t0wUYfl/0Kp/BetscffPF7qmavD -dkAnnPpnheF9LSUtdupgn9eVv6NsiTm9cIl66qUOzl4hySVUZtji5Vn/Yz7q -wCrVEreZZYoF8Lu5fvFTB7GfPsf0NU2xhKsepzaD1SH/aJ96X8AprELTT4gc -ow78LvGXXQ6exDRnNw51xamDW9Jdn3fPTLDWjMD9dtfVIaD2QOnIORPsy+bV -xdDkPb2B4714gDH2tyaysTVTHT4cCVc+eeA/LOYCTYVZljq0/Hd8pcHfEGPm -jM2fzFGHEK6xTPYpA0zENyFhf6E6SHxYuGzWrY8dV7plZfBkL/844azQphNY -ypPs1d5WdTj/WTp2le0YxndWaNrhrTqEfXxK+f3hUayQ6cHQaps6jOtr5Mzg -R7HnlwtbOLvV4U9aMK58RQf7JluabNOvDt4fxn9d+62NXRiSj5obVAcrO5cW -3bva2HLCE/+r39RBr+I763dcG6OcrbLLHlOHjvGnN61vASb1qE5ubF4dpMJu -+e+m4liVpZbQlSV1mB1db8/YwjCt/U2HqFfUgbprs0HvPIYZXWjeFt9QhwMy -wvylGmTMR+xd28V9GuAl5Ej+elATe5n7yfEXhwbQXZnPyySoYj8Mhc/6cWtA -/JUTt8ZeqWAUW5et//BogGB+18opcxXsyMn9RjRCGsCjz0qIiFDG3u7TVDss -owGHpI+yb6+SsKmyGGK23N5+qhE3HdJJGJ1Nn6yoogbI5dNTFGqQML0qNyF5 -ZQ0QundC9Ho0Eeu0z6HXxjXgzN3YPwtEArbANE/1FjRAQi2gDm9RxJga1Hf0 -dTQg4E7Vj3eiipjJod4VsxMawC2b18W0LI/1tVIPu5zSAG0Bf+qOEllsUOxS -efIFDdjsauWrz5fE/vTUPOK4qAFXaJpOvJWXxPiuUeVnumrAbEzAjkC9BHbm -8/07BZ4aoPOfgF3cgDj2I/pD2PMgDQhp/JK2nySGiYy4+LaEaoD99RpH30ui -mKMq5aXOKA1QCfO1vfNYBJv6qWz6I0kDrvVdUOoAYUwKdR+fva0B/PvqowzS -hbBLd5zJq3c1YHrF06x1QhBbPJ4pTpevAU0PeLLSgvix1Ue7G4q1GnA6QSSN -W/Ew1k9948R4w55+Jy565+tyYw3neDLSmzVA9VLMn5sXuLAIbhXNf+0aQPl9 -2en0Cw7sgk9LQkW3BvTe4f74cI0d0+sxHnLo04AvuGY7QZkdY4m7dLVjWAOS -Pu1kLL1hw1bHNzqvjWrA86O3doq42bCvKJqf+FMDqr+aDmd5sWLZGzkv7ixp -QMzcKxcnFRZMzvkzhROlJmDlp+q5/h3AWFrtT3Lv14SYNW7Vl9sM2G+B5bz3 -BzTB1uzXqdp9DFj9FwYdEocm5CrYZh2VocPCk8Qn7gpoQoPocX1lH1rshC5E -70pqwlFLI2npb9QY846NxAWiJkgqj08s21NhX575vuvU1ITF15e3wqgoMQfx -EvrM/zShbilzHyPvLrmxMDDxvaUmaJX9qQmt+0tmlzjB/O+8JijoGRndi9km -Xy7iTFFw04Sk/rzLXSGb5LcSk+zn/DTh5L7u5+3Z62TBh9V3boVpwgLTuG/U -+Co5QDKCpzVBE5Sd7mTK6/8my0gJCknkaEJ/5FtjnivL5MhHCw8sizX35ofR -o/Dzi+RhqUbx+GpNUAlcPSXFNE9WKU54VN+kCdPi1Ynnp2fISdLWsvPvNKGD -oUyvYn6KPFUsWc7fqwl3/I0Gh7h+kkFmnWA8rAk6VVVPZi9MkH/J3FatWtaE -EsLy8qzTKFlGk6K0nkoLfA03bBj/fSPb610WbuXUgprBYlbT/gHyPavB9PfS -WjBsKbAmqfuF/Mn5+MFPZC0w1Dx70JDUR2b0fxo+bKwFx55n5Rlc7yHrxghv -TNhrQV/xqXT1qE6yvNQHGl0nLbCoyGRp//eezN5xlf2hsxYwB7mY9AW+J48x -9hMvumnBOd9LjyQCO8ihaUluC75akCXdq33zdhv5ecGf0bU4LbCrtfHVUXhD -zk2M1jhergXdFsVd9EUvyfE+zLfu9mkBxhFHy1NYS6Y7FFe08FkLHpnw1HSp -1ZJjKikaj/Rrwdkn/3KCOmvIUYu/fs4Pa8Gkne6He3+ekUNcPpG1f2pBwZMd -e1rPp2Rv24zpmU0tYMoI+nbqcSXZ5qgoaAmQoVDCX9Pc6TH53yc6plYhMrSa -djgwjRaTc50Wh/RFycBpR3/Z7mwx+WdMnb+NFBn2RywF3HR4RPZuN34SSCLD -8Uv1wwNxReQEo6sCz3XJENhKlbJBzifXW33+q+xBhmbKxJVVhvtk3suxdQrN -ZHgse+LkeMcNMgeDW+V/lhjwrSu7kQy9yQU614KWrTH4/Ntt+/m8F5l0LUnn -ti0GDhqBT4k3vchGyxWf+89jEKMYrvNxwJMc82Vty8ENg0Jl5gxveg/y5oPQ -I0HhGPxjddTIO3WJPKh1u6+oBAOSwcWzTEv2ZBffgvt65Xv7yWhI6iTak9fL -nznNV2AgbvTNLVjWnswm0r9BrMFgvMYtr9PjPNmAjp+vqRmD0Q/WL/qZzpEb -PxU59n3GgMZsrnWWfJqsz/Rc3q8fg0dbYQLvy23I/cfb17mHMCguucF4S9SG -vFo/F2f3A4PHVw9H3OKwJsvnEcpmZjG4ajxwr+ewJblxUNsvcQEDfVMrpeN5 -FmR9dlOkuIxBabxaI0nWgnwh1vejzxoGOwxM2Sq65uTV5phMrk0MrGm+8Sh/ -NSNHbN9xqN/GwK+Qrtv3khmZRblY7sw/DBo8Ts0s7pqSsy/Xr+3uYpAUyzF8 -+44p+f8AxT+Q0Q== - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - PlotRange->{{0, 30}, {0, 1}}, - PlotRangeClipping->True, - PlotRangePadding->{ - Scaled[0.02], Automatic}]], "Output", - CellChangeTimes->{ - 3.62039086954998*^9, 3.620396745836319*^9, {3.620396787214686*^9, - 3.6203967933350363`*^9}, 3.6203969084216185`*^9, {3.6203969557143235`*^9, - 3.6203969834299088`*^9}, 3.6203970418442497`*^9, 3.6203970877608767`*^9, - 3.620397127422145*^9, 3.6203971987852263`*^9, 3.620397248351062*^9, { - 3.6203979137531204`*^9, 3.620397933804267*^9}, 3.620588051566843*^9, - 3.621729617473214*^9, 3.6217297057617245`*^9, 3.621729866501474*^9, - 3.6217320062182193`*^9, 3.621735287258529*^9, 3.6217800037142296`*^9}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A$$ = 0, $CellContext`B1$$ = - 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = - 10, $CellContext`M1$$ = 6, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 6}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 540., {174., 183.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A$1982$$ = - 0, $CellContext`Ka$1983$$ = 0, $CellContext`B1$1984$$ = - 0, $CellContext`M1$1985$$ = 0, $CellContext`B2$1986$$ = - 0, $CellContext`L$1987$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A$$ = 0, $CellContext`B1$$ = - 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = 1, $CellContext`L$$ = - 10, $CellContext`M1$$ = 6}, "ControllerVariables" :> { - Hold[$CellContext`A$$, $CellContext`A$1982$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$1983$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$1984$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$1985$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$1986$$, 0], - Hold[$CellContext`L$$, $CellContext`L$1987$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`f5a[$CellContext`A$$, $CellContext`Ka$$, \ -$CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, $CellContext`L$$, \ -$CellContext`x], {$CellContext`x, 0, 30}, PlotRange -> {0, 1}], - "Specifications" :> {{{$CellContext`A$$, 0}, 0, 1, - 0.01}, {{$CellContext`Ka$$, 1}, 0, 1, 0.01}, {{$CellContext`B1$$, 1}, - 0, 10, 0.01}, {{$CellContext`M1$$, 6}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{972., {218., 225.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.62039086954998*^9, 3.620396745836319*^9, {3.620396787214686*^9, - 3.6203967933350363`*^9}, 3.6203969084216185`*^9, {3.6203969557143235`*^9, - 3.6203969834299088`*^9}, 3.6203970418442497`*^9, 3.6203970877608767`*^9, - 3.620397127422145*^9, 3.6203971987852263`*^9, 3.620397248351062*^9, { - 3.6203979137531204`*^9, 3.620397933804267*^9}, 3.620588051566843*^9, - 3.621729617473214*^9, 3.6217297057617245`*^9, 3.621729866501474*^9, - 3.6217320062182193`*^9, 3.621735287258529*^9, 3.621780003828236*^9}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"(*", " ", - RowBox[{ - RowBox[{"Candidate", " ", "function", " ", "both", " ", "includes"}], ";", - " ", - RowBox[{ - RowBox[{ - RowBox[{ - "central", " ", "symmetric", " ", "model", " ", "in", " ", "f5a"}], " ", - "&"}], " ", "2", " ", "unnormalized", " ", "side", " ", "functions", - " ", "that", " ", "describe", " ", "the", " ", "initial", " ", "and", - " ", "final", " ", - RowBox[{"heights", ".", "\[IndentingNewLine]", "The"}], " ", "model", - " ", "fails", " ", "when", " ", "A1", " ", "and", " ", "A2", " ", "are", - " ", "bigger", " ", "than", " ", "Ka"}]}], "\[IndentingNewLine]", "*)"}], - "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Clear", "[", "\"\\"", "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"f5b", "[", - RowBox[{ - "A1_", ",", "A2_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", - "L_", ",", "x_"}], "]"}], "=", - RowBox[{ - RowBox[{"(", - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], - ")"}], "+", - RowBox[{"(", - FractionBox["A2", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]], ")"}], - "+", - RowBox[{"(", - FractionBox["A1", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}]], ")"}]}]}], ";"}], - "\[IndentingNewLine]", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"$Assumptions", "=", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], "&&", - RowBox[{"B2", ">", "0"}], "&&", - RowBox[{"L", ">", "0"}]}], "}"}]}], ";"}], "\n", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"f5b", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", - RowBox[{"-", "\[Infinity]"}]}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"f5b", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", "\[Infinity]"}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"f5b", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", "x"}], "]"}], "\[Equal]", "0"}], ",", - "x"}], "]"}], "\[IndentingNewLine]", - RowBox[{"Expand", "[", - RowBox[{"f5b", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]", - - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f5b", "[", - RowBox[{ - "0", ",", "0", ",", "1", ",", "1", ",", "6", ",", "2", ",", "4", ",", - "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f5b", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A1", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A2", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0.01", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "6"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0.01", ",", "10", ",", - "0.01"}], "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "]"}]}]}]], "Input", - CellChangeTimes->{{3.621737264272608*^9, 3.6217373096502037`*^9}, { - 3.6217374591187525`*^9, 3.621737468358281*^9}, {3.621737502694245*^9, - 3.6217375061344414`*^9}, {3.621737778220004*^9, 3.6217379498478203`*^9}, { - 3.621739483890563*^9, 3.621739495298215*^9}, {3.621739579666041*^9, - 3.6217395865034323`*^9}, {3.621739771725026*^9, 3.6217398601730847`*^9}, { - 3.6217399784898524`*^9, 3.621740008393563*^9}, {3.6217400514510255`*^9, - 3.6217400894631996`*^9}, 3.6217401301065245`*^9, {3.6217801020638547`*^9, - 3.6217802109590836`*^9}, {3.621780247919197*^9, 3.6217802950608935`*^9}}], - -Cell[BoxData["A1"], "Output", - CellChangeTimes->{ - 3.6217373162515807`*^9, 3.6217374695743504`*^9, 3.621737507313509*^9, - 3.621737810901873*^9, {3.62173787273741*^9, 3.6217379026081185`*^9}, - 3.6217379506388655`*^9, {3.6217394756150894`*^9, 3.621739497110319*^9}, - 3.6217398701696568`*^9, {3.6217399825650854`*^9, 3.621740009871647*^9}, { - 3.621740053248128*^9, 3.6217400901822405`*^9}, 3.6217401307385607`*^9, - 3.6217801190358257`*^9, 3.6217802549575996`*^9}], - -Cell[BoxData["A2"], "Output", - CellChangeTimes->{ - 3.6217373162515807`*^9, 3.6217374695743504`*^9, 3.621737507313509*^9, - 3.621737810901873*^9, {3.62173787273741*^9, 3.6217379026081185`*^9}, - 3.6217379506388655`*^9, {3.6217394756150894`*^9, 3.621739497110319*^9}, - 3.6217398701696568`*^9, {3.6217399825650854`*^9, 3.621740009871647*^9}, { - 3.621740053248128*^9, 3.6217400901822405`*^9}, 3.6217401307385607`*^9, - 3.6217801190358257`*^9, 3.621780254979601*^9}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"Solve", "::", "\<\"tdep\"\>"}], ":", - " ", "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"The equations appear to involve the \ -variables to be solved for in an essentially non-algebraic way.\\\\\\\"\\\", \ -\\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/message/Solve/tdep\\\", ButtonNote -> \ -\\\"Solve::tdep\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{ - 3.621737951719928*^9, {3.6217394766151466`*^9, 3.621739498104376*^9}, - 3.6217398703896694`*^9, {3.6217399825300837`*^9, 3.621740010023656*^9}, { - 3.62174005328013*^9, 3.6217400901962414`*^9}, 3.6217401317166166`*^9, - 3.6217801216469746`*^9, 3.621780256767703*^9}], - -Cell[BoxData[ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"A1", " ", "B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - "+", - FractionBox[ - RowBox[{"A2", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]], "-", - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]], "+", - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}]}]]}], "\[Equal]", "0"}], ",", "x"}], "]"}]], "Output", - CellChangeTimes->{ - 3.6217373162515807`*^9, 3.6217374695743504`*^9, 3.621737507313509*^9, - 3.621737810901873*^9, {3.62173787273741*^9, 3.6217379026081185`*^9}, - 3.6217379506388655`*^9, {3.6217394756150894`*^9, 3.621739497110319*^9}, - 3.6217398701696568`*^9, {3.6217399825650854`*^9, 3.621740009871647*^9}, { - 3.621740053248128*^9, 3.6217400901822405`*^9}, 3.6217401307385607`*^9, - 3.6217801190358257`*^9, 3.6217802567707033`*^9}], - -Cell[BoxData[ - RowBox[{ - FractionBox["A1", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}]], "+", - FractionBox["A2", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}]], "+", - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}]}]]}]], "Output", - CellChangeTimes->{ - 3.6217373162515807`*^9, 3.6217374695743504`*^9, 3.621737507313509*^9, - 3.621737810901873*^9, {3.62173787273741*^9, 3.6217379026081185`*^9}, - 3.6217379506388655`*^9, {3.6217394756150894`*^9, 3.621739497110319*^9}, - 3.6217398701696568`*^9, {3.6217399825650854`*^9, 3.621740009871647*^9}, { - 3.621740053248128*^9, 3.6217400901822405`*^9}, 3.6217401307385607`*^9, - 3.6217801190358257`*^9, 3.6217802567727036`*^9}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJwdV3c8lu/3lxXKzMreezzPY/Pc93WklPFB2ZLKiCIrW9k7SUJRVkbJyCiy -SjQQEg0rZWWPZFf8fH9/3a/365zrOuf9Puc6130J23uccqKkoKBYp6Kg+P/v -SPtrsesFeKJjn3aAtiP6lM0dqN0fgQpb9h884eWIgOODPXd/CgqN5HOJy3NE -fiaPv1L1P0DtMwwbdlROiHWRK2XraxXy/jk8EtbphL43Gnmsfm1Bchn8Htd9 -nVEmB5fjFZrXiNPa8tRkqTMyc/9utUJ6g1aJ0pdfTTijDkHPI8s33qEVOX8m -GgsXVBNxi2NepxMlTxH+DeEXka7Y7LdfX3vR8Yene0dlXFGBiZFVpXsfkrZW -FFy95Ir2Xavq9aT5hE4eHKXKKnFFjZ+D3i2RPqNiTVHO5wpuiBh7oHLhxlfk -+j0xQ5N8GfHNykXN6Awj41Tmume+Hmjrq1ra8tcxlNvyMOiJqjd6TqI791B6 -HPlU2LepOXkjvxv9MnbB44hriXRZNdUbrRwJbH4vMIGQd4nzvd/eaLasfq7I -aRIJcn+/Iv78ChqOxI6c+T2FbE1ybYysfVHmCCMj+7FpNKW9Ytt90xdZaYx8 -7UifRmc9Drb0v/VFnxdDLqtrziCZVA2JFFU/1G3dfPdQ+CzSJJEVXvD5o2ZF -naV2pgVUkhBvhdEEopCEQ/Vh5xbQALXbBuOxQESeHI9Sq1pAlm7tpmHRgagu -M4qn0HwR5RBy7pnQBaEqmrfHwu4vIdrGtZxOjmDUe1nMiJfjFzoduXq6+OQ1 -1KrzsODjg99oJc/oyBu5cERIejKz0fYbjeQWhySbh6Ps/loFgaXf6A+jTEdD -SDgKuNz2/JLWKnoo7ECv2huOFO7MdFJ9WkWx1ea/Pl6LQJmzsmsqNOtoTf2V -ls90JKJTUda0lV1HpX26c6VcUcg3lBwacXIdkdeVQsyORyET9v/oP2Sto/PN -lYarD6MQDe7O76K6gTJql/6muEcjz1sVxzKdNxFz/6lsNbZYNDL0PKH5xibi -S7fdGTwRiwwkXn34Wb2JHC3DdXZCY5FEw0drJYotFFMZwtK+FIuGJlYud97d -Qo+Xi04kf45Duuoq6Tvt26iO57f8Sn0C4vte99Ne7h/qHyul3FxLQhS/ve62 -n/yHLBNrfZOxm2iCVkaf4P8PHV3nGHsffROVKWSW/Xv1D/3ObH3AfTAZ4SFB -Pnctd9CCJSO3x4NkdJZfi7I7YhdF4M+po7/fQkeJv6uVH+0iIbvGs810KUjq -WInTva5ddGp/tZA1KQUF1NxwVD5IAW/sPamLYlIQjPx7t8+SAqgnIv+2Kt1G -H+VHku7PU0BqlYfp+9xU9Fqtfsp4lwLanWbooCcV1WinAxXbPqA1Y30gSJGG -Ms2NVi6q7YNXZzcPi55PQ/bXXpirReyDHXOjRjOpdLTSmc3Xy0UJl0QC4lU6 -7yB2t7OP9+tQAcX3dckJz3tIZn/+WxNLKlAkdRosPL2H4MHPsQxXKiCuXLXP -3LqH3Pov88qlUsGZUKTxM+o+en30aqLJJBWoibCPXs7PQj78Ge4ZsdRg2TCR -0UaRixKeDyeM3aOGaLvkDV2pXJRrKvRQtoIaNm7W3RE1yUWd8Q+/N/VTQ7D8 -6cnt3Fwktv7MZEyaBmijlX+rH89Dfd29JNlOGvBY/9tSWfQATV/kNPb5QQMR -tS/uB356gHaobVybVmkghEopvIwyH8lojeYb89OCpYsR25lz+Sji4RK7jzst -nPlbcmxNqACRwg5uNLLsh3M6HZkjtYUohajbYGROBxl5MJ+oU4wUh6yPYy50 -ELtx81XO1WLUGXW5TzaYDrS1vGrkaooRbX/qHF0eHdxW+5DxXOYxCg4Z522d -p4MSbffWysMlyPF92FW1KHrgfVymucVchvb5ptJJ3KGHKpo7cXwny1C2wKNU -9sf0YMwiNdGWUob6vT6U/vpAD5Upq4XNXOXoP26BbyW8DKDRhOqPSz1Bqk4N -mFA1A9R/e31Sr6oC9TF9aGd6ywB028Kldl8rkOfzMfN//Qzw6FNxQvPfCvT4 -AIP74M6ef8SfcdcTlUiwyio7Vf8AGN9suOExXonodtd26MYOgNiGDJ4rVY0G -7hKaf7EwwjW7hwpOv5+hzL4SZj9xRrCLd606JFmDbJgkz25r7Nmb8o8STtfs -zTf+HUoHRiAWRtrXvK5BP9wZyOzPGEE7kCDHkFWLpo9O1KpaM8FRzvPGlx3q -UHHo2f0Nl5nA24hl0yS7Dl2qH7RAEUywebBqumygDs0rflw7XsIEacyfXL+c -rEfLPC+UrP8xwazCafe14w1oc/nOk+A8ZhhMnK2mMWxCdbKHdnefMYOc9n+N -PUlNKOhCklFUBzNob89QCvU2ob9DUQuJv5mBrvzI7/9sXqCw8eccH0RYgOrU -pc4tz5coqrvQ9IcPC2j9efeeZbgZXS8I/UB5mBXm79/t2rJqRfrKF9k4RFlh -9kxXoX9EK6J7fcpcUp4VjsdM2+ClrShqXHzIQJsV3ulMH3tI8RpdFen8mXqR -FQrWXA0WSl8j91zuHYl6VohXiu/xP/QWnbxfKWdwmg1+dSnlVB1uRyxy9zzO -OLEBkS9x30PDdtTdEFXl4cEG4wZsCjOh7Uh/yFI9NZINGFeiBSyn2tERnh2d -byVsIGX/MWawrgMp39U/7fGXDRqONBVGXO5EXKnj8bezDsFQ6G+rqP09iFv2 -WdRm0SFIcTzW/V60B/G0xISeqTgEt+00yMrQgwSWpX0lWw+BsYdbqXNgDxI3 -9DzXMH0IeKOfmVos9CAl6n+q40rsIBWTdV5r6CMy9uGcIHWww0vrnE617j4U -a6aH965zwOpkBoULbT+6opF3tj2CG37l3f5jRjWK9HOZVg0SuSG360K5Buco -Etl/Na47jRtuBqQz8kqPop5PFpV9j7jhTcaBrV6jUaTgeZBqpJsbVsxN8lkz -R9F0kX/RCs9h0Ns52nhPcQzZshst8FYfhoWmJfFA83GkFNwQnt14GMg3NNiT -nMcRw5gUp/Dbw3CrXdQoI3Ac1T2hQhIDh6Gp5N3sraxxxGlQl0zYPQyFo6Ot -tJPjqCdcTPmYAQ/YZPyl6veaQEeXtoPcx3mg04nu32r4JAo8kSrzap4HrnLD -llzKJCrPkx88tM4Dx+2lGyweTCJus3MadXS8YCnjwhzaMonmn7/ZoFLghecf -9BMEKX+i2xHJPhkBvPBRTO1GdMhPNMYh4f6akQ9Gg5sMJV2nEJfHS34uLj54 -jejrzgVOIcM2q66LQnxgdF8qIy52CtUEXZdjVuKD09kJ5/Pzp1DC9+VZays+ -OJguMkw5NIVIxQ3OSw/4QJcz5ImV7jQKJ588z6PODy3PUq/+ZJpBJ+yyV9SO -8MN0LfrRyTuDmMLmIs0N+UFK/TXnfakZdL81uij5HD+YExyfrmrPoOf69XO0 -8fxQ6rrvVeKVGbRsJer3e4AffHe9B0/0zqDaIM/9rBP8cMyWXe7ptxkUcr/p -rsIiP0yGLKjvn5lBB39YNlykFIAmXWvccXcGSTonUvyQEYCVkwT6TZlZZOe7 -ltAZLACFOTHlftdmkfidI3yz0QJQYWCqZR47u6ffzbL9yQJACmu05rk1i4L+ -SvccKRAAHbqKTcuCWZQWacdR1ykA1ydrXbLbZ1HnrXc5hfyC8KF1+OBR5jl0 -u5qd2CopCCopOsrhXHPI5vP5lh9EQYg9muqdLziHprn/TvDqCkKaYkpruuIc -osolyKS4C4LIR5lwFaM5pFme8TTkpSBIxL4MUouZQ0e/dv9bbBOElrJIJr3E -OWREQX38bK8gUCfmuGinzCGHU+4DaFIQygKrFyaz5pBusHBoGI0Q9Pv3RG1X -z6H3zI356gxC0PfAPwOvm0MmBRZty0xCQD4ZcMblxRw63XWd9Ty3EPxyqLZ2 -a5tDnoLr+dqyQjBCNd9MHJpDa9XJbVuKQmDckv07+/scCjohu1CpLARfJhMT -l8fnULTXOVURXAh6WOXJMD+HGGj/2AweEQItB5F1bHkOJWemhaYcFwId6j5b -wdU5lNna0UZ5UghaThS5Jf6ZQ4JWTgv15kKwLziikmt3DhXM77JesRGCOyUx -g9GU8+gJh8rpcQchOGpZSMNAP4+UH38IveciBFN9cfcED86jevxSgellIfAn -CGFczPPotXPOQqufEHi257wsYZ9Hen812K4GC0FE6I7sCa551J38SVU5TAiu -Gm7Wvzk8jwbq6MMK4oUg5HWXgYPAPLIzKiiwTRKCqBdePRFC82hiDG9nvy0E -S0TytQiRebR4wIct+r4QnBmLPCEsMY+u5DKpYXlC8LPq3Y+XkvNoU7n49Fqh -ELyOq0/FpOdRSLtOWNljIYg9YyuQKTOPqOxGCpyeCMGTrHDVz7LzKG4loJ3/ -qRC8VPyYuig3j5hiDy1+fi4E9uktS5Py8+g2bzlbUpMQlCvc/1uvMI+4K06o -6bYIwcFEL4/LivMo6+j46Z23QsD6W/jP3z0sMnAtrOa9ENxftTh5kTCPHl3m -LnTvEYL3MpEiVXtYnrK6XeKzEPAcHuX/uoer0v9bHBnYqy/R+9f/sLrsNNud -ESGo2fmn93QPN72MUDMeF9q7T1n7XPfwETN+2/3TQiAVsaO6sxfv3XRt2Mt5 -Iei+PiTguocNr50q9P8lBOnukaSqvXx7WRfaFdeF4KRbGnffHh/LotjFqe29 -/nD09eva4zusKXIod3evHzUMl3P39LD/0KhmRS0MDm500v/t6TXlYGnLQi8M -ngt2LR+l5pHb5q+wNkZhcBfttFXY01vT6wLnTzZhkEz1EdUUn0d0s4MlVNzC -8LNP+B+H6Dz6Ym+sLcwvDBZbtq6v9upZONT6BRcRhhwO+kWtvXr7mKm72UoK -A9/DC1TRvHv8ukr3BckJw3owl9R97nk08iJN7pmqMNCq/4knsc2jUjWGll4t -YWCqDn9ewTSPgipCLJdBGLzLGQe2GeYR5wPnCFkDYTjIRNOyvNe/EzzDXHom -wkCkKvK4tzOHqm6blF0wF4bnK28HmLfnkHG0Rn/eWWGgkbPLNt07LwI7ZZdf -OgrDLcJYr/DcHJr3E6H6dnGPXxtHQO3kHIpzOaDA7SMM3Ncb6lUH55DFaGir -SqAwqAVZSAl+mkNiNqtWpiHCUPz3wMPOrjnUbPAtMilOGHbV9d18mudQ0uuT -h0tv7Om5UR50eW8e2GJvy9tThOHIYxoZ6ao5tKXwZIA6Sxhm25lXJh/MIRJb -uGJwpTBQ+LZWOITPIYrra6/v1vyPL5vFuYA51E11yaamQRiekd5l8njMIde1 -U9G/3ghDzA3p4Den985zv9iQ86AwnKCdmhojziHvkxme0d+F4e9f88F6iTkE -HYy0+RPCkBUpaG/AO4e+NawTRhaF4VVh3rPbVHOIM6ctxoxKBIqNWfGKnlk0 -wYXxedOJQHkKbbFW6yyqSq6svMkoAhE2kd1Bz2aRcUTmcAeXCEiTnDZZM2ZR -nJMbSVtOBAymGQ6k2s6iLVmWEXlzEbh1X4vN+9MMWs/iCVeyEQFs6j81k5YZ -tMosLqZxVgR41Z5JfXsygxZ/a1w6elEE6L4I0FMmzKCxBod1m2si4Ll+fc19 -753cYVDLFFcoAg7Lkfm516fRu6ZXlTcei0DjqqG8oc80eq3YaXb7iQj0is+d -ybedRi8OjWZm14kA1ek/783kplHVEIPksy4RsFf2U377bgplutqhsTURyHF9 -vc6y9BPd+eYyNrUtAuSKpuiE3p8o1fhK9MKuCCwVB32vfvYTJSnFvd+kFwXe -Z5wa3ME/UcSfSktmAVFYO7GUorF3/7tep/Ek64rCQcFNjmTKSUQuKc1NTxeF -iec3/gn3jaEhoZKcY/dEIVHe5/VExRgKSi/OXs0RhajIq8/Dk8ZQbXjR/VPF -opD6YbTFWG8Mkaxy7zI1isLImdinjk2jSJomNTlmVBROynY1tOT+QJxng8P8 -5MTgSaDtue4Xw+jZp8BQcaIYSPy1eNbjN4zM9ANCPqmIQaYV5dM5hWGUouJ7 -lYTEoEhLXjMgZwgxHvQIWDwpBqLhsl+0IwYRdZ295wV/MSg9rd1MONmPfrHp -n7NoEQN4on5cXPIT6ncT6bn0TgyIbv6memN9qPntNgrtFIMjGfbbM1l9KDmo -RPDRFzEI+jGUUMzZhwhjB79vzYrBqOF5FSumXuRe+eFM1iFxOH3SmjTG1YMs -DjzqquQWh3gGOX6d2g8IdwrD3vKLw+FUs+tz6ANiPEzkX5IUB2o1FuZms25U -GpYyDGRxCPtvjiIrsRPNGpufnnAUB3XXhesDKu2ot1j+/eZFcbgnjsRde9pQ -PRWtFqOHOJitwnGCWxuKr63hUQ0UB7JmgaLpw3dISpB7MPaGOJRdejExJfsW -OS8OWsnWiEPPJTFTu8utyOhEdRtqEAc/YRlyHU8rUn1wXd2sWRzUQk8OKbe3 -IFoLMve1DnG46y7fFiPdgoqasr52j4jD7IG6uTMbzWgi8ZyF934JWJdMEZq+ -3oTcZ+VECAclIFUlbciVtQltHN9aWGCRgJmjdZrFdxsRA1VK9EUeCej6bhEL -pQ2IENj69Jy8BKQfTOK4PFWH6r/cDBMgSUDrpcgVvaA6pKNsazisKgEDF8lU -L5nqkMXS6rglSICnzVLROfJzdM1J4pCx6d76m3ea6B/XINrWlZGDVhKgd1ec -j6BXg5KFXj7usN2LxzNn2DnzDBUMWR7RvSABkaLsC2aKz1DHyXgvLFAC6ibo -/yq8r0ac+PwH2RwJmOjQqjY6Uoly7z2/N5MvAYWe01x96xVIeivK+eEjCah5 -yj4cX1qByE/5d0WqJMBrJ9sshLcCOcgYK/C8kYCREyPREkzlaD6Wd/truwR8 -Vcly8Y0vQ36TU2/SuiWALGneMkNbhhJyw86w9kvAQk2YpRhdKargrEqkm5OA -rE+vmZhFHyNNnxCrt0sSYGo+CbXlxaj1o75Y1OpevKDxO3rkYvQlcbxh958E -IEoJc5Yzj9BfSo65dRZJoGv5z9HhaRHSW/LXm1SVhKsKX/t0n+YjPqJADB1Z -Ev5V1nXvN8tHi96vW2S1JcEb91NNXHuAUtdZyN4GkiBL91PkFfYAjfwrVtg9 -Kwln9rWMMY7logpk4iriJAmWlRuUfDdzUWT4+sNjlyRB67hYbzWWi6RodIQT -fSRhhSlkswPPQd4Hhw8djpeEVwzUlaTp++ioUYQJOUkS4s68VQq0vo+4kqVu -nL0tCcuKUdRuXfdQ4yFf2qKsvfw3KdMkmjIRLS/TFqlKEkyTGqqK6++iTGkY -MRySBEGVGc7/xNKQm+tPHs8fkhDaYZDJ2ZCKUFmi5e1JSXg5+1/FD9NUNEEY -6BlYkoR2RyXnk9dvIwV179YL1FKwqvDqWDFLCqII4qZIoJeCrhmh+KCaW6iv -4QW5jEkK7vfPTNPY3UIB6EDNb24pUKTyCpepSkatugWPwuSlQIRRsjx7KAml -x+lP5pOkYKFaLFRaOwm5dCwLv1OTAj6WH2llxTcQkxF2j/GIFIxAEO3FyERk -Zf7lRqaFFCSknK5VsEpA8w50V56GSoGpndj9t8ExaDH7aNPLKCkgamgGvj8Y -g5YGwva/j5cChyOF1Is50WjFeOve6G0pGFB5tOLQGYU2tGZfMz2Sgoiq3QdU -WCTa9JNg5imTgvPxVIKT3yLQdqW9tXiVFPTKCjvcDYtAfyWHFrQapUBn94b/ -yffhiJK9k/NijxSYHOqfFvENQ9TGdOd9PktB4HGhzCLRMESTcLQkdFAK8pXu -ffN5GIroKJpQ+oQU0FJ6TE57hiCm+TKX1k0peL71lKtb4io6/PpmPb+wNPhw -pXyoYQtAPLvvqaUlpEHU+28F3PNHfJp0xsqy0iDU397NJeGPBCrCxvVVpEFF -OJwz/IgfErvvdTBATxq2f9KVs6X5IImvZRaRRtIwXkfX9lXBB0myzeYmmUqD -ulsWVXrHFSQTZ69SeEYa7PN0fL7uv4IIPqZ2vV7SULoipeV61wuRntx89M1P -GjpvV7CtgRdSmn2/Mh0sDQtreXWKc55I9dzR2N1oafD7eNcr/agn0jJUqZDb -azLjYh6adHZ3pCvGRRnbIg1jo8FDJc8uohn744+03klDYHTysAZ+ESXm+Rst -v5cGcRGZreU2F9Qn0J9p/VkamsmEpaoJZ3TucIaS3LQ0xB4wdA1SvoCorNoH -fsxLw2pQdfbRLidUlL4VmvZLGlql5OUXnJ3Q/CGbzp1tadAeG2CufeCIApl4 -nT4yyoDt2TEDXXkHxPefwYEYNhlwnsu5x/PJHjVfD67U5JIBbOtGTOJVe0RL -P/wvX0gGvjU6Bcv2nkcpVFnpfkoy0GXPbnrj5jlUuinQxmstAwzJ4z50mbbI -WM3YveeMDCQ5FOf/ZrdFK76h7NH2MkDjmPbjRMpppPH7+7lFVxkoJcXQ0aTa -oLcLuVvNITIg95qn6k6VFboo9zHHN1IGShI+hRYiK3TQdZ+uTJwM/Pel1Lm9 -2xKdmj6fcvuWDMhEFzHI/7ZA38dEZC8UyEDdG/8PZ03NUYSw6UeeYhl49bzr -zOFlMyRxLtL/Q9lefC6ni7lJZsjt23ireq0MtGyerFzrMUWbXwtsD3TIwNTd -Vpvhi6cQW5dEUsWSDHxPwNXYO43RzhKhsGNVBraZrWkfyRqjWTatxoktGfAJ -LzB1TDJCLVbGs9zUslBVGKXIdeY/dGXCXzecWxZe0J2+3MhvgM7tjzhzj18W -3L/IXJ5O1UeGMok+z0RkgebcR/W3TPpIzDP3wYycLKiBqeZ5Bj306U/bzklt -WaDH+kuKBY+jZoE+DjddWbgpRxxbf6yLSrW/ycUY7NlDom8lq+ui6NhfNvXm -srB/2kUv2OYYUj3EUytySRY27jMf3qzVQXdkXD1+p8iC4/OV+qQeQFH/+cYw -3pUF19OdtOXBgDw9Q7Mks2TBb8g+KlAK0Ima2+9PP5QFe/sglilGhDa1GyVf -N8iCWEjEhGgZGU04vsVHmmXhd1Lyk7N8ZNQT22O++UYWSoeEF3yTtFBx10Sk -XI8sCNiyhm0GaSIba8YfqROywIz/6Px0RR3pXuXaKJ+RBbpsoZ/nNtUQKUeY -qX1RFqhPBuycDlVDDJMq5H+bsuCxw2funqqKGjzt7joxyoH7JttG/YAy4ot7 -YqKqKgf59foPLr4josflZa1bmnLw7SFlcMIVIlL/XKLahOSgjdd0SFWYiMxE -HvEd1dvDE/eUOcIJKLExd/qkrRzMu/y5oFeggHjGs09znJcDypZgn/pDCugR -fVZ3v5McqB9X1v8cLY9eW2Q8PeshBxy6Iae+eMmhP8u3wi5HyEFE7XjhU2cZ -FMeV/JsQKweJh8W4heek9+77pAur1+Xgu3uM0ICnNCJdTzAMTpOD502SIxSR -UuiSeCR3/CM5oD5m7XLwlQQatPapKOiWg+xdqosZ90SRS5i3qEufHDydejfM -gUTRepFnumy/HITuv1ivOyGC2FbdrlaNyoFYlXtloZII0k9yOtG8KgcXfS4X -hE0Kof6nDg2RW3v5XfK89C5NCF0YOq9wfEcO1miv6MUcF0IRUnbs3fvlQe9O -T0CenSCqa7H4McQjD8ypdC8aBfiR7oyZaY6gPOT0X+81T+NDn5hN39qLyUOy -h6iwPxMfWrY1Lp2RlwfJ3qLvInS8SGrjeMAGyEON+2uBEa7D6K6sBsshZ3kw -4HO6HpfDgcwNupJfuMoDffTLqKtaHIjN9TzrJU95CGHMtkAD7Oj643i2V4Hy -0G1xUY2Fhx2FSA+yeyTKw7SXgtjOEzakpeeexnNLHu6m3KSItWZDmy6UnG/T -5OGcYfh4DjUb8nokw8WfIw9Lw/JrjmdZkaNk8OH3lfKwUOu0EyjBgoSPM2f6 -1ciDA/Hbw9BaZjRyIZ9HpEEebs6jthdizHvv/fe8ga/loezbo0fi+5mQvjif -gORXeRj5GsasO3sAEUWbRCL/ygNLAJUXpRAdWjxyMl9hnwK0fvp16XzFfvTY -flJ0kEYBKpq6vr8+sh+JPWAUJzIrwG8PLRafy7SIW9hO8ruwAnAYBpUEDFCj -z7DyMEFCAaT9Khx2A6hRyrkYKVVZhb3/DdOgozzU6EBuufQNZQVI+8xYMHOe -Cu0I7MpqHVeAzN9XOd5RU6IG/HbpTwMF+LtO/f1C5T4UYCcpn2KiAMSka+5x -Z/ehX1nGCjPWCpDuF8yn0kyBJvhyCXfcFED+UXnWitgu3sGjrfL7lgIM/0cz -5zy7jfcIPJGgvqMAdq87vJ0ctvEvIvzcHPcVwOJflRTd9y18VGZrW7VIAU7u -EkzoRjbxTc3K5qB6BTCgFJZL3lrHd3DBqusvFcCVZ+f7yZh1nFrnRv791wow -fZMtx5xjHWc2uBjzolsBxLb+yKxrrOESp4UNKccVQOcIxu92/zcud/Ymdmha -AZQ5m4iMmr9xksM/BbEFBfD5G1R5b2AFx1wHWHU3FED22/4AG4EV3Cz41tf4 -A4pw7/ABedumZTzi3j4HVmVFUP/2WOXL7Xk8LsfDTERDEdJzf/y4Sj2PJ+V/ -O6aEK0Lc2mraiv8cnlFSJ2V+QhEcpUwYDjnP4hUNXot3bRVhfGyiodxxGq95 -+f178XlF0CTOm52ancIbW//7WH9BEbKdnKtOe0/h795LPx32VASzF8PDHvE/ -8ZGh0UChaEVw+dfcfbp3Ap/4buxKTFCEGIr/ns5cnMBnx5tsj9xUBL9oyYhI -qgl8bS4DOWYowvzzge1K8jh+8O9JmkdlinD/44Tz1JtRXJOvJVnxiyI079qx -elqO4GOiYiMzg4rwkd71jXH7NzxeNka24PseP5dhlXbsG96vqf+We0YRnuZ+ -fm+lMIz7W/f+2fdXEZxZnBPz5Qbxm4RMMTsKAnDv89KlqxrAHZQNDBooCWCY -MGZUojGAHyCX3fXdT4BN7r9XIoz7cRsDL6VZFgKIg1azTeoXXMFYxOb4IQJY -SNFppst8wSlN+8IKOAjQvHpX5FXLZ7zYRqXbjocAX0O2JV9tfsI3L2659IkS -wHiYIsgvqA9PjwvPblQlgKcU5e/Mrh78UiLpzWENArCY8YhPhvTgePL4nJ8W -ARJFW+hyiT345J1jGkQgQH51I0um6gdc+SH9p0I9Amii/ZZZ/zpxupL6bUpD -Aoz0lt7s8e3Eh8tdhc8ZEUCdrW4ydPk9HlnT5c5juocZd26JLXTgvW9u0d+0 -JUBpfrH6f5TteFH7EcK8HQG8Po0ISN5ow4O6flvonSfAZb0Tb8R52nDhz+YF -VBcIsG/goNVFzXe458RhFOBBAOTz6NOflDc4E9UDn/MRBLj04CeTx/0WnHbr -pemvKAK4GO0SaPAWfGfxGyk8lgDEarXjQaOv8KXBw79yEwnwXCcyfkj+Fd5T -devyj3QC3BzUTN+seYm3PXpi6JlBgOriSVkOzpd4c3aXLMV9Aijk0y2dD3iB -VybQzwrmEYBspJttoNuEp9iHXzhbQoDCC/33y2ka8ASrnGNLZXt6uhnrZlyt -xyOMmsRCKwhwbLDMRmu9Dr+iuTWW/YwAouXTs+6/nuNmbF5nR14SoFP/SY0I -bS3O2XLO6swnAkhLUAXRZVfjTM9D1Ba+EEAk/EVlpGY1Tlt+n/PaAAE4tvxf -b/RX4RsZ/Z/ujxDA8sOx4ge8VXi/l8nJ4WkCuB8j3NmoqcB7nN0JbnME4BHY -tJWzr8DbziQy/10gwMVhJgNm5gq8Tq+ti/c3AWYrI52Ch8rxTGHQP/2PAAdc -h5crgkvxFC476bldAoT8NuAnzZXgCYxX6YIpiaAq9tg4+UwJHrxV+zZzPxFu -0sevFes/xm0/KuoMshKhh6LGruvoI1wgXJBsLUEEt+7DC9fLCvDyK3Qi36SI -4DNI5r+uW4DjF37tPy9LBAtTMcfro/n4GYPWPhcCEUw2iwOc+fPx+xzOrgGa -RLCVq1WPKMnD5ehMTv4lEyFibpd4zTQPb9hWVwtDRPih9y9b4V8uPvidgSru -6J4/hdNIinkufvhxeeYdIyLISnNWbZKy8Uf374TxniRCiO7OkYT7Wbj6zbAL -OaZEeDO9I0tPn4Vb+ZwiPbQiwoKI9N/U2Xt4Or7eXmNPhN/5suNnujNw9j5s -67MfETqfVI/YMKbjBW8kvlsHEuH7PavY8Jw0XOk585tvwUTQeMZ9/r1SGn4q -azR5MowILqNsutn2qfgt52iptQQiJH0eixftT8GFbNyZAm8QYaVcfvFoUApe -YWi5+vcmEZ6ZX5nVEEjBe4jSzdRpRHAin70S5HoLZ/rbacmeQwQRbH77PE8y -nr34DLubRwT/m4jdIvUmrjCaLcpXQIRq82dW+zeS8P/eei6JFhPBYYvVPf7N -DTwxmT1WqZoI8vaJQq7R13F6cduaU++IMKd/Ozk+Kha/dBjpl7Tv5SstFUfi -isU7GEVGqDqJIBZLNfC1JAZPXJ+iedZDBE7Bl60rg9E4U9sVc67Bvfr30D7w -Mo7C3RstZjyGiWDkncJK/SsS/1Chca1thAiZM+wx/6VG4skZuwWB40RIXM1/ -Mfk9Amdzvb46NL8X78S8lHlCOO591j1OeYkID+xy3NvUw/E+05N8N34RITk5 -fKBmOgxPJXMdxdeJMBA1Xj1jGIZzMeXfzt0lwpNS5pFhgxCcr7Ke5MRGAr1k -6unDMkH41cKst03sJHC7uq/UpyIQ/5YRZsPJRYKVd7d2qTUC8ewI3Yh3vCSg -qbrikWUSgAuZ9X6UFieBouK1Sxl3/fCwE8+cIiRJ0DRuo3dd0Q8fJd/dGpQm -Aa/hWppTmy/+QNxOOFGBBPlMJhIVuz64+MaM56IaCaTDOF6VR17BY+Y6qY9r -koD6eXTYqtQV/Of3J3dzyCTwGu9l+fHBG3/U5ttsok2CGENB0QQRb1wmcx9L -tT4JjiYOKdgOeuIK2OEn/mdIsKamdG6W9zJeLXrxD+U5EnSszfjpxLvh6gx1 -x5PsSWB21tUhdMsVP/LV6keBMwmq8/aPOI1dwi287rL2epHgr5fHL+dPLviQ -5fSZMz4k0Px3WNPE0gU/h6s/nvYjwfS17vryYWf80oH+I7vBJJjnzaHNWryA -hxZy+cjFkGB9pjN7Rd4Jp050bq6NI0HR7zfP8VZHPMG79qDOdRJIsDY7Ftg4 -4qnIstA6mQR1Id8tUm464I8G0r/EZJJA2MvN+BuLPd7DyKkxWk6Cr1/GZuY+ -2uHmq07RbpV7+l27ZlCkaocPDj77uFG9l19ByLJ79hl84qH5JaY6EljqHHyx -4GeLb2qn3dNqJcHrww68NPo2+DWpyam3b0jwI7eT+/Yba5ySWUX5VBsJjrG6 -WTfqWOMHhz91unSR4BZP09nS41a4sB/7TtpXEvxjP/XxgZsFXmTrqC88uGef -87Mq/mOOy+k8TS8dJgGD1AOGmURzXJXFTLF1lAQzPMk2U8/McP3Ht88tz5HA -/MJmabWQKe49wtaqT6EEvEpV9Z9NTPC2t7ZNjymVwNBs6TIjtQku8KSoloFG -CdSIrsu2XsZ4R6hmaQe9Egjq+OFihka4iLB9mv4hJThB35xuI2yIB9CX3nzM -oQRpKuwfN+8b4N2/1uIZuJVgOzOenpbXAA9qiQ/p4FOChoCAISSgj390qHTW -l1CC9eFfjv/QCVzC8M/5x1J7eEnddaTrOH5V+Zgtg6wSRK0uhvafOY5L0QyY -dCgqQX97VPRypC4eVkShqa+hBOUuXR+Lpo7ihBnjg/qGSnCE9Sy7J80RPOZj -Bu1jIyU4sJHPm1ehjQ/XjVMwnFQC2hxTdP6MNh6X4L/Wbq4E79+nFHo1AP5D -NmdE76wSyPT71/CyIVyVfaa/+LwSKNlFeI+H4njiX1IfvaMS+L7vMTi9jOHq -XW/ftbsowX3WnE2pATKe7L5YoeetBF1BFT7TbZr4Twv1kmIfJaCoYy0c0tfE -ySiikN5fCQ5F2e0X+qCBTzNzZrYH7+ml+WTdc0Qdh0osUi9aCd4yG95l4lLD -l34nmuvdVQKdCxTXy6aU8OH+PIusTCWozv/K//m6Et7RVGP5674SjBj4BBcQ -lfCC2B/WGXlKMHjokhxfBAm34VW2m3msBIvbdYwPVIj4CQq9s1jZnh5e4zka -Pwm4yuSZc7eeKEHoBZ0MdJeAszyJtdd4usf3TKTvVQoC/ubI0IX4JiUYFmdK -Z2mRx6skl52/vVSC7vQz9q/U5fHcgzQXiS1KcFh9q3muUg4P+qLgOvBWCTir -eRpDS2RxwqUID+keJdi11irzqpfG792SDmgfU4KExY+j0bgEHueHB/JPKoGm -EH507Ks47nfaNMhrSgnmDS0R9xVx3ET82tXD83v+BT/3LZWL4bR1PWEX15Tg -ArMwstcSxVezJsObNpSAMdWkp2BMBB+N2I5g3VaCr/yM/WHXRfBGQ7Houh0l -6PkzMjU1Kox7/fCPp6dThuaIpw9KcoVwuzeJCWcYlOHftOf1FVMh3PBx3vXK -g8rw7dOU/z06IVzC5/0Na1ZlmDPbN/V7TgAf3i+YUsyjDCIHBAeDm/nw44pv -M/XklSGMx9j7xRA3bkV7wqxHURlS4+/lnjvLjV/61s5oSVKG8OuxVF6TXHjS -9a4wRzVlYGgIoyjd5MS/TH26EKqtDNLHctiPaXLg0y8shGiPKoP5xRpX1h52 -fDutfyBRVxnOPSnn/OXMjvMfHTbMNFCGIxonDr3KOoQ75o6TnpkrwyNnqcAb -Qmy4n7/TvJaVMnz12Nc2/IYVjzOaKmyxUYbe+D8ffrmx4qV/Z7l7zipDiuW7 -l3rNLPhvq5Wd2YvK8PAMJha7xoRHsO57LxSiDHmDnu6/PBjw1OmIqIdhe/4t -XhfK5ujxopfUuEKkMkwf0uDevUiPd1ymq9SKU4a2QGtFgjsdztrBfMciRRms -zHKfu9+mxUXybpl8S1WGvlvFKldFaHHlgEMMjneUYT6c/u2LahrcSoLrmtd9 -ZYh0aJGtHabGcyMEHBKLlOGs5Cjxv+NUeJV1Lt+hYmU45C78feAnJf6aIPIl -o0QZNmx5ufTiKPHpEXG9hxXKEHOgPau4Zx+uqCWv2FKvDE0Wn+39/CjwF7+1 -/mx0KwPN+YG8Hv6/WF5nrb3pR2WwkRRfDc78g0UVKnWU9+3Vf0ysNvHwH0zP -UjbDqV8Z3n4S3KkU2MY+1fOo9Y0qw+f0hd4RnU2s9nZ6tsKEMhzrmfOO7d3A -Mt3YaBN+KkOP45Wr2g4b2FkBhs8wpwzPst+btyasY7PhW97lq8qgdfhs+vby -KtZl4ztIv6EMelY+FdI3V7EKpV/aTlt79dUNeCKsuIr5Tk6z8O0ow/0nT2UM -fH5jFHr95fH7VeDAY1ruArYVjJOldtaRRwW+vGz2bCMuYVvTpFPNfCrw9oAq -6VDuIjb8qryOV1AFBP+IJdKyLmJ5V4riekVVIEjT5M6z7XlM7muaBMirQJZi -5PmpuVmMuYI16Z6iCtw+ypch6T6LrcTdWFsnqsD7OH7F6pUZrFYz+nWZqgok -XeDrCKecwY5k+9jzggqINFG/G9aawsT9l9v9jqhALZE3xeLDT4zOxI3Ye1QF -uj0e6753/Il17XOkiNdTgZ981nfD0iYxKyfT7PVTKsB3LMVGhHECc5cjDX50 -UgHxr+SkfUajmO8Gz/ZZFxUwR23iV9Z/YFdbqHgWL6lA1ybty5zcH9h1q8/W -DJ4qwKvDpsm0+h17FBUwcCRIBRoL6qVOhH3Dnhif3+q5qgLLxnX01HPDWA2P -/uGzoSpg+PCNZLXVMPamgtc6OEoF8tNCK5+Qh7Cx4Rf91Ul7etmcN0gRH8Bm -Hj7c1L6lAgruq8iiqB9b9k7m7rmtAu1i9zezpPuxXTp7q/m7KvAh5jprjNpX -jE+Fpl8sXwU6+BQIjh6fMYsbBl/TalXAe46ZwvdYL3bGSnlDtF4FfqTX3KKc -+Yg5ivJzVTWqwHe7qXGHpI/YlbpFi+5XKpB5fvvf1ZEeLHny1hfazj07qP4R -kfiA3akIWk/tVgFHgV6XuLhuLDvYgVP0owrQSwnpHFjswspYVSzQFxU4NVQb -IdPSiXVg/Z/9f6iAD8FKRvpGB/aR7tUazbgKWC1k13yk3bP2FXOkTu7p8yHj -r3BkOzZ1Mdi8YlYFckN/kKMi2zDqdIHP06sqID8t/nkq7y2GLTp+sqZXBSvB -0dF6/VaMs+H4g8YDqmA5LkIZs9SCLcbKeAoyqYKICqM5RXoLli28fGCSTRXq -PhNHxqZeYTtmwTqefKogbdX2ID67GfsibMfaJ6AKqke83TaMm7HyRfiuIqwK -Nne1SvspmzG7ONrgP+KqsH1lPvjpwAvsZcOtqhhF1T2+B78fedCI3Y3zCZsh -qsKVSc74cZ5GzNPc0shQWRUy93kpUac3YEJLfLOsGqpw/sFuYPrteixM5JFw -1hFVeLEy5fjq8XNMO/5FcrW5KvD75LItoWcYj0WeHaeVKjDpCjwMGHqKrYhE -yQXaqMJwawfhW8BT7EGjXht+VhVeshirsddVY5TLn3bbXVThXy1vhJFRFTbY -WNsl56oKDz/HU7duVGJV8Zn3bl7e249Y/KTnQSVmL3pOzdxbFYyTZC9l/KvA -Wi3m3H8Eq4JJ6AKtbMIT7L5oN1knRBUqFs/WMq2VYz7LFQxFYXv6lZ05XW1f -jokl+BW5RqvChpLJowO6ZVhU076R9SRVoP7FUpMpW4IdE+P+j/HBnv/uQgyF -y0Ps6cIbYccCVShqf28V8qcIE6u9sl5fpApNVCOk38lFGLX+hxyXElVID/lR -l/WqEGvxiFlpfaoKz4aSsX0aBRhJQ/kdT60q8LVZ6GkP5WN5lGP3vOpUgaV4 -4ZdSaD4WloYdE3yhCoVYVwtr5wMMb1i9E/ROdW++3x0cCsjDyqMeuH1sVwWL -d/1aw5J5GL+RibZUpyr0v/zGZ9afi/39UTL7uUcVSOTH+jexXKye1gEjDqpC -7HF1sS1CNqZ66uPY1PxevS68kK7jyMSKeENr8SVVoNK2YOm8n4FxTMolpv36 -n76qycwSGdiqf5yKzroqOAo6L+3id7GqLBSXvbvXn3rLJr7x6ZiI84Lt2j41 -cPPX7N0WSsduEe4RDanVQLxordSxPg3zbF0f3KJTg5u238NbVlIxxZkyeXM2 -NeC+dXOuPuA2ll11mrKUXQ1SyN9N/QRuY0xX6b9ScqnBE/sW5U9vUrBFJqew -Cl416LEJVLI+nIKVKvP1HRBXA873sv6NvcmYVFhCQIuaGiSqp1LPsd7AGrUK -aQw11UD9b+T6QGgiZrLxMuUzWQ2MXVO+Fi1fxwLc10qntdXg14gdS95gAtZm -e26UyVANtDnvRqV1x2G23MHud4328vNOpV8+GYct96X9ET6pBpOtucONX2Mx -boP3HCoWahBY8zHk6mwM5qKhqn/6nBpIHCj11JeNxv6umnydsFeDtOyb9vPN -UVhyhauju5MaPCPTdhRYRWHPJfNCwi+pwURsiLpiUiRGx3mw+qGPGsitVGbc -YonAildGeVfj9tavveh49ykEw8v/Prp2XQ3QJ2PjbxohWO9FLtX9SWqQu/5H -41/eNWz7h6EJz201KPpV5iUYfBXT/1AbBVlqEO3EQTIzDsJGEnpZO3LU4H2Q -f7jw+0DMW3ch2/SBGngmZLPE6gVimU0idRceqkHeb236qf8CsNmSGwuJlXt8 -F48oZF3xw0KcHwVxPlUDMzC91EXph7GJtu7PrVEDmmuK15RTfTHNzE3h6gY1 -gGPRI0FNPlhCnIPFwBs1+Eg3f/OF1BVMxknjpfigGhxer8kKsvbEbooYbUcO -qwGDALni1UFPbPW7vcrYiBrcV/mVOhrhgb2wSSzJHleDtStK2QNn3LFTJt/v -cC3s6c1UnGWu5IbVMq72+i6pgfKF1endcleM7z0d06dfamCkta3EJe+K/TxG -ikpeVwPvQlG/s4RLWKBWtCc9hToUroaMiJ1ywUY2M0qcKdXBb/FgP9UPZ+xI -TfnPN9TqICDsa7/t4YwdJPbbRtCrg4ot/aH96RewXAlZvT9s6jBGrpa6s+WI -tbF+FF4QVwfuI876PzjtMfkPk7YGUupwI6tJ99+r81hK4vadYhl1yNP6kPnI -/Txmu1+M6YKiOnw2NFS70XkOW/rrtz2irg7We4+QVKWzmFn9dRVMSx06Zy84 -S+fZYc/9cz3vYergmOZYcZnVDotYaf9peUQdODgmT3/cssU4p/n6egzUgSV6 -7lXVtA0WXEhkUjRSh5O7J+65XbLBftjr6t0wUYfl/0Kp/BetscffPF7qmavD -dkAnnPpnheF9LSUtdupgn9eVv6NsiTm9cIl66qUOzl4hySVUZtji5Vn/Yz7q -wCrVEreZZYoF8Lu5fvFTB7GfPsf0NU2xhKsepzaD1SH/aJ96X8AprELTT4gc -ow78LvGXXQ6exDRnNw51xamDW9Jdn3fPTLDWjMD9dtfVIaD2QOnIORPsy+bV -xdDkPb2B4714gDH2tyaysTVTHT4cCVc+eeA/LOYCTYVZljq0/Hd8pcHfEGPm -jM2fzFGHEK6xTPYpA0zENyFhf6E6SHxYuGzWrY8dV7plZfBkL/844azQphNY -ypPs1d5WdTj/WTp2le0YxndWaNrhrTqEfXxK+f3hUayQ6cHQaps6jOtr5Mzg -R7HnlwtbOLvV4U9aMK58RQf7JluabNOvDt4fxn9d+62NXRiSj5obVAcrO5cW -3bva2HLCE/+r39RBr+I763dcG6OcrbLLHlOHjvGnN61vASb1qE5ubF4dpMJu -+e+m4liVpZbQlSV1mB1db8/YwjCt/U2HqFfUgbprs0HvPIYZXWjeFt9QhwMy -wvylGmTMR+xd28V9GuAl5Ej+elATe5n7yfEXhwbQXZnPyySoYj8Mhc/6cWtA -/JUTt8ZeqWAUW5et//BogGB+18opcxXsyMn9RjRCGsCjz0qIiFDG3u7TVDss -owGHpI+yb6+SsKmyGGK23N5+qhE3HdJJGJ1Nn6yoogbI5dNTFGqQML0qNyF5 -ZQ0QundC9Ho0Eeu0z6HXxjXgzN3YPwtEArbANE/1FjRAQi2gDm9RxJga1Hf0 -dTQg4E7Vj3eiipjJod4VsxMawC2b18W0LI/1tVIPu5zSAG0Bf+qOEllsUOxS -efIFDdjsauWrz5fE/vTUPOK4qAFXaJpOvJWXxPiuUeVnumrAbEzAjkC9BHbm -8/07BZ4aoPOfgF3cgDj2I/pD2PMgDQhp/JK2nySGiYy4+LaEaoD99RpH30ui -mKMq5aXOKA1QCfO1vfNYBJv6qWz6I0kDrvVdUOoAYUwKdR+fva0B/PvqowzS -hbBLd5zJq3c1YHrF06x1QhBbPJ4pTpevAU0PeLLSgvix1Ue7G4q1GnA6QSSN -W/Ew1k9948R4w55+Jy565+tyYw3neDLSmzVA9VLMn5sXuLAIbhXNf+0aQPl9 -2en0Cw7sgk9LQkW3BvTe4f74cI0d0+sxHnLo04AvuGY7QZkdY4m7dLVjWAOS -Pu1kLL1hw1bHNzqvjWrA86O3doq42bCvKJqf+FMDqr+aDmd5sWLZGzkv7ixp -QMzcKxcnFRZMzvkzhROlJmDlp+q5/h3AWFrtT3Lv14SYNW7Vl9sM2G+B5bz3 -BzTB1uzXqdp9DFj9FwYdEocm5CrYZh2VocPCk8Qn7gpoQoPocX1lH1rshC5E -70pqwlFLI2npb9QY846NxAWiJkgqj08s21NhX575vuvU1ITF15e3wqgoMQfx -EvrM/zShbilzHyPvLrmxMDDxvaUmaJX9qQmt+0tmlzjB/O+8JijoGRndi9km -Xy7iTFFw04Sk/rzLXSGb5LcSk+zn/DTh5L7u5+3Z62TBh9V3boVpwgLTuG/U -+Co5QDKCpzVBE5Sd7mTK6/8my0gJCknkaEJ/5FtjnivL5MhHCw8sizX35ofR -o/Dzi+RhqUbx+GpNUAlcPSXFNE9WKU54VN+kCdPi1Ynnp2fISdLWsvPvNKGD -oUyvYn6KPFUsWc7fqwl3/I0Gh7h+kkFmnWA8rAk6VVVPZi9MkH/J3FatWtaE -EsLy8qzTKFlGk6K0nkoLfA03bBj/fSPb610WbuXUgprBYlbT/gHyPavB9PfS -WjBsKbAmqfuF/Mn5+MFPZC0w1Dx70JDUR2b0fxo+bKwFx55n5Rlc7yHrxghv -TNhrQV/xqXT1qE6yvNQHGl0nLbCoyGRp//eezN5xlf2hsxYwB7mY9AW+J48x -9hMvumnBOd9LjyQCO8ihaUluC75akCXdq33zdhv5ecGf0bU4LbCrtfHVUXhD -zk2M1jhergXdFsVd9EUvyfE+zLfu9mkBxhFHy1NYS6Y7FFe08FkLHpnw1HSp -1ZJjKikaj/Rrwdkn/3KCOmvIUYu/fs4Pa8Gkne6He3+ekUNcPpG1f2pBwZMd -e1rPp2Rv24zpmU0tYMoI+nbqcSXZ5qgoaAmQoVDCX9Pc6TH53yc6plYhMrSa -djgwjRaTc50Wh/RFycBpR3/Z7mwx+WdMnb+NFBn2RywF3HR4RPZuN34SSCLD -8Uv1wwNxReQEo6sCz3XJENhKlbJBzifXW33+q+xBhmbKxJVVhvtk3suxdQrN -ZHgse+LkeMcNMgeDW+V/lhjwrSu7kQy9yQU614KWrTH4/Ntt+/m8F5l0LUnn -ti0GDhqBT4k3vchGyxWf+89jEKMYrvNxwJMc82Vty8ENg0Jl5gxveg/y5oPQ -I0HhGPxjddTIO3WJPKh1u6+oBAOSwcWzTEv2ZBffgvt65Xv7yWhI6iTak9fL -nznNV2AgbvTNLVjWnswm0r9BrMFgvMYtr9PjPNmAjp+vqRmD0Q/WL/qZzpEb -PxU59n3GgMZsrnWWfJqsz/Rc3q8fg0dbYQLvy23I/cfb17mHMCguucF4S9SG -vFo/F2f3A4PHVw9H3OKwJsvnEcpmZjG4ajxwr+ewJblxUNsvcQEDfVMrpeN5 -FmR9dlOkuIxBabxaI0nWgnwh1vejzxoGOwxM2Sq65uTV5phMrk0MrGm+8Sh/ -NSNHbN9xqN/GwK+Qrtv3khmZRblY7sw/DBo8Ts0s7pqSsy/Xr+3uYpAUyzF8 -+44p+f8AxT+Q0Q== - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - PlotRange->{{0, 30}, {0, 1}}, - PlotRangeClipping->True, - PlotRangePadding->{ - Scaled[0.02], Automatic}]], "Output", - CellChangeTimes->{ - 3.6217373162515807`*^9, 3.6217374695743504`*^9, 3.621737507313509*^9, - 3.621737810901873*^9, {3.62173787273741*^9, 3.6217379026081185`*^9}, - 3.6217379506388655`*^9, {3.6217394756150894`*^9, 3.621739497110319*^9}, - 3.6217398701696568`*^9, {3.6217399825650854`*^9, 3.621740009871647*^9}, { - 3.621740053248128*^9, 3.6217400901822405`*^9}, 3.6217401307385607`*^9, - 3.6217801190358257`*^9, 3.6217802568017054`*^9}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0, $CellContext`B1$$ = 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = - 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 6, Typeset`show$$ = True, - Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", - Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = - "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A1$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`A2$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 6}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 540., {174., 183.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A1$2678$$ = - 0, $CellContext`A2$2679$$ = 0, $CellContext`Ka$2680$$ = - 0, $CellContext`B1$2681$$ = 0, $CellContext`M1$2682$$ = - 0, $CellContext`B2$2683$$ = 0, $CellContext`L$2684$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0, $CellContext`B1$$ = 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = - 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 6}, - "ControllerVariables" :> { - Hold[$CellContext`A1$$, $CellContext`A1$2678$$, 0], - Hold[$CellContext`A2$$, $CellContext`A2$2679$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$2680$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$2681$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$2682$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$2683$$, 0], - Hold[$CellContext`L$$, $CellContext`L$2684$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`f5b[$CellContext`A1$$, $CellContext`A2$$, \ -$CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, \ -$CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> {0, 1}], - "Specifications" :> {{{$CellContext`A1$$, 0}, 0, 1, - 0.01}, {{$CellContext`A2$$, 0}, 0, 1, 0.01}, {{$CellContext`Ka$$, 1}, - 0, 1, 0.01}, {{$CellContext`B1$$, 1}, 0.01, 10, - 0.01}, {{$CellContext`M1$$, 6}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0.01, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{972., {218., 225.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{ - 3.6217373162515807`*^9, 3.6217374695743504`*^9, 3.621737507313509*^9, - 3.621737810901873*^9, {3.62173787273741*^9, 3.6217379026081185`*^9}, - 3.6217379506388655`*^9, {3.6217394756150894`*^9, 3.621739497110319*^9}, - 3.6217398701696568`*^9, {3.6217399825650854`*^9, 3.621740009871647*^9}, { - 3.621740053248128*^9, 3.6217400901822405`*^9}, 3.6217401307385607`*^9, - 3.6217801190358257`*^9, 3.6217802568187065`*^9}] -}, Open ]], - -Cell[BoxData["\[IndentingNewLine]"], "Input", - CellChangeTimes->{3.6217821404094415`*^9}], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{ - RowBox[{"(*", " ", - RowBox[{ - RowBox[{ - "Properly", " ", "normalized", " ", "candidate", " ", "model", " ", - "with", " ", "no", " ", "fixed", " ", - RowBox[{"side", ".", " ", "A1"}], " ", "and", " ", "A2", " ", "can", " ", - "change", " ", "between", " ", "0"}], "-", - RowBox[{ - "1", " ", "and", " ", "represents", " ", "the", " ", "heights", " ", "of", - " ", "right", " ", "and", " ", "left", " ", "arm", " ", "wrt", " ", - "central", " ", "part"}]}], " ", "*)"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Clear", "[", "\"\\"", "]"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{ - RowBox[{"f5c", "[", - RowBox[{ - "A1_", ",", "A2_", ",", "Ka_", ",", "B1_", ",", "M1_", ",", "B2_", ",", - "L_", ",", "x_"}], "]"}], "=", - RowBox[{ - RowBox[{"(", - FractionBox["Ka", - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}], "*", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]}]], - ")"}], "+", - RowBox[{"(", - FractionBox[ - RowBox[{"Ka", "*", "A2"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], "*", - RowBox[{"(", - RowBox[{"x", "-", - RowBox[{"(", - RowBox[{"M1", "+", "L"}], ")"}]}], ")"}]}]]}], ")"}]], ")"}], - "+", - RowBox[{"(", - FractionBox[ - RowBox[{"Ka", "*", "A1"}], - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", "*", - RowBox[{"(", - RowBox[{"x", "-", "M1"}], ")"}]}]]}], ")"}]], ")"}]}]}], ";"}], - "\[IndentingNewLine]", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"$Assumptions", "=", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], "&&", - RowBox[{"B2", ">", "0"}], "&&", - RowBox[{"L", ">", "0"}]}], "}"}]}], ";"}], "\n", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"f5c", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", - RowBox[{"-", "\[Infinity]"}]}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Limit", "[", - RowBox[{ - RowBox[{"f5c", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"x", "\[Rule]", "\[Infinity]"}], ",", - RowBox[{"Assumptions", "\[Rule]", - RowBox[{"{", - RowBox[{ - RowBox[{"B1", ">", "0"}], ",", - RowBox[{"B2", ">", "0"}], ",", - RowBox[{"L", ">", "0"}]}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{"D", "[", - RowBox[{ - RowBox[{"f5c", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", - "L", ",", "x"}], "]"}], ",", "x"}], "]"}], "\[Equal]", "0"}], ",", - "x"}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f5c", "[", - RowBox[{ - "0", ",", "0", ",", "1", ",", "1", ",", "6", ",", "2", ",", "4", ",", - "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", - RowBox[{"Manipulate", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f5c", "[", - RowBox[{ - "A1", ",", "A2", ",", "Ka", ",", "B1", ",", "M1", ",", "B2", ",", "L", - ",", "x"}], "]"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "30"}], "}"}], ",", - RowBox[{"PlotRange", "\[Rule]", - RowBox[{"{", - RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A1", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"A2", ",", "0"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"Ka", ",", "1"}], "}"}], ",", "0", ",", "1", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B1", ",", "1"}], "}"}], ",", "0.01", ",", "10", ",", ".01"}], - "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"M1", ",", "6"}], "}"}], ",", - RowBox[{"7.5", "-", "20"}], ",", - RowBox[{"7.5", "+", "20"}], ",", ".01"}], "}"}], ",", - "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"B2", ",", "2"}], "}"}], ",", "0.01", ",", "10", ",", - "0.01"}], "}"}], ",", "\[IndentingNewLine]", - RowBox[{"{", - RowBox[{ - RowBox[{"{", - RowBox[{"L", ",", "10"}], "}"}], ",", "0", ",", "10", ",", "0.001"}], - "}"}]}], "]"}]}]}]], "Input", - CellChangeTimes->{{3.621737264272608*^9, 3.6217373096502037`*^9}, { - 3.6217374591187525`*^9, 3.621737468358281*^9}, {3.621737502694245*^9, - 3.6217375061344414`*^9}, {3.621737778220004*^9, 3.6217379498478203`*^9}, { - 3.621739483890563*^9, 3.621739495298215*^9}, {3.621739579666041*^9, - 3.6217395865034323`*^9}, {3.621739771725026*^9, 3.6217398601730847`*^9}, { - 3.6217399784898524`*^9, 3.621740008393563*^9}, {3.6217400514510255`*^9, - 3.6217400894631996`*^9}, 3.6217401301065245`*^9, {3.6217406033545923`*^9, - 3.621740610236986*^9}, {3.6217803039224005`*^9, 3.6217803646658745`*^9}, { - 3.6217804140636997`*^9, 3.6217804443644333`*^9}}], - -Cell[BoxData[ - RowBox[{"A1", " ", "Ka"}]], "Output", - CellChangeTimes->{3.6217406128251343`*^9, 3.6217412694606915`*^9, - 3.6217783518613405`*^9, 3.62178044850767*^9, 3.6217817913204746`*^9}], - -Cell[BoxData[ - RowBox[{"A2", " ", "Ka"}]], "Output", - CellChangeTimes->{3.6217406128251343`*^9, 3.6217412694606915`*^9, - 3.6217783518613405`*^9, 3.62178044850767*^9, 3.6217817921035194`*^9}], - -Cell[BoxData[ - RowBox[{ - RowBox[{"Solve", "::", "\<\"tdep\"\>"}], ":", - " ", "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"The equations appear to involve the \ -variables to be solved for in an essentially non-algebraic way.\\\\\\\"\\\", \ -\\\"MT\\\"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ -ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ -ButtonData:>\\\"paclet:ref/message/Solve/tdep\\\", ButtonNote -> \ -\\\"Solve::tdep\\\"]\\)\"\>"}]], "Message", "MSG", - CellChangeTimes->{3.6217406142212143`*^9, 3.6217412704437475`*^9, - 3.621778354422344*^9, 3.6217804510168133`*^9, 3.6217817939796267`*^9}], - -Cell[BoxData[ - RowBox[{"Solve", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"-", - FractionBox[ - RowBox[{"A1", " ", "B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", "Ka"}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B1", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"]]}], - "+", - FractionBox[ - RowBox[{"A2", " ", "B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", "Ka"}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B2"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]], "-", - FractionBox[ - RowBox[{"B2", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], " ", - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], ")"}], - "2"]}]], "+", - FractionBox[ - RowBox[{"B1", " ", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]], " ", "Ka"}], - RowBox[{ - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{ - RowBox[{"-", "B1"}], " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "M1"}], "+", "x"}], ")"}]}]]}], ")"}], "2"], " ", - RowBox[{"(", - RowBox[{"1", "+", - SuperscriptBox["\[ExponentialE]", - RowBox[{"B2", " ", - RowBox[{"(", - RowBox[{ - RowBox[{"-", "L"}], "-", "M1", "+", "x"}], ")"}]}]]}], - ")"}]}]]}], "\[Equal]", "0"}], ",", "x"}], "]"}]], "Output", - CellChangeTimes->{3.6217406128251343`*^9, 3.6217412694606915`*^9, - 3.6217783518613405`*^9, 3.62178044850767*^9, 3.6217817939816265`*^9}], - -Cell[BoxData[ - GraphicsBox[{{}, {}, - {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" -1:eJwdV3c8lu/3lxXKzMreezzPY/Pc93WklPFB2ZLKiCIrW9k7SUJRVkbJyCiy -SjQQEg0rZWWPZFf8fH9/3a/365zrOuf9Puc6130J23uccqKkoKBYp6Kg+P/v -SPtrsesFeKJjn3aAtiP6lM0dqN0fgQpb9h884eWIgOODPXd/CgqN5HOJy3NE -fiaPv1L1P0DtMwwbdlROiHWRK2XraxXy/jk8EtbphL43Gnmsfm1Bchn8Htd9 -nVEmB5fjFZrXiNPa8tRkqTMyc/9utUJ6g1aJ0pdfTTijDkHPI8s33qEVOX8m -GgsXVBNxi2NepxMlTxH+DeEXka7Y7LdfX3vR8Yene0dlXFGBiZFVpXsfkrZW -FFy95Ir2Xavq9aT5hE4eHKXKKnFFjZ+D3i2RPqNiTVHO5wpuiBh7oHLhxlfk -+j0xQ5N8GfHNykXN6Awj41Tmume+Hmjrq1ra8tcxlNvyMOiJqjd6TqI791B6 -HPlU2LepOXkjvxv9MnbB44hriXRZNdUbrRwJbH4vMIGQd4nzvd/eaLasfq7I -aRIJcn+/Iv78ChqOxI6c+T2FbE1ybYysfVHmCCMj+7FpNKW9Ytt90xdZaYx8 -7UifRmc9Drb0v/VFnxdDLqtrziCZVA2JFFU/1G3dfPdQ+CzSJJEVXvD5o2ZF -naV2pgVUkhBvhdEEopCEQ/Vh5xbQALXbBuOxQESeHI9Sq1pAlm7tpmHRgagu -M4qn0HwR5RBy7pnQBaEqmrfHwu4vIdrGtZxOjmDUe1nMiJfjFzoduXq6+OQ1 -1KrzsODjg99oJc/oyBu5cERIejKz0fYbjeQWhySbh6Ps/loFgaXf6A+jTEdD -SDgKuNz2/JLWKnoo7ECv2huOFO7MdFJ9WkWx1ea/Pl6LQJmzsmsqNOtoTf2V -ls90JKJTUda0lV1HpX26c6VcUcg3lBwacXIdkdeVQsyORyET9v/oP2Sto/PN -lYarD6MQDe7O76K6gTJql/6muEcjz1sVxzKdNxFz/6lsNbZYNDL0PKH5xibi -S7fdGTwRiwwkXn34Wb2JHC3DdXZCY5FEw0drJYotFFMZwtK+FIuGJlYud97d -Qo+Xi04kf45Duuoq6Tvt26iO57f8Sn0C4vte99Ne7h/qHyul3FxLQhS/ve62 -n/yHLBNrfZOxm2iCVkaf4P8PHV3nGHsffROVKWSW/Xv1D/3ObH3AfTAZ4SFB -Pnctd9CCJSO3x4NkdJZfi7I7YhdF4M+po7/fQkeJv6uVH+0iIbvGs810KUjq -WInTva5ddGp/tZA1KQUF1NxwVD5IAW/sPamLYlIQjPx7t8+SAqgnIv+2Kt1G -H+VHku7PU0BqlYfp+9xU9Fqtfsp4lwLanWbooCcV1WinAxXbPqA1Y30gSJGG -Ms2NVi6q7YNXZzcPi55PQ/bXXpirReyDHXOjRjOpdLTSmc3Xy0UJl0QC4lU6 -7yB2t7OP9+tQAcX3dckJz3tIZn/+WxNLKlAkdRosPL2H4MHPsQxXKiCuXLXP -3LqH3Pov88qlUsGZUKTxM+o+en30aqLJJBWoibCPXs7PQj78Ge4ZsdRg2TCR -0UaRixKeDyeM3aOGaLvkDV2pXJRrKvRQtoIaNm7W3RE1yUWd8Q+/N/VTQ7D8 -6cnt3Fwktv7MZEyaBmijlX+rH89Dfd29JNlOGvBY/9tSWfQATV/kNPb5QQMR -tS/uB356gHaobVybVmkghEopvIwyH8lojeYb89OCpYsR25lz+Sji4RK7jzst -nPlbcmxNqACRwg5uNLLsh3M6HZkjtYUohajbYGROBxl5MJ+oU4wUh6yPYy50 -ELtx81XO1WLUGXW5TzaYDrS1vGrkaooRbX/qHF0eHdxW+5DxXOYxCg4Z522d -p4MSbffWysMlyPF92FW1KHrgfVymucVchvb5ptJJ3KGHKpo7cXwny1C2wKNU -9sf0YMwiNdGWUob6vT6U/vpAD5Upq4XNXOXoP26BbyW8DKDRhOqPSz1Bqk4N -mFA1A9R/e31Sr6oC9TF9aGd6ywB028Kldl8rkOfzMfN//Qzw6FNxQvPfCvT4 -AIP74M6ef8SfcdcTlUiwyio7Vf8AGN9suOExXonodtd26MYOgNiGDJ4rVY0G -7hKaf7EwwjW7hwpOv5+hzL4SZj9xRrCLd606JFmDbJgkz25r7Nmb8o8STtfs -zTf+HUoHRiAWRtrXvK5BP9wZyOzPGEE7kCDHkFWLpo9O1KpaM8FRzvPGlx3q -UHHo2f0Nl5nA24hl0yS7Dl2qH7RAEUywebBqumygDs0rflw7XsIEacyfXL+c -rEfLPC+UrP8xwazCafe14w1oc/nOk+A8ZhhMnK2mMWxCdbKHdnefMYOc9n+N -PUlNKOhCklFUBzNob89QCvU2ob9DUQuJv5mBrvzI7/9sXqCw8eccH0RYgOrU -pc4tz5coqrvQ9IcPC2j9efeeZbgZXS8I/UB5mBXm79/t2rJqRfrKF9k4RFlh -9kxXoX9EK6J7fcpcUp4VjsdM2+ClrShqXHzIQJsV3ulMH3tI8RpdFen8mXqR -FQrWXA0WSl8j91zuHYl6VohXiu/xP/QWnbxfKWdwmg1+dSnlVB1uRyxy9zzO -OLEBkS9x30PDdtTdEFXl4cEG4wZsCjOh7Uh/yFI9NZINGFeiBSyn2tERnh2d -byVsIGX/MWawrgMp39U/7fGXDRqONBVGXO5EXKnj8bezDsFQ6G+rqP09iFv2 -WdRm0SFIcTzW/V60B/G0xISeqTgEt+00yMrQgwSWpX0lWw+BsYdbqXNgDxI3 -9DzXMH0IeKOfmVos9CAl6n+q40rsIBWTdV5r6CMy9uGcIHWww0vrnE617j4U -a6aH965zwOpkBoULbT+6opF3tj2CG37l3f5jRjWK9HOZVg0SuSG360K5Buco -Etl/Na47jRtuBqQz8kqPop5PFpV9j7jhTcaBrV6jUaTgeZBqpJsbVsxN8lkz -R9F0kX/RCs9h0Ns52nhPcQzZshst8FYfhoWmJfFA83GkFNwQnt14GMg3NNiT -nMcRw5gUp/Dbw3CrXdQoI3Ac1T2hQhIDh6Gp5N3sraxxxGlQl0zYPQyFo6Ot -tJPjqCdcTPmYAQ/YZPyl6veaQEeXtoPcx3mg04nu32r4JAo8kSrzap4HrnLD -llzKJCrPkx88tM4Dx+2lGyweTCJus3MadXS8YCnjwhzaMonmn7/ZoFLghecf -9BMEKX+i2xHJPhkBvPBRTO1GdMhPNMYh4f6akQ9Gg5sMJV2nEJfHS34uLj54 -jejrzgVOIcM2q66LQnxgdF8qIy52CtUEXZdjVuKD09kJ5/Pzp1DC9+VZays+ -OJguMkw5NIVIxQ3OSw/4QJcz5ImV7jQKJ588z6PODy3PUq/+ZJpBJ+yyV9SO -8MN0LfrRyTuDmMLmIs0N+UFK/TXnfakZdL81uij5HD+YExyfrmrPoOf69XO0 -8fxQ6rrvVeKVGbRsJer3e4AffHe9B0/0zqDaIM/9rBP8cMyWXe7ptxkUcr/p -rsIiP0yGLKjvn5lBB39YNlykFIAmXWvccXcGSTonUvyQEYCVkwT6TZlZZOe7 -ltAZLACFOTHlftdmkfidI3yz0QJQYWCqZR47u6ffzbL9yQJACmu05rk1i4L+ -SvccKRAAHbqKTcuCWZQWacdR1ykA1ydrXbLbZ1HnrXc5hfyC8KF1+OBR5jl0 -u5qd2CopCCopOsrhXHPI5vP5lh9EQYg9muqdLziHprn/TvDqCkKaYkpruuIc -osolyKS4C4LIR5lwFaM5pFme8TTkpSBIxL4MUouZQ0e/dv9bbBOElrJIJr3E -OWREQX38bK8gUCfmuGinzCGHU+4DaFIQygKrFyaz5pBusHBoGI0Q9Pv3RG1X -z6H3zI356gxC0PfAPwOvm0MmBRZty0xCQD4ZcMblxRw63XWd9Ty3EPxyqLZ2 -a5tDnoLr+dqyQjBCNd9MHJpDa9XJbVuKQmDckv07+/scCjohu1CpLARfJhMT -l8fnULTXOVURXAh6WOXJMD+HGGj/2AweEQItB5F1bHkOJWemhaYcFwId6j5b -wdU5lNna0UZ5UghaThS5Jf6ZQ4JWTgv15kKwLziikmt3DhXM77JesRGCOyUx -g9GU8+gJh8rpcQchOGpZSMNAP4+UH38IveciBFN9cfcED86jevxSgellIfAn -CGFczPPotXPOQqufEHi257wsYZ9Hen812K4GC0FE6I7sCa551J38SVU5TAiu -Gm7Wvzk8jwbq6MMK4oUg5HWXgYPAPLIzKiiwTRKCqBdePRFC82hiDG9nvy0E -S0TytQiRebR4wIct+r4QnBmLPCEsMY+u5DKpYXlC8LPq3Y+XkvNoU7n49Fqh -ELyOq0/FpOdRSLtOWNljIYg9YyuQKTOPqOxGCpyeCMGTrHDVz7LzKG4loJ3/ -qRC8VPyYuig3j5hiDy1+fi4E9uktS5Py8+g2bzlbUpMQlCvc/1uvMI+4K06o -6bYIwcFEL4/LivMo6+j46Z23QsD6W/jP3z0sMnAtrOa9ENxftTh5kTCPHl3m -LnTvEYL3MpEiVXtYnrK6XeKzEPAcHuX/uoer0v9bHBnYqy/R+9f/sLrsNNud -ESGo2fmn93QPN72MUDMeF9q7T1n7XPfwETN+2/3TQiAVsaO6sxfv3XRt2Mt5 -Iei+PiTguocNr50q9P8lBOnukaSqvXx7WRfaFdeF4KRbGnffHh/LotjFqe29 -/nD09eva4zusKXIod3evHzUMl3P39LD/0KhmRS0MDm500v/t6TXlYGnLQi8M -ngt2LR+l5pHb5q+wNkZhcBfttFXY01vT6wLnTzZhkEz1EdUUn0d0s4MlVNzC -8LNP+B+H6Dz6Ym+sLcwvDBZbtq6v9upZONT6BRcRhhwO+kWtvXr7mKm72UoK -A9/DC1TRvHv8ukr3BckJw3owl9R97nk08iJN7pmqMNCq/4knsc2jUjWGll4t -YWCqDn9ewTSPgipCLJdBGLzLGQe2GeYR5wPnCFkDYTjIRNOyvNe/EzzDXHom -wkCkKvK4tzOHqm6blF0wF4bnK28HmLfnkHG0Rn/eWWGgkbPLNt07LwI7ZZdf -OgrDLcJYr/DcHJr3E6H6dnGPXxtHQO3kHIpzOaDA7SMM3Ncb6lUH55DFaGir -SqAwqAVZSAl+mkNiNqtWpiHCUPz3wMPOrjnUbPAtMilOGHbV9d18mudQ0uuT -h0tv7Om5UR50eW8e2GJvy9tThOHIYxoZ6ao5tKXwZIA6Sxhm25lXJh/MIRJb -uGJwpTBQ+LZWOITPIYrra6/v1vyPL5vFuYA51E11yaamQRiekd5l8njMIde1 -U9G/3ghDzA3p4Den985zv9iQ86AwnKCdmhojziHvkxme0d+F4e9f88F6iTkE -HYy0+RPCkBUpaG/AO4e+NawTRhaF4VVh3rPbVHOIM6ctxoxKBIqNWfGKnlk0 -wYXxedOJQHkKbbFW6yyqSq6svMkoAhE2kd1Bz2aRcUTmcAeXCEiTnDZZM2ZR -nJMbSVtOBAymGQ6k2s6iLVmWEXlzEbh1X4vN+9MMWs/iCVeyEQFs6j81k5YZ -tMosLqZxVgR41Z5JfXsygxZ/a1w6elEE6L4I0FMmzKCxBod1m2si4Ll+fc19 -753cYVDLFFcoAg7Lkfm516fRu6ZXlTcei0DjqqG8oc80eq3YaXb7iQj0is+d -ybedRi8OjWZm14kA1ek/783kplHVEIPksy4RsFf2U377bgplutqhsTURyHF9 -vc6y9BPd+eYyNrUtAuSKpuiE3p8o1fhK9MKuCCwVB32vfvYTJSnFvd+kFwXe -Z5wa3ME/UcSfSktmAVFYO7GUorF3/7tep/Ek64rCQcFNjmTKSUQuKc1NTxeF -iec3/gn3jaEhoZKcY/dEIVHe5/VExRgKSi/OXs0RhajIq8/Dk8ZQbXjR/VPF -opD6YbTFWG8Mkaxy7zI1isLImdinjk2jSJomNTlmVBROynY1tOT+QJxng8P8 -5MTgSaDtue4Xw+jZp8BQcaIYSPy1eNbjN4zM9ANCPqmIQaYV5dM5hWGUouJ7 -lYTEoEhLXjMgZwgxHvQIWDwpBqLhsl+0IwYRdZ295wV/MSg9rd1MONmPfrHp -n7NoEQN4on5cXPIT6ncT6bn0TgyIbv6memN9qPntNgrtFIMjGfbbM1l9KDmo -RPDRFzEI+jGUUMzZhwhjB79vzYrBqOF5FSumXuRe+eFM1iFxOH3SmjTG1YMs -DjzqquQWh3gGOX6d2g8IdwrD3vKLw+FUs+tz6ANiPEzkX5IUB2o1FuZms25U -GpYyDGRxCPtvjiIrsRPNGpufnnAUB3XXhesDKu2ot1j+/eZFcbgnjsRde9pQ -PRWtFqOHOJitwnGCWxuKr63hUQ0UB7JmgaLpw3dISpB7MPaGOJRdejExJfsW -OS8OWsnWiEPPJTFTu8utyOhEdRtqEAc/YRlyHU8rUn1wXd2sWRzUQk8OKbe3 -IFoLMve1DnG46y7fFiPdgoqasr52j4jD7IG6uTMbzWgi8ZyF934JWJdMEZq+ -3oTcZ+VECAclIFUlbciVtQltHN9aWGCRgJmjdZrFdxsRA1VK9EUeCej6bhEL -pQ2IENj69Jy8BKQfTOK4PFWH6r/cDBMgSUDrpcgVvaA6pKNsazisKgEDF8lU -L5nqkMXS6rglSICnzVLROfJzdM1J4pCx6d76m3ea6B/XINrWlZGDVhKgd1ec -j6BXg5KFXj7usN2LxzNn2DnzDBUMWR7RvSABkaLsC2aKz1DHyXgvLFAC6ibo -/yq8r0ac+PwH2RwJmOjQqjY6Uoly7z2/N5MvAYWe01x96xVIeivK+eEjCah5 -yj4cX1qByE/5d0WqJMBrJ9sshLcCOcgYK/C8kYCREyPREkzlaD6Wd/truwR8 -Vcly8Y0vQ36TU2/SuiWALGneMkNbhhJyw86w9kvAQk2YpRhdKargrEqkm5OA -rE+vmZhFHyNNnxCrt0sSYGo+CbXlxaj1o75Y1OpevKDxO3rkYvQlcbxh958E -IEoJc5Yzj9BfSo65dRZJoGv5z9HhaRHSW/LXm1SVhKsKX/t0n+YjPqJADB1Z -Ev5V1nXvN8tHi96vW2S1JcEb91NNXHuAUtdZyN4GkiBL91PkFfYAjfwrVtg9 -Kwln9rWMMY7logpk4iriJAmWlRuUfDdzUWT4+sNjlyRB67hYbzWWi6RodIQT -fSRhhSlkswPPQd4Hhw8djpeEVwzUlaTp++ioUYQJOUkS4s68VQq0vo+4kqVu -nL0tCcuKUdRuXfdQ4yFf2qKsvfw3KdMkmjIRLS/TFqlKEkyTGqqK6++iTGkY -MRySBEGVGc7/xNKQm+tPHs8fkhDaYZDJ2ZCKUFmi5e1JSXg5+1/FD9NUNEEY -6BlYkoR2RyXnk9dvIwV179YL1FKwqvDqWDFLCqII4qZIoJeCrhmh+KCaW6iv -4QW5jEkK7vfPTNPY3UIB6EDNb24pUKTyCpepSkatugWPwuSlQIRRsjx7KAml -x+lP5pOkYKFaLFRaOwm5dCwLv1OTAj6WH2llxTcQkxF2j/GIFIxAEO3FyERk -Zf7lRqaFFCSknK5VsEpA8w50V56GSoGpndj9t8ExaDH7aNPLKCkgamgGvj8Y -g5YGwva/j5cChyOF1Is50WjFeOve6G0pGFB5tOLQGYU2tGZfMz2Sgoiq3QdU -WCTa9JNg5imTgvPxVIKT3yLQdqW9tXiVFPTKCjvcDYtAfyWHFrQapUBn94b/ -yffhiJK9k/NijxSYHOqfFvENQ9TGdOd9PktB4HGhzCLRMESTcLQkdFAK8pXu -ffN5GIroKJpQ+oQU0FJ6TE57hiCm+TKX1k0peL71lKtb4io6/PpmPb+wNPhw -pXyoYQtAPLvvqaUlpEHU+28F3PNHfJp0xsqy0iDU397NJeGPBCrCxvVVpEFF -OJwz/IgfErvvdTBATxq2f9KVs6X5IImvZRaRRtIwXkfX9lXBB0myzeYmmUqD -ulsWVXrHFSQTZ69SeEYa7PN0fL7uv4IIPqZ2vV7SULoipeV61wuRntx89M1P -GjpvV7CtgRdSmn2/Mh0sDQtreXWKc55I9dzR2N1oafD7eNcr/agn0jJUqZDb -azLjYh6adHZ3pCvGRRnbIg1jo8FDJc8uohn744+03klDYHTysAZ+ESXm+Rst -v5cGcRGZreU2F9Qn0J9p/VkamsmEpaoJZ3TucIaS3LQ0xB4wdA1SvoCorNoH -fsxLw2pQdfbRLidUlL4VmvZLGlql5OUXnJ3Q/CGbzp1tadAeG2CufeCIApl4 -nT4yyoDt2TEDXXkHxPefwYEYNhlwnsu5x/PJHjVfD67U5JIBbOtGTOJVe0RL -P/wvX0gGvjU6Bcv2nkcpVFnpfkoy0GXPbnrj5jlUuinQxmstAwzJ4z50mbbI -WM3YveeMDCQ5FOf/ZrdFK76h7NH2MkDjmPbjRMpppPH7+7lFVxkoJcXQ0aTa -oLcLuVvNITIg95qn6k6VFboo9zHHN1IGShI+hRYiK3TQdZ+uTJwM/Pel1Lm9 -2xKdmj6fcvuWDMhEFzHI/7ZA38dEZC8UyEDdG/8PZ03NUYSw6UeeYhl49bzr -zOFlMyRxLtL/Q9lefC6ni7lJZsjt23ireq0MtGyerFzrMUWbXwtsD3TIwNTd -Vpvhi6cQW5dEUsWSDHxPwNXYO43RzhKhsGNVBraZrWkfyRqjWTatxoktGfAJ -LzB1TDJCLVbGs9zUslBVGKXIdeY/dGXCXzecWxZe0J2+3MhvgM7tjzhzj18W -3L/IXJ5O1UeGMok+z0RkgebcR/W3TPpIzDP3wYycLKiBqeZ5Bj306U/bzklt -WaDH+kuKBY+jZoE+DjddWbgpRxxbf6yLSrW/ycUY7NlDom8lq+ui6NhfNvXm -srB/2kUv2OYYUj3EUytySRY27jMf3qzVQXdkXD1+p8iC4/OV+qQeQFH/+cYw -3pUF19OdtOXBgDw9Q7Mks2TBb8g+KlAK0Ima2+9PP5QFe/sglilGhDa1GyVf -N8iCWEjEhGgZGU04vsVHmmXhd1Lyk7N8ZNQT22O++UYWSoeEF3yTtFBx10Sk -XI8sCNiyhm0GaSIba8YfqROywIz/6Px0RR3pXuXaKJ+RBbpsoZ/nNtUQKUeY -qX1RFqhPBuycDlVDDJMq5H+bsuCxw2funqqKGjzt7joxyoH7JttG/YAy4ot7 -YqKqKgf59foPLr4josflZa1bmnLw7SFlcMIVIlL/XKLahOSgjdd0SFWYiMxE -HvEd1dvDE/eUOcIJKLExd/qkrRzMu/y5oFeggHjGs09znJcDypZgn/pDCugR -fVZ3v5McqB9X1v8cLY9eW2Q8PeshBxy6Iae+eMmhP8u3wi5HyEFE7XjhU2cZ -FMeV/JsQKweJh8W4heek9+77pAur1+Xgu3uM0ICnNCJdTzAMTpOD502SIxSR -UuiSeCR3/CM5oD5m7XLwlQQatPapKOiWg+xdqosZ90SRS5i3qEufHDydejfM -gUTRepFnumy/HITuv1ivOyGC2FbdrlaNyoFYlXtloZII0k9yOtG8KgcXfS4X -hE0Kof6nDg2RW3v5XfK89C5NCF0YOq9wfEcO1miv6MUcF0IRUnbs3fvlQe9O -T0CenSCqa7H4McQjD8ypdC8aBfiR7oyZaY6gPOT0X+81T+NDn5hN39qLyUOy -h6iwPxMfWrY1Lp2RlwfJ3qLvInS8SGrjeMAGyEON+2uBEa7D6K6sBsshZ3kw -4HO6HpfDgcwNupJfuMoDffTLqKtaHIjN9TzrJU95CGHMtkAD7Oj643i2V4Hy -0G1xUY2Fhx2FSA+yeyTKw7SXgtjOEzakpeeexnNLHu6m3KSItWZDmy6UnG/T -5OGcYfh4DjUb8nokw8WfIw9Lw/JrjmdZkaNk8OH3lfKwUOu0EyjBgoSPM2f6 -1ciDA/Hbw9BaZjRyIZ9HpEEebs6jthdizHvv/fe8ga/loezbo0fi+5mQvjif -gORXeRj5GsasO3sAEUWbRCL/ygNLAJUXpRAdWjxyMl9hnwK0fvp16XzFfvTY -flJ0kEYBKpq6vr8+sh+JPWAUJzIrwG8PLRafy7SIW9hO8ruwAnAYBpUEDFCj -z7DyMEFCAaT9Khx2A6hRyrkYKVVZhb3/DdOgozzU6EBuufQNZQVI+8xYMHOe -Cu0I7MpqHVeAzN9XOd5RU6IG/HbpTwMF+LtO/f1C5T4UYCcpn2KiAMSka+5x -Z/ehX1nGCjPWCpDuF8yn0kyBJvhyCXfcFED+UXnWitgu3sGjrfL7lgIM/0cz -5zy7jfcIPJGgvqMAdq87vJ0ctvEvIvzcHPcVwOJflRTd9y18VGZrW7VIAU7u -EkzoRjbxTc3K5qB6BTCgFJZL3lrHd3DBqusvFcCVZ+f7yZh1nFrnRv791wow -fZMtx5xjHWc2uBjzolsBxLb+yKxrrOESp4UNKccVQOcIxu92/zcud/Ymdmha -AZQ5m4iMmr9xksM/BbEFBfD5G1R5b2AFx1wHWHU3FED22/4AG4EV3Cz41tf4 -A4pw7/ABedumZTzi3j4HVmVFUP/2WOXL7Xk8LsfDTERDEdJzf/y4Sj2PJ+V/ -O6aEK0Lc2mraiv8cnlFSJ2V+QhEcpUwYDjnP4hUNXot3bRVhfGyiodxxGq95 -+f178XlF0CTOm52ancIbW//7WH9BEbKdnKtOe0/h795LPx32VASzF8PDHvE/ -8ZGh0UChaEVw+dfcfbp3Ap/4buxKTFCEGIr/ns5cnMBnx5tsj9xUBL9oyYhI -qgl8bS4DOWYowvzzge1K8jh+8O9JmkdlinD/44Tz1JtRXJOvJVnxiyI079qx -elqO4GOiYiMzg4rwkd71jXH7NzxeNka24PseP5dhlXbsG96vqf+We0YRnuZ+ -fm+lMIz7W/f+2fdXEZxZnBPz5Qbxm4RMMTsKAnDv89KlqxrAHZQNDBooCWCY -MGZUojGAHyCX3fXdT4BN7r9XIoz7cRsDL6VZFgKIg1azTeoXXMFYxOb4IQJY -SNFppst8wSlN+8IKOAjQvHpX5FXLZ7zYRqXbjocAX0O2JV9tfsI3L2659IkS -wHiYIsgvqA9PjwvPblQlgKcU5e/Mrh78UiLpzWENArCY8YhPhvTgePL4nJ8W -ARJFW+hyiT345J1jGkQgQH51I0um6gdc+SH9p0I9Amii/ZZZ/zpxupL6bUpD -Aoz0lt7s8e3Eh8tdhc8ZEUCdrW4ydPk9HlnT5c5juocZd26JLXTgvW9u0d+0 -JUBpfrH6f5TteFH7EcK8HQG8Po0ISN5ow4O6flvonSfAZb0Tb8R52nDhz+YF -VBcIsG/goNVFzXe458RhFOBBAOTz6NOflDc4E9UDn/MRBLj04CeTx/0WnHbr -pemvKAK4GO0SaPAWfGfxGyk8lgDEarXjQaOv8KXBw79yEwnwXCcyfkj+Fd5T -devyj3QC3BzUTN+seYm3PXpi6JlBgOriSVkOzpd4c3aXLMV9Aijk0y2dD3iB -VybQzwrmEYBspJttoNuEp9iHXzhbQoDCC/33y2ka8ASrnGNLZXt6uhnrZlyt -xyOMmsRCKwhwbLDMRmu9Dr+iuTWW/YwAouXTs+6/nuNmbF5nR14SoFP/SY0I -bS3O2XLO6swnAkhLUAXRZVfjTM9D1Ba+EEAk/EVlpGY1Tlt+n/PaAAE4tvxf -b/RX4RsZ/Z/ujxDA8sOx4ge8VXi/l8nJ4WkCuB8j3NmoqcB7nN0JbnME4BHY -tJWzr8DbziQy/10gwMVhJgNm5gq8Tq+ti/c3AWYrI52Ch8rxTGHQP/2PAAdc -h5crgkvxFC476bldAoT8NuAnzZXgCYxX6YIpiaAq9tg4+UwJHrxV+zZzPxFu -0sevFes/xm0/KuoMshKhh6LGruvoI1wgXJBsLUEEt+7DC9fLCvDyK3Qi36SI -4DNI5r+uW4DjF37tPy9LBAtTMcfro/n4GYPWPhcCEUw2iwOc+fPx+xzOrgGa -RLCVq1WPKMnD5ehMTv4lEyFibpd4zTQPb9hWVwtDRPih9y9b4V8uPvidgSru -6J4/hdNIinkufvhxeeYdIyLISnNWbZKy8Uf374TxniRCiO7OkYT7Wbj6zbAL -OaZEeDO9I0tPn4Vb+ZwiPbQiwoKI9N/U2Xt4Or7eXmNPhN/5suNnujNw9j5s -67MfETqfVI/YMKbjBW8kvlsHEuH7PavY8Jw0XOk585tvwUTQeMZ9/r1SGn4q -azR5MowILqNsutn2qfgt52iptQQiJH0eixftT8GFbNyZAm8QYaVcfvFoUApe -YWi5+vcmEZ6ZX5nVEEjBe4jSzdRpRHAin70S5HoLZ/rbacmeQwQRbH77PE8y -nr34DLubRwT/m4jdIvUmrjCaLcpXQIRq82dW+zeS8P/eei6JFhPBYYvVPf7N -DTwxmT1WqZoI8vaJQq7R13F6cduaU++IMKd/Ozk+Kha/dBjpl7Tv5SstFUfi -isU7GEVGqDqJIBZLNfC1JAZPXJ+iedZDBE7Bl60rg9E4U9sVc67Bvfr30D7w -Mo7C3RstZjyGiWDkncJK/SsS/1Chca1thAiZM+wx/6VG4skZuwWB40RIXM1/ -Mfk9Amdzvb46NL8X78S8lHlCOO591j1OeYkID+xy3NvUw/E+05N8N34RITk5 -fKBmOgxPJXMdxdeJMBA1Xj1jGIZzMeXfzt0lwpNS5pFhgxCcr7Ke5MRGAr1k -6unDMkH41cKst03sJHC7uq/UpyIQ/5YRZsPJRYKVd7d2qTUC8ewI3Yh3vCSg -qbrikWUSgAuZ9X6UFieBouK1Sxl3/fCwE8+cIiRJ0DRuo3dd0Q8fJd/dGpQm -Aa/hWppTmy/+QNxOOFGBBPlMJhIVuz64+MaM56IaCaTDOF6VR17BY+Y6qY9r -koD6eXTYqtQV/Of3J3dzyCTwGu9l+fHBG3/U5ttsok2CGENB0QQRb1wmcx9L -tT4JjiYOKdgOeuIK2OEn/mdIsKamdG6W9zJeLXrxD+U5EnSszfjpxLvh6gx1 -x5PsSWB21tUhdMsVP/LV6keBMwmq8/aPOI1dwi287rL2epHgr5fHL+dPLviQ -5fSZMz4k0Px3WNPE0gU/h6s/nvYjwfS17vryYWf80oH+I7vBJJjnzaHNWryA -hxZy+cjFkGB9pjN7Rd4Jp050bq6NI0HR7zfP8VZHPMG79qDOdRJIsDY7Ftg4 -4qnIstA6mQR1Id8tUm464I8G0r/EZJJA2MvN+BuLPd7DyKkxWk6Cr1/GZuY+ -2uHmq07RbpV7+l27ZlCkaocPDj77uFG9l19ByLJ79hl84qH5JaY6EljqHHyx -4GeLb2qn3dNqJcHrww68NPo2+DWpyam3b0jwI7eT+/Yba5ySWUX5VBsJjrG6 -WTfqWOMHhz91unSR4BZP09nS41a4sB/7TtpXEvxjP/XxgZsFXmTrqC88uGef -87Mq/mOOy+k8TS8dJgGD1AOGmURzXJXFTLF1lAQzPMk2U8/McP3Ht88tz5HA -/MJmabWQKe49wtaqT6EEvEpV9Z9NTPC2t7ZNjymVwNBs6TIjtQku8KSoloFG -CdSIrsu2XsZ4R6hmaQe9Egjq+OFihka4iLB9mv4hJThB35xuI2yIB9CX3nzM -oQRpKuwfN+8b4N2/1uIZuJVgOzOenpbXAA9qiQ/p4FOChoCAISSgj390qHTW -l1CC9eFfjv/QCVzC8M/5x1J7eEnddaTrOH5V+Zgtg6wSRK0uhvafOY5L0QyY -dCgqQX97VPRypC4eVkShqa+hBOUuXR+Lpo7ihBnjg/qGSnCE9Sy7J80RPOZj -Bu1jIyU4sJHPm1ehjQ/XjVMwnFQC2hxTdP6MNh6X4L/Wbq4E79+nFHo1AP5D -NmdE76wSyPT71/CyIVyVfaa/+LwSKNlFeI+H4njiX1IfvaMS+L7vMTi9jOHq -XW/ftbsowX3WnE2pATKe7L5YoeetBF1BFT7TbZr4Twv1kmIfJaCoYy0c0tfE -ySiikN5fCQ5F2e0X+qCBTzNzZrYH7+ml+WTdc0Qdh0osUi9aCd4yG95l4lLD -l34nmuvdVQKdCxTXy6aU8OH+PIusTCWozv/K//m6Et7RVGP5674SjBj4BBcQ -lfCC2B/WGXlKMHjokhxfBAm34VW2m3msBIvbdYwPVIj4CQq9s1jZnh5e4zka -Pwm4yuSZc7eeKEHoBZ0MdJeAszyJtdd4usf3TKTvVQoC/ubI0IX4JiUYFmdK -Z2mRx6skl52/vVSC7vQz9q/U5fHcgzQXiS1KcFh9q3muUg4P+qLgOvBWCTir -eRpDS2RxwqUID+keJdi11irzqpfG792SDmgfU4KExY+j0bgEHueHB/JPKoGm -EH507Ks47nfaNMhrSgnmDS0R9xVx3ET82tXD83v+BT/3LZWL4bR1PWEX15Tg -ArMwstcSxVezJsObNpSAMdWkp2BMBB+N2I5g3VaCr/yM/WHXRfBGQ7Houh0l -6PkzMjU1Kox7/fCPp6dThuaIpw9KcoVwuzeJCWcYlOHftOf1FVMh3PBx3vXK -g8rw7dOU/z06IVzC5/0Na1ZlmDPbN/V7TgAf3i+YUsyjDCIHBAeDm/nw44pv -M/XklSGMx9j7xRA3bkV7wqxHURlS4+/lnjvLjV/61s5oSVKG8OuxVF6TXHjS -9a4wRzVlYGgIoyjd5MS/TH26EKqtDNLHctiPaXLg0y8shGiPKoP5xRpX1h52 -fDutfyBRVxnOPSnn/OXMjvMfHTbMNFCGIxonDr3KOoQ75o6TnpkrwyNnqcAb -Qmy4n7/TvJaVMnz12Nc2/IYVjzOaKmyxUYbe+D8ffrmx4qV/Z7l7zipDiuW7 -l3rNLPhvq5Wd2YvK8PAMJha7xoRHsO57LxSiDHmDnu6/PBjw1OmIqIdhe/4t -XhfK5ujxopfUuEKkMkwf0uDevUiPd1ymq9SKU4a2QGtFgjsdztrBfMciRRms -zHKfu9+mxUXybpl8S1WGvlvFKldFaHHlgEMMjneUYT6c/u2LahrcSoLrmtd9 -ZYh0aJGtHabGcyMEHBKLlOGs5Cjxv+NUeJV1Lt+hYmU45C78feAnJf6aIPIl -o0QZNmx5ufTiKPHpEXG9hxXKEHOgPau4Zx+uqCWv2FKvDE0Wn+39/CjwF7+1 -/mx0KwPN+YG8Hv6/WF5nrb3pR2WwkRRfDc78g0UVKnWU9+3Vf0ysNvHwH0zP -UjbDqV8Z3n4S3KkU2MY+1fOo9Y0qw+f0hd4RnU2s9nZ6tsKEMhzrmfOO7d3A -Mt3YaBN+KkOP45Wr2g4b2FkBhs8wpwzPst+btyasY7PhW97lq8qgdfhs+vby -KtZl4ztIv6EMelY+FdI3V7EKpV/aTlt79dUNeCKsuIr5Tk6z8O0ow/0nT2UM -fH5jFHr95fH7VeDAY1ruArYVjJOldtaRRwW+vGz2bCMuYVvTpFPNfCrw9oAq -6VDuIjb8qryOV1AFBP+IJdKyLmJ5V4riekVVIEjT5M6z7XlM7muaBMirQJZi -5PmpuVmMuYI16Z6iCtw+ypch6T6LrcTdWFsnqsD7OH7F6pUZrFYz+nWZqgok -XeDrCKecwY5k+9jzggqINFG/G9aawsT9l9v9jqhALZE3xeLDT4zOxI3Ye1QF -uj0e6753/Il17XOkiNdTgZ981nfD0iYxKyfT7PVTKsB3LMVGhHECc5cjDX50 -UgHxr+SkfUajmO8Gz/ZZFxUwR23iV9Z/YFdbqHgWL6lA1ybty5zcH9h1q8/W -DJ4qwKvDpsm0+h17FBUwcCRIBRoL6qVOhH3Dnhif3+q5qgLLxnX01HPDWA2P -/uGzoSpg+PCNZLXVMPamgtc6OEoF8tNCK5+Qh7Cx4Rf91Ul7etmcN0gRH8Bm -Hj7c1L6lAgruq8iiqB9b9k7m7rmtAu1i9zezpPuxXTp7q/m7KvAh5jprjNpX -jE+Fpl8sXwU6+BQIjh6fMYsbBl/TalXAe46ZwvdYL3bGSnlDtF4FfqTX3KKc -+Yg5ivJzVTWqwHe7qXGHpI/YlbpFi+5XKpB5fvvf1ZEeLHny1hfazj07qP4R -kfiA3akIWk/tVgFHgV6XuLhuLDvYgVP0owrQSwnpHFjswspYVSzQFxU4NVQb -IdPSiXVg/Z/9f6iAD8FKRvpGB/aR7tUazbgKWC1k13yk3bP2FXOkTu7p8yHj -r3BkOzZ1Mdi8YlYFckN/kKMi2zDqdIHP06sqID8t/nkq7y2GLTp+sqZXBSvB -0dF6/VaMs+H4g8YDqmA5LkIZs9SCLcbKeAoyqYKICqM5RXoLli28fGCSTRXq -PhNHxqZeYTtmwTqefKogbdX2ID67GfsibMfaJ6AKqke83TaMm7HyRfiuIqwK -Nne1SvspmzG7ONrgP+KqsH1lPvjpwAvsZcOtqhhF1T2+B78fedCI3Y3zCZsh -qsKVSc74cZ5GzNPc0shQWRUy93kpUac3YEJLfLOsGqpw/sFuYPrteixM5JFw -1hFVeLEy5fjq8XNMO/5FcrW5KvD75LItoWcYj0WeHaeVKjDpCjwMGHqKrYhE -yQXaqMJwawfhW8BT7EGjXht+VhVeshirsddVY5TLn3bbXVThXy1vhJFRFTbY -WNsl56oKDz/HU7duVGJV8Zn3bl7e249Y/KTnQSVmL3pOzdxbFYyTZC9l/KvA -Wi3m3H8Eq4JJ6AKtbMIT7L5oN1knRBUqFs/WMq2VYz7LFQxFYXv6lZ05XW1f -jokl+BW5RqvChpLJowO6ZVhU076R9SRVoP7FUpMpW4IdE+P+j/HBnv/uQgyF -y0Ps6cIbYccCVShqf28V8qcIE6u9sl5fpApNVCOk38lFGLX+hxyXElVID/lR -l/WqEGvxiFlpfaoKz4aSsX0aBRhJQ/kdT60q8LVZ6GkP5WN5lGP3vOpUgaV4 -4ZdSaD4WloYdE3yhCoVYVwtr5wMMb1i9E/ROdW++3x0cCsjDyqMeuH1sVwWL -d/1aw5J5GL+RibZUpyr0v/zGZ9afi/39UTL7uUcVSOTH+jexXKye1gEjDqpC -7HF1sS1CNqZ66uPY1PxevS68kK7jyMSKeENr8SVVoNK2YOm8n4FxTMolpv36 -n76qycwSGdiqf5yKzroqOAo6L+3id7GqLBSXvbvXn3rLJr7x6ZiI84Lt2j41 -cPPX7N0WSsduEe4RDanVQLxordSxPg3zbF0f3KJTg5u238NbVlIxxZkyeXM2 -NeC+dXOuPuA2ll11mrKUXQ1SyN9N/QRuY0xX6b9ScqnBE/sW5U9vUrBFJqew -Cl416LEJVLI+nIKVKvP1HRBXA873sv6NvcmYVFhCQIuaGiSqp1LPsd7AGrUK -aQw11UD9b+T6QGgiZrLxMuUzWQ2MXVO+Fi1fxwLc10qntdXg14gdS95gAtZm -e26UyVANtDnvRqV1x2G23MHud4328vNOpV8+GYct96X9ET6pBpOtucONX2Mx -boP3HCoWahBY8zHk6mwM5qKhqn/6nBpIHCj11JeNxv6umnydsFeDtOyb9vPN -UVhyhauju5MaPCPTdhRYRWHPJfNCwi+pwURsiLpiUiRGx3mw+qGPGsitVGbc -YonAildGeVfj9tavveh49ykEw8v/Prp2XQ3QJ2PjbxohWO9FLtX9SWqQu/5H -41/eNWz7h6EJz201KPpV5iUYfBXT/1AbBVlqEO3EQTIzDsJGEnpZO3LU4H2Q -f7jw+0DMW3ch2/SBGngmZLPE6gVimU0idRceqkHeb236qf8CsNmSGwuJlXt8 -F48oZF3xw0KcHwVxPlUDMzC91EXph7GJtu7PrVEDmmuK15RTfTHNzE3h6gY1 -gGPRI0FNPlhCnIPFwBs1+Eg3f/OF1BVMxknjpfigGhxer8kKsvbEbooYbUcO -qwGDALni1UFPbPW7vcrYiBrcV/mVOhrhgb2wSSzJHleDtStK2QNn3LFTJt/v -cC3s6c1UnGWu5IbVMq72+i6pgfKF1endcleM7z0d06dfamCkta3EJe+K/TxG -ikpeVwPvQlG/s4RLWKBWtCc9hToUroaMiJ1ywUY2M0qcKdXBb/FgP9UPZ+xI -TfnPN9TqICDsa7/t4YwdJPbbRtCrg4ot/aH96RewXAlZvT9s6jBGrpa6s+WI -tbF+FF4QVwfuI876PzjtMfkPk7YGUupwI6tJ99+r81hK4vadYhl1yNP6kPnI -/Txmu1+M6YKiOnw2NFS70XkOW/rrtz2irg7We4+QVKWzmFn9dRVMSx06Zy84 -S+fZYc/9cz3vYergmOZYcZnVDotYaf9peUQdODgmT3/cssU4p/n6egzUgSV6 -7lXVtA0WXEhkUjRSh5O7J+65XbLBftjr6t0wUYfl/0Kp/BetscffPF7qmavD -dkAnnPpnheF9LSUtdupgn9eVv6NsiTm9cIl66qUOzl4hySVUZtji5Vn/Yz7q -wCrVEreZZYoF8Lu5fvFTB7GfPsf0NU2xhKsepzaD1SH/aJ96X8AprELTT4gc -ow78LvGXXQ6exDRnNw51xamDW9Jdn3fPTLDWjMD9dtfVIaD2QOnIORPsy+bV -xdDkPb2B4714gDH2tyaysTVTHT4cCVc+eeA/LOYCTYVZljq0/Hd8pcHfEGPm -jM2fzFGHEK6xTPYpA0zENyFhf6E6SHxYuGzWrY8dV7plZfBkL/844azQphNY -ypPs1d5WdTj/WTp2le0YxndWaNrhrTqEfXxK+f3hUayQ6cHQaps6jOtr5Mzg -R7HnlwtbOLvV4U9aMK58RQf7JluabNOvDt4fxn9d+62NXRiSj5obVAcrO5cW -3bva2HLCE/+r39RBr+I763dcG6OcrbLLHlOHjvGnN61vASb1qE5ubF4dpMJu -+e+m4liVpZbQlSV1mB1db8/YwjCt/U2HqFfUgbprs0HvPIYZXWjeFt9QhwMy -wvylGmTMR+xd28V9GuAl5Ej+elATe5n7yfEXhwbQXZnPyySoYj8Mhc/6cWtA -/JUTt8ZeqWAUW5et//BogGB+18opcxXsyMn9RjRCGsCjz0qIiFDG3u7TVDss -owGHpI+yb6+SsKmyGGK23N5+qhE3HdJJGJ1Nn6yoogbI5dNTFGqQML0qNyF5 -ZQ0QundC9Ho0Eeu0z6HXxjXgzN3YPwtEArbANE/1FjRAQi2gDm9RxJga1Hf0 -dTQg4E7Vj3eiipjJod4VsxMawC2b18W0LI/1tVIPu5zSAG0Bf+qOEllsUOxS -efIFDdjsauWrz5fE/vTUPOK4qAFXaJpOvJWXxPiuUeVnumrAbEzAjkC9BHbm -8/07BZ4aoPOfgF3cgDj2I/pD2PMgDQhp/JK2nySGiYy4+LaEaoD99RpH30ui -mKMq5aXOKA1QCfO1vfNYBJv6qWz6I0kDrvVdUOoAYUwKdR+fva0B/PvqowzS -hbBLd5zJq3c1YHrF06x1QhBbPJ4pTpevAU0PeLLSgvix1Ue7G4q1GnA6QSSN -W/Ew1k9948R4w55+Jy565+tyYw3neDLSmzVA9VLMn5sXuLAIbhXNf+0aQPl9 -2en0Cw7sgk9LQkW3BvTe4f74cI0d0+sxHnLo04AvuGY7QZkdY4m7dLVjWAOS -Pu1kLL1hw1bHNzqvjWrA86O3doq42bCvKJqf+FMDqr+aDmd5sWLZGzkv7ixp -QMzcKxcnFRZMzvkzhROlJmDlp+q5/h3AWFrtT3Lv14SYNW7Vl9sM2G+B5bz3 -BzTB1uzXqdp9DFj9FwYdEocm5CrYZh2VocPCk8Qn7gpoQoPocX1lH1rshC5E -70pqwlFLI2npb9QY846NxAWiJkgqj08s21NhX575vuvU1ITF15e3wqgoMQfx -EvrM/zShbilzHyPvLrmxMDDxvaUmaJX9qQmt+0tmlzjB/O+8JijoGRndi9km -Xy7iTFFw04Sk/rzLXSGb5LcSk+zn/DTh5L7u5+3Z62TBh9V3boVpwgLTuG/U -+Co5QDKCpzVBE5Sd7mTK6/8my0gJCknkaEJ/5FtjnivL5MhHCw8sizX35ofR -o/Dzi+RhqUbx+GpNUAlcPSXFNE9WKU54VN+kCdPi1Ynnp2fISdLWsvPvNKGD -oUyvYn6KPFUsWc7fqwl3/I0Gh7h+kkFmnWA8rAk6VVVPZi9MkH/J3FatWtaE -EsLy8qzTKFlGk6K0nkoLfA03bBj/fSPb610WbuXUgprBYlbT/gHyPavB9PfS -WjBsKbAmqfuF/Mn5+MFPZC0w1Dx70JDUR2b0fxo+bKwFx55n5Rlc7yHrxghv -TNhrQV/xqXT1qE6yvNQHGl0nLbCoyGRp//eezN5xlf2hsxYwB7mY9AW+J48x -9hMvumnBOd9LjyQCO8ihaUluC75akCXdq33zdhv5ecGf0bU4LbCrtfHVUXhD -zk2M1jhergXdFsVd9EUvyfE+zLfu9mkBxhFHy1NYS6Y7FFe08FkLHpnw1HSp -1ZJjKikaj/Rrwdkn/3KCOmvIUYu/fs4Pa8Gkne6He3+ekUNcPpG1f2pBwZMd -e1rPp2Rv24zpmU0tYMoI+nbqcSXZ5qgoaAmQoVDCX9Pc6TH53yc6plYhMrSa -djgwjRaTc50Wh/RFycBpR3/Z7mwx+WdMnb+NFBn2RywF3HR4RPZuN34SSCLD -8Uv1wwNxReQEo6sCz3XJENhKlbJBzifXW33+q+xBhmbKxJVVhvtk3suxdQrN -ZHgse+LkeMcNMgeDW+V/lhjwrSu7kQy9yQU614KWrTH4/Ntt+/m8F5l0LUnn -ti0GDhqBT4k3vchGyxWf+89jEKMYrvNxwJMc82Vty8ENg0Jl5gxveg/y5oPQ -I0HhGPxjddTIO3WJPKh1u6+oBAOSwcWzTEv2ZBffgvt65Xv7yWhI6iTak9fL -nznNV2AgbvTNLVjWnswm0r9BrMFgvMYtr9PjPNmAjp+vqRmD0Q/WL/qZzpEb -PxU59n3GgMZsrnWWfJqsz/Rc3q8fg0dbYQLvy23I/cfb17mHMCguucF4S9SG -vFo/F2f3A4PHVw9H3OKwJsvnEcpmZjG4ajxwr+ewJblxUNsvcQEDfVMrpeN5 -FmR9dlOkuIxBabxaI0nWgnwh1vejzxoGOwxM2Sq65uTV5phMrk0MrGm+8Sh/ -NSNHbN9xqN/GwK+Qrtv3khmZRblY7sw/DBo8Ts0s7pqSsy/Xr+3uYpAUyzF8 -+44p+f8AxT+Q0Q== - "]]}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->True, - AxesOrigin->{0, 0}, - PlotRange->{{0, 30}, {0, 1}}, - PlotRangeClipping->True, - PlotRangePadding->{ - Scaled[0.02], Automatic}]], "Output", - CellChangeTimes->{3.6217406128251343`*^9, 3.6217412694606915`*^9, - 3.6217783518613405`*^9, 3.62178044850767*^9, 3.6217817940116286`*^9}], - -Cell[BoxData[ - TagBox[ - StyleBox[ - DynamicModuleBox[{$CellContext`A1$$ = 0., $CellContext`A2$$ = - 0.5, $CellContext`B1$$ = 0.3, $CellContext`B2$$ = - 1.1300000000000001`, $CellContext`Ka$$ = - 0.9400000000000001, $CellContext`L$$ = 5.035, $CellContext`M1$$ = - 9.580000000000002, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, - Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = - 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{ - Hold[$CellContext`A1$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`A2$$], 0}, 0, 1, 0.01}, {{ - Hold[$CellContext`Ka$$], 1}, 0, 1, 0.01}, {{ - Hold[$CellContext`B1$$], 1}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`M1$$], 6}, -12.5, 27.5, 0.01}, {{ - Hold[$CellContext`B2$$], 2}, 0.01, 10, 0.01}, {{ - Hold[$CellContext`L$$], 10}, 0, 10, 0.001}}, Typeset`size$$ = { - 540., {174., 183.}}, Typeset`update$$ = 0, Typeset`initDone$$, - Typeset`skipInitDone$$ = True, $CellContext`A1$802$$ = - 0, $CellContext`A2$803$$ = 0, $CellContext`Ka$804$$ = - 0, $CellContext`B1$805$$ = 0, $CellContext`M1$806$$ = - 0, $CellContext`B2$807$$ = 0, $CellContext`L$808$$ = 0}, - DynamicBox[Manipulate`ManipulateBoxes[ - 1, StandardForm, - "Variables" :> {$CellContext`A1$$ = 0, $CellContext`A2$$ = - 0, $CellContext`B1$$ = 1, $CellContext`B2$$ = 2, $CellContext`Ka$$ = - 1, $CellContext`L$$ = 10, $CellContext`M1$$ = 6}, - "ControllerVariables" :> { - Hold[$CellContext`A1$$, $CellContext`A1$802$$, 0], - Hold[$CellContext`A2$$, $CellContext`A2$803$$, 0], - Hold[$CellContext`Ka$$, $CellContext`Ka$804$$, 0], - Hold[$CellContext`B1$$, $CellContext`B1$805$$, 0], - Hold[$CellContext`M1$$, $CellContext`M1$806$$, 0], - Hold[$CellContext`B2$$, $CellContext`B2$807$$, 0], - Hold[$CellContext`L$$, $CellContext`L$808$$, 0]}, - "OtherVariables" :> { - Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, - Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, - Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, - Typeset`skipInitDone$$}, "Body" :> Plot[ - $CellContext`f5c[$CellContext`A1$$, $CellContext`A2$$, \ -$CellContext`Ka$$, $CellContext`B1$$, $CellContext`M1$$, $CellContext`B2$$, \ -$CellContext`L$$, $CellContext`x], {$CellContext`x, 0, 30}, - PlotRange -> {0, 1}], - "Specifications" :> {{{$CellContext`A1$$, 0}, 0, 1, - 0.01}, {{$CellContext`A2$$, 0}, 0, 1, 0.01}, {{$CellContext`Ka$$, 1}, - 0, 1, 0.01}, {{$CellContext`B1$$, 1}, 0.01, 10, - 0.01}, {{$CellContext`M1$$, 6}, -12.5, 27.5, - 0.01}, {{$CellContext`B2$$, 2}, 0.01, 10, - 0.01}, {{$CellContext`L$$, 10}, 0, 10, 0.001}}, "Options" :> {}, - "DefaultOptions" :> {}], - ImageSizeCache->{972., {218., 225.}}, - SingleEvaluation->True], - Deinitialization:>None, - DynamicModuleValues:>{}, - SynchronousInitialization->True, - UnsavedVariables:>{Typeset`initDone$$}, - UntrackedVariables:>{Typeset`size$$}], "Manipulate", - Deployed->True, - StripOnInput->False], - Manipulate`InterpretManipulate[1]]], "Output", - CellChangeTimes->{3.6217406128251343`*^9, 3.6217412694606915`*^9, - 3.6217783518613405`*^9, 3.62178044850767*^9, 3.62178179403263*^9}] -}, Open ]] -}, -WindowSize->{1350, 673}, -WindowMargins->{{0, Automatic}, {Automatic, 0}}, -PrivateNotebookOptions->{"VersionedStylesheet"->{"Default.nb"[8.] -> False}}, -Magnification->1.5, -FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (September 9, \ -2014)", -StyleDefinitions->"Default.nb" -] -(* End of Notebook Content *) - -(* Internal cache information *) -(*CellTagsOutline -CellTagsIndex->{} -*) -(*CellTagsIndex -CellTagsIndex->{} -*) -(*NotebookFileOutline -Notebook[{ -Cell[CellGroupData[{ -Cell[567, 22, 2241, 56, 154, "Input"], -Cell[2811, 80, 2592, 47, 376, "Output"], -Cell[5406, 129, 2421, 46, 557, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[7864, 180, 2875, 75, 301, "Input"], -Cell[10742, 257, 10786, 182, 376, "Output"], -Cell[21531, 441, 2818, 54, 467, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[24386, 500, 4366, 121, 409, "Input"], -Cell[28755, 623, 11319, 191, 376, "Output"], -Cell[40077, 816, 3186, 60, 700, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[43300, 881, 5853, 157, 903, "Input"], -Cell[49156, 1040, 267, 4, 63, "Output"], -Cell[49426, 1046, 267, 4, 63, "Output"], -Cell[49696, 1052, 15422, 258, 568, "Output"], -Cell[65121, 1312, 3533, 64, 700, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[68691, 1381, 4030, 103, 579, "Input"], -Cell[72724, 1486, 22162, 368, 568, "Output"], -Cell[94889, 1856, 3408, 62, 700, "Output"] -}, Open ]], -Cell[CellGroupData[{ -Cell[98334, 1923, 6839, 185, 1065, "Input"], -Cell[105176, 2110, 475, 7, 63, "Output"], -Cell[105654, 2119, 473, 7, 63, "Output"], -Cell[106130, 2128, 753, 13, 52, "Message"], -Cell[106886, 2143, 3310, 97, 114, "Output"], -Cell[110199, 2242, 1426, 41, 105, "Output"], -Cell[111628, 2285, 22072, 367, 568, "Output"], -Cell[133703, 2654, 3610, 66, 700, "Output"] -}, Open ]], -Cell[137328, 2723, 89, 1, 106, "Input"], -Cell[CellGroupData[{ -Cell[137442, 2728, 6596, 178, 943, "Input"], -Cell[144041, 2908, 192, 3, 63, "Output"], -Cell[144236, 2913, 192, 3, 63, "Output"], -Cell[144431, 2918, 600, 10, 52, "Message"], -Cell[145034, 2930, 3026, 92, 162, "Output"], -Cell[148063, 3024, 21766, 362, 568, "Output"], -Cell[169832, 3388, 3351, 62, 700, "Output"] -}, Open ]] -} -] -*) - -(* End of internal cache information *) diff --git a/mathematica/presentation.m b/mathematica/presentation.m deleted file mode 100644 index 144f5f9..0000000 --- a/mathematica/presentation.m +++ /dev/null @@ -1,350 +0,0 @@ -(* ::Package:: *) - -(************************************************************************) -(* This file was generated automatically by the Mathematica front end. *) -(* It contains Initialization cells from a Notebook file, which *) -(* typically will have the same name as this file except ending in *) -(* ".nb" instead of ".m". *) -(* *) -(* This file is intended to be loaded into the Mathematica kernel using *) -(* the package loading commands Get or Needs. Doing so is equivalent *) -(* to using the Evaluate Initialization Cells menu command in the front *) -(* end. *) -(* *) -(* DO NOT EDIT THIS FILE. This entire file is regenerated *) -(* automatically each time the parent Notebook file is saved in the *) -(* Mathematica front end. Any changes you make to this file will be *) -(* overwritten. *) -(************************************************************************) - - - -(* ::Code::RGBColor[1, 0, 0]:: *) -Clear["Global`*"] - - -fSigmoidal[A_,Ka_,B_,M_,x_]=A+(Ka-A)/(1+E^(-B*(x-M))); -Manipulate[ -Plot[fSigmoidal[A,Ka,B,M,x],{x,0,15},PlotRange->{0,1}], -{{A,0},0,1,.01}, -{{Ka,1},0,1,.01}, -{{B,1},0,10,.01}, -{{M,8},0,15,.01}] - - -Limit[fSigmoidal[A,Ka,B,M,x],x->-\[Infinity],Assumptions->{B>0}] -Limit[fSigmoidal[A,Ka,B,M,x],x->\[Infinity],Assumptions->{B>0}] -Solve[D[fSigmoidal[A,Ka,B,M,x],{x,2}]==0,x,Reals] -D[fSigmoidal[A,Ka,B,M,x],x]/.x->M (* As can be seen from the result the slope is also -related with (Ka-A); i.e the width of the function. But if the data is normalized in -such a way Ka=1 and A=0 slope is directly proportional to B*) - - -fNegativeSigmoidal[A_,Ka_,B_,M_,x_]=A+(Ka-A)/(1+E^(B*(x-M))); -Manipulate[ -Plot[fNegativeSigmoidal[A,Ka,B,M,x],{x,0,15},PlotRange->{0,1}], -{{A,0},0,1,.01}, -{{Ka,1},0,1,.01}, -{{B,1},0,10,.01}, -{{M,8},0,15,.01}] - - -fMultiplicationSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - (A1+(Ka-A1)/(1+E^(-B1*(x-M1))))*(A2+(1-A2)/(1+E^(B2*(x-(M1+L))))); -Manipulate[ -Plot[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30},PlotRange->{0,1.2}], -{{A1,0},0,1,.01}, -{{A2,0.2},0,1,.01}, -{{Ka,1},0,1,.01}, -{{B1,1},0,10,.01}, -{{M1,8},0,20,.01}, -{{B2,2},0,10,0.01}, -{{L,10},0,10,0.001}] - - -Limit[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->-\[Infinity],Assumptions->{B1>0,B2>0,L>0}] -Limit[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->\[Infinity],Assumptions->{B1>0,B2>0,L>0}] - - -Solve[D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0,x] -Reduce[{D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - -Solve[D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0,x] -Reduce[{D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - - -Plot[fMultiplicationSigmoidal[0,0.5368628,1.454867,1.084971,11.11337,8.529749,1.13329,x] -,{x,0,30},PlotRange->{0,1.2}] - - -fDMultiplicationSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - D[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]; - -Plot[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x]/. - {A1->0,A2->0.5368628,Ka->1.454867,B1->1.084971,M1->11.11337,B2->8.529749,L->1.13329}, - {x,0,30},PlotRange->Full] - - -xValue=2000; - -Manipulate[ - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,-xValue]]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,xValue]]]}, - {Plot[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All], - - {{A1,0},0,1,.01}, - {{A2,0.5368628},0,1,.01}, - {{Ka,1.454867},0,2,.01}, - {{B1,1.084971},0.01,10,.01}, - {{M1,11.11337},7.5-20,7.5+20,.01}, - {{B2,8.529749},0.01,10,0.01}, - {{L,1.13329},0,10,0.001} -] - - -xValue=2000; -Subscript[A1, 0]=0; Subscript[A2, 0]=0.06; Subscript[Ka, 0]=2; Subscript[B1, 0]=1.08497; Subscript[M1, 0]=11.1134; Subscript[B2, 0]=2.14; Subscript[L, 0]=1.13329; - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,-xValue]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]}]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,xValue]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]}]]}, - {Plot[fMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]},{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDMultiplicationSigmoidal[A1,A2,Ka,B1,M1,B2,L,x]/. - {A1->Subscript[A1, 0], A2->Subscript[A2, 0], Ka->Subscript[Ka, 0], B1->Subscript[B1, 0], M1->Subscript[M1, 0], B2->Subscript[B2, 0],L->Subscript[L, 0]},{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All] - - -xValue=2000; - -fProtoAdditiveSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L))))); -fDProtoAdditiveSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]= - D[fProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,x],{x,1}]; - -Manipulate[ - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,-xValue]]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,xValue]]]}, - {Plot[fProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDProtoAdditiveSigmoidal[Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All], - - {{Ka,1},0,2,.01}, - {{B1,1},0.01,10,.01}, - {{M1,6},7.5-20,7.5+20,.01}, - {{B2,2},0.01,10,0.01}, - {{L,10},0,10,0.001} -] - - -Subscript[B1, 0]=1; Subscript[M1, 0]=6; Subscript[B2, 0]=2; Subscript[L, 0]=10; - -fProtoAdditiveSigmoidal2[B1_,M1_,B2_,L_,x_]:=1/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L))))); -fProtoAdditiveSigmoidalN[B1_,M1_,B2_,L_,x_]:= - fProtoAdditiveSigmoidal2[B1,M1,B2,L,x]/Round[NMaximize[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x0],x0][[1]],0.000001] - -fProtoAdditiveSigmoidalN[1,6,2,10,x] - - -(*Plot[fProtoAdditiveSigmoidalN[1,6,2,10,x],{x,0,30}]*) - - -D[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x],x]==0 - - -NMaximize[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x0],x0]/.{B1->.1,M1->6,B2->2,L->10} -u=Solve[Normal[Series[(B2-B1)*E^(B2*x-B1*x-B2*L)-B1*E^(-B1*x)+B2*E^(B2*x-B2*L),{x,L/2,13}]]==0,x][[1]][[1]][[2]]; -N[u+M1/.{B1->1,M1->6,B2->2,L->5}] - - -Subscript[y, line1]=(x-x0)*Subscript[m, line1]+y0/.{x0->0, Subscript[m, line1]->B1/4, y0->1/2}; -Subscript[y, line2]=(x-x0)*Subscript[m, line2]+y0/.{x0->L, Subscript[m, line2]->-B2/4, y0->1/2}; - -slope1=Coefficient[Subscript[y, line1],x,1] -intersection1=Coefficient[Subscript[y, line1],x,0] -slope2=Coefficient[Subscript[y, line2],x,1] -intersection2=Coefficient[Subscript[y, line2],x,0] - - -xIntersection=Simplify[(intersection2-intersection1)/(slope1-slope2)] - - -NMaximize[fProtoAdditiveSigmoidal2[B1,M1,B2,L,x0],x0]/.{B1->0.02,M1->6,B2->2,L->2} -u=Solve[Normal[Series[(B2-B1)*E^(B2*x-B1*x-B2*L)-B1*E^(-B1*x)+B2*E^(B2*x-B2*L),{x,((B1+3 B2) L)/(4 (B1+B2)),3}]]==0,x][[1]][[1]][[2]]; -N[u+M1/.{B1->0.02,M1->6,B2->2,L->2}] -{L/2+M1,(((B1+3 B2) L)/(4 (B1+B2))+M1)}/.{B1->0.02,M1->6,B2->2,L->2} - - -Simplify[fSigmoidal[A,Ka,B,M,x]+fSigmoidal[A,Ka,-B,M,x]] - - -Manipulate[ - Grid[ - { - {Plot[fSigmoidal[A,Ka,B,M,x],{x,0,15},PlotRange->{-0.2,1.2}, - PlotLabel->Function,ImageSize->200]}, - {Plot[fSigmoidal[A,Ka,-B,M,x],{x,0,15},PlotRange->{-0.2,1.2}, - PlotLabel->Function,ImageSize->200]}, - {Plot[fSigmoidal[A,Ka,B,M,x]+fSigmoidal[A,Ka,-B,M,x],{x,0,15},PlotRange->{-0.2,1.2}, - PlotLabel->Function,ImageSize->200]} - } - ], - {{A,0},0,1,.01}, - {{Ka,1},0,1,.01}, - {{B,1},0,10,.01}, - {{M,8},0,15,.01} -] - - -fLeftAdditionSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L)))))+Ka/(1+E^(B1*(x-M1))); -(* Not the sign change in B1 terms*) -fRightSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/(1+E^(B2*(x-(M1+L)))); - -Manipulate[ - Grid[ - { - {Plot[{fLeftAdditionSigmoidal[Ka,B1,M1,B2,L,x],fRightSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Added Function",ImageSize->300]}, - {Plot[{fLeftAdditionSigmoidal[Ka,B1,M1,B2,L,x]-fRightSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Difference Function",ImageSize->300]} - } - ], - - {{Ka,1},0,1,.01}, - {{B1,1},0.01,10,.001}, - {{M1,15},7.5-20,7.5+20,.01}, - {{B2,2},0.01,10,0.001}, - {{L,1},0,10,0.001} -] - - -fRightAdditionSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L)))))+Ka/(1+E^(-B2*(x-(M1+L)))); -(* Not the sign change in B2 terms*) -fLeftSigmoidal[Ka_,B1_,M1_,B2_,L_,x_]=Ka/(1+E^(-B1*(x-M1))); - -Manipulate[ - Grid[ - { - {Plot[{fRightAdditionSigmoidal[Ka,B1,M1,B2,L,x],fLeftSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Added Function",ImageSize->300]}, - {Plot[{fRightAdditionSigmoidal[Ka,B1,M1,B2,L,x]-fLeftSigmoidal[Ka,B1,M1,B2,L,x]}, - {x,0,30},PlotRange->{-0.2,1.2},PlotLabel->"Difference Function",ImageSize->300]} - } - ], - - {{Ka,1},0,1,.01}, - {{B1,1},0.01,10,.001}, - {{M1,15},7.5-20,7.5+20,.01}, - {{B2,2},0.01,10,0.001}, - {{L,10},0,10,0.001} -] - - -fAdditionalSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - (Ka/((1+E^(-B1*(x-M1)))*(1+E^(B2*(x-(M1+L))))))+((Ka*A2)/(1+E^(-B2*(x-(M1+L)))))+((Ka*A1)/(1+E^(B1*(x-M1)))); - -Manipulate[ - Plot[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30},PlotRange->{0,1.2}], - {{A1,0},0,1,.01}, - {{A2,0.2},0,1,.01}, - {{Ka,1},0,1,.01}, - {{B1,1},0,10,.01}, - {{M1,8},0,20,.01}, - {{B2,2},0,10,0.01}, - {{L,10},0,10,0.001} -] - - -Limit[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->-\[Infinity],Assumptions->{B1>0,B2>0,L>0}] -Limit[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],x->\[Infinity],Assumptions->{B1>0,B2>0,L>0}] - - -Solve[D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0 ,x] -Reduce[{D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - -Solve[D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0,x] -Reduce[{D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,2}]==0, - B1>0,B2>0,L>0,Ka>A1,Ka>A2}, x, Reals] - - -fDAdditionalSigmoidal[A1_,A2_,Ka_,B1_,M1_,B2_,L_,x_]= - D[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,1}]; - - -xValue=2000; - -Manipulate[ - - Grid[ - { - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \(-\[Infinity]\)\)]\); it should be +1", - Sign[fDAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,-xValue]]]}, - {StringForm["Sign of derivative is `` at \!\(\*SubscriptBox[\(Lim\), \(x \[Rule] \[Infinity]\)]\); it should be -1", - Sign[fDAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,xValue]]]}, - {Plot[fAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->{-0.2,2},PlotLabel->Function,ImageSize->350]}, - {Plot[fDAdditionalSigmoidal[A1,A2,Ka,B1,M1,B2,L,x],{x,0,30}, - PlotRange->Full,PlotLabel->Derivative,ImageSize->350]} - } - ,Frame->All], - - {{A1,0},0,1,.01}, - {{A2,0.5368628},0,1,.01}, - {{Ka,1.454867},0,2,.01}, - {{B1,1.084971},0.01,10,.01}, - {{M1,11.11337},7.5-20,7.5+20,.01}, - {{B2,8.529749},0.01,10,0.01}, - {{L,1.13329},0,10,0.001} -] - - -Plot[fAdditionalSigmoidal[0,1,1,8.88,19.5,0.121,0,x],{x,0,30},PlotRange->{0,1.2},ImageSize->350] - - -A11=0; A22=.1; Kaa=1; B11=0.01; M11=10; B22=8.88; LL=1; - -Plot[1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL))))),{x,0,30},PlotRange->{-0.2,1.2},ImageSize->350] -const=FindMaxValue[(1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL)))))),{x,M11+LL/2}, - AccuracyGoal->200,PrecisionGoal->180,WorkingPrecision->210]; - -fAdditionalSigmoidalPartA[x_]:=Kaa/const*1/((1+E^(-B11*(x-M11)))*(1+E^(B22*(x-(M11+LL))))) - -fAdditionalSigmoidalPartB1[x_]:=((Kaa*A22)/(const*(1+E^(-B22*(x-(M11+LL))))))-((Kaa*A22)/const-Kaa*A22) -fAdditionalSigmoidalPartB2[x_]:=(fAdditionalSigmoidalPartB1[x]+Abs[fAdditionalSigmoidalPartB1[x]])/2 - -fAdditionalSigmoidalPartC1[x_]:=((Kaa*A11)/(const*(1+E^(B11*(x-M11)))))-((Kaa*A11)/const-Kaa*A11) -fAdditionalSigmoidalPartC2[x_]:=(fAdditionalSigmoidalPartC1[x]+Abs[fAdditionalSigmoidalPartC1[x]])/2 - -fAdditionalSigmoidalN[x_]:=fAdditionalSigmoidalPartA[x]+fAdditionalSigmoidalPartB2[x]+fAdditionalSigmoidalPartC2[x] -Plot[fAdditionalSigmoidalN[x],{x,0,30},PlotRange->{-0.2,2},ImageSize->350] - - - diff --git a/mathematica/simple toy model.nb b/mathematica/simple toy model.nb deleted file mode 100644 index 87f16e2..0000000 --- a/mathematica/simple toy model.nb +++ /dev/null @@ -1,229 +0,0 @@ -(* Content-type: application/vnd.wolfram.mathematica *) - -(*** Wolfram Notebook File ***) -(* http://www.wolfram.com/nb *) - -(* CreatedBy='Mathematica 10.0' *) - -(*CacheID: 234*) -(* Internal cache information: -NotebookFileLineBreakTest -NotebookFileLineBreakTest -NotebookDataPosition[ 158, 7] -NotebookDataLength[ 8011, 220] -NotebookOptionsPosition[ 7377, 192] -NotebookOutlinePosition[ 7754, 209] -CellTagsIndexPosition[ 7711, 206] -WindowFrame->Normal*) - -(* Beginning of Notebook Content *) -Notebook[{ - -Cell[CellGroupData[{ -Cell["\<\ -Toy Model -\ -\>", "Title", - CellChangeTimes->{{3.633438400404826*^9, 3.6334384135478163`*^9}}, - FontSize->12], - -Cell["\<\ -Assume a toy model that can be represented by simple data with following \ -assumptions.\ -\>", "Text", - CellChangeTimes->{{3.633438416535042*^9, 3.6334384400433826`*^9}, { - 3.633438474539651*^9, 3.633438535151312*^9}}], - -Cell[CellGroupData[{ - -Cell["each data starts from 0 brightness. f(0)=0", "Item", - CellChangeTimes->{{3.633438537101512*^9, 3.6334385864786663`*^9}}], - -Cell["\<\ -data starts to climb to the maximum linearly from the start of the climb point\ -\>", "Item", - CellChangeTimes->{{3.633438537101512*^9, 3.633438598724927*^9}, { - 3.633442691853876*^9, 3.6334427057959633`*^9}, {3.633442743730406*^9, - 3.633442743737088*^9}}], - -Cell["if data reaches to its maximum it will stay there", "Item", - CellChangeTimes->{{3.633438537101512*^9, 3.633438598724927*^9}, { - 3.633442691853876*^9, 3.6334427057959633`*^9}, {3.633442743730406*^9, - 3.633442764840654*^9}}] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{ - RowBox[{"Clear", "[", "\"\\"", "]"}], "\n"}], "\n", - RowBox[{ - RowBox[{"startPoint", "=", "4.3"}], ";"}], "\n", - RowBox[{ - RowBox[{"maximum", " ", "=", " ", "3"}], ";"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"slope", " ", "=", "25"}], ";"}], "\n"}], "\n", - RowBox[{ - RowBox[{ - RowBox[{"f", "[", "x_", "]"}], "=", - RowBox[{"If", "[", - RowBox[{ - RowBox[{"x", "<", "startPoint"}], ",", "0", ",", - RowBox[{"If", "[", - RowBox[{ - RowBox[{"x", ">", - RowBox[{"(", - RowBox[{ - RowBox[{"maximum", "/", "slope"}], "+", "startPoint"}], ")"}]}], - ",", "maximum", ",", - RowBox[{"slope", "*", - RowBox[{"(", - RowBox[{"x", "-", "startPoint"}], ")"}]}]}], "]"}]}], "]"}]}], - ";"}], "\n", - RowBox[{ - RowBox[{"fig1", "=", - RowBox[{"Plot", "[", - RowBox[{ - RowBox[{"f", "[", "x", "]"}], ",", " ", - RowBox[{"{", - RowBox[{"x", ",", " ", "0", ",", " ", "24"}], "}"}], ",", " ", - RowBox[{"PlotRange", " ", "->", " ", "Full"}]}], "]"}]}], ";"}], "\n", - RowBox[{ - RowBox[{"m", "=", - RowBox[{"Table", "[", - RowBox[{ - RowBox[{"{", - RowBox[{"x", ",", - RowBox[{"f", "[", "x", "]"}]}], "}"}], ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "24", ",", "0.5"}], "}"}]}], "]"}]}], - ";"}], "\n", - RowBox[{ - RowBox[{"fig2", "=", - RowBox[{"ListPlot", "[", "m", "]"}]}], ";"}], "\n", - RowBox[{"Show", "[", - RowBox[{"fig1", ",", "fig2"}], "]"}], "\n", - RowBox[{"N", "[", - RowBox[{"maximum", "/", "startPoint"}], "]"}], "\n"}], "Code", - CellChangeTimes->{{3.633438537101512*^9, 3.633438598724927*^9}, { - 3.633442691853876*^9, 3.6334427057959633`*^9}, {3.633442743730406*^9, - 3.633442764833856*^9}, {3.633442798344234*^9, 3.633442840567655*^9}, { - 3.6334428791794147`*^9, 3.633442880239442*^9}, {3.633442965563691*^9, - 3.6334430834552593`*^9}, {3.633443215821967*^9, 3.633443228699561*^9}, { - 3.633443342089857*^9, 3.633443512079988*^9}, {3.633443556016469*^9, - 3.6334435797349157`*^9}, {3.633443679467874*^9, 3.633443736752499*^9}, { - 3.6334438123995047`*^9, 3.633443819917617*^9}, {3.63344392383594*^9, - 3.633443936953918*^9}, {3.633444130076744*^9, 3.63344418349876*^9}, { - 3.633445354387231*^9, 3.633445372423581*^9}, {3.63344566847886*^9, - 3.633445710595957*^9}}], - -Cell[BoxData[ - GraphicsBox[{{{}, {}, - {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ - 1.], LineBox[CompressedData[" -1:eJxFznkw3HcYBvCtIxsbR34hmkXclnUkVoVMqvl9URJpTaxbnCE2oc2uirOM -ChHSWGQxHZG1YrqGNNXEFU2K1jGjxgilpc5IJWlThDRoCNrO1Pu+M8888/nj -mXmNIkXe0QoMBkP4b/7rvz8QSr1ElUcZ/1/QjizNh5wMetuVRbS/mFMA7vSr -SP6YUwH2a/HcGcKpA1fEyAd8OG1gF5fBxpOcfnDJgWfVnpwpMCtsYen32Bfg -XD1BYpP/Klix+0SPfHATrNmtbRyfrEi23TxX6f8DYYJvG9+SOQbvAq/ZpY34 -foQ+7vqhRnwa+reohYzb5WgduV2Y0QT6ivkDvV2hqmCBdV/ZVJgauNFJOrgu -RCt4ClXYn6Gl53en+sjQw3W+gT3TaBfepHZ9hDrYwGGhOCdSA5xVW3ZV/Al6 -Vs8tuzQTXaN4I15egbYd9OB3j6ENm71zs7i7wYMii+wdPHQWdzPj88Po2Ru1 -SZJj6JpshqAqGm3Lr3u/4yZ6hnWJuNeiJV1BTr130K8cle1/ake36IeYPJ5E -x4zyDARP0DoSpu7zOXS6csOel+tom/Y89SRFCjyVEsZaY6HJnIqCgg56ST69 -kWOErgpveq3CRfuwry6LbdFKQxFL1GGKkDGO1DSujW7Kd5gvpSliOP6u3OXU -EC1wV/2DfYwid7ZsTNL3TdM93957ZORPkXOmVwqTT/xJp14QT8hDKRKo62ze -W7JIW9pEjXKjKZL+ZevlwEt/0fmV6gO8BIp0NTe7JUa9pvm50e3OEopMnB8+ -PVKkQPTpMyrnrlPkqU/Jz3wLJTK3EulTUEUR4yO+Hn3tyuR+3Wlp4y2KhBlq -tboHMEmeIOLZWP32/zuJyS+haead6Da3YI2EIfSyqb+j2iu0tRI/vFprD/h6 -h/s3o35o5kWnLdYX6Mcb5jIRWxPc+qkmPVyOvicvSvco1ALfHVC735a1F3ym -VM7aG/E2mMykP9mMZoPlhZUPiIcu2L5bUU/bbz/4YoySd0CAAdiqpcY5pdwQ -vSWUFciMwKLk8TUviTH4eMNZ3dAyE3BmdQdHVm4KftPbeVCcbwZWa5jd6LrG -AUf2ffVjTY45WFvqnNmRYAEO562um6VwwfMr3omHYi3BGpn9DQVxVuBr3++b -3B9vDQ6wU1EKirQB159lL04KDoD5/Q9/VT91EGyRZDlyxNQWvPT0jUmxHB0S -VyVy1ueBJeMjUq2b6NjwR73v6drh/qjX/FvFaFeG18vnWu+AHceMV7gF6OXS -nAkxZQ+O+vpkS74EfWFyTjLDOgT2fMH2Chaje9k6qlZMB/CK7GJraQZ6npnK -N2M4gi/nuc6yUtF6i8rCnO/QdwN6Vre20P8ANsChVw== - "]]}}, {{}, {{}, - {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ - 0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData[" -1:eJxtyzkKAgEMQNEgFhYWIiIiIo77vm+dcwaPIFh7BY/qESwt1UaYh4EQHp8k -l9v5mouI1We/9/88Tlk/8QtHmmUeF3ARl3A5zf5VcBXXcB03cBO3cILbuIO7 -uIf7eICHeITHeIKneIbneIGXWd9xrOg41nQcGzqOLR3Hjo5jT8dxoOM4/vwG -YVYmnA== - "]]}, {}}, {}}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 0}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0.5, 0.4]], - Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, - PlotRange->{{0, 24}, {0., 3.}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.05], - Scaled[0.05]}}, - Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{ - 3.633443481288471*^9, 3.633443512635357*^9, 3.633443581099504*^9, { - 3.6334437109869223`*^9, 3.633443737206711*^9}, 3.633443820382852*^9, { - 3.6334439297414093`*^9, 3.633443957215838*^9}, 3.633444157779421*^9, - 3.633444191728428*^9, {3.633445357628018*^9, 3.6334453736078672`*^9}, { - 3.63344568601875*^9, 3.633445712400856*^9}}], - -Cell[BoxData["0.6976744186046512`"], "Output", - CellChangeTimes->{ - 3.633443481288471*^9, 3.633443512635357*^9, 3.633443581099504*^9, { - 3.6334437109869223`*^9, 3.633443737206711*^9}, 3.633443820382852*^9, { - 3.6334439297414093`*^9, 3.633443957215838*^9}, 3.633444157779421*^9, - 3.633444191728428*^9, {3.633445357628018*^9, 3.6334453736078672`*^9}, { - 3.63344568601875*^9, 3.633445712407217*^9}}] -}, Open ]] -}, Open ]] -}, -WindowSize->{1440, 790}, -WindowMargins->{{0, Automatic}, {Automatic, 0}}, -Magnification->1.5, -FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (September 9, \ -2014)", -StyleDefinitions->"Default.nb" -] -(* End of Notebook Content *) - -(* Internal cache information *) -(*CellTagsOutline -CellTagsIndex->{} -*) -(*CellTagsIndex -CellTagsIndex->{} -*) -(*NotebookFileOutline -Notebook[{ -Cell[CellGroupData[{ -Cell[580, 22, 118, 5, 104, "Title"], -Cell[701, 29, 228, 5, 46, "Text"], -Cell[CellGroupData[{ -Cell[954, 38, 126, 1, 43, "Item"], -Cell[1083, 41, 268, 5, 43, "Item"], -Cell[1354, 48, 231, 3, 43, "Item"] -}, Open ]], -Cell[CellGroupData[{ -Cell[1622, 56, 2354, 62, 349, "Code"], -Cell[3979, 120, 2961, 60, 352, "Output"], -Cell[6943, 182, 406, 6, 43, "Output"] -}, Open ]] -}, Open ]] -} -] -*) - -(* End of internal cache information *) diff --git a/vignettes/double_sigmoidal_vignette.Rmd b/vignettes/double_sigmoidal_vignette.Rmd index e853c5e..b885070 100644 --- a/vignettes/double_sigmoidal_vignette.Rmd +++ b/vignettes/double_sigmoidal_vignette.Rmd @@ -32,7 +32,6 @@ set.seed(seedNo) require("sicegar") require("dplyr") require("ggplot2") -require("cowplot") ###***************************** ``` @@ -50,12 +49,12 @@ time=seq(3,24,0.5) noise_parameter=0.1 intensity_noise=stats::runif(n = length(time),min = 0,max = 1)*noise_parameter intensity=doublesigmoidalFitFormula(time, - finalAsymptoteIntensity=.3, - maximum=4, - slope1=1, - midPoint1=7, - slope2=1, - midPointDistance=8) + finalAsymptoteIntensity=.3, + maximum=4, + slope1=1, + midPoint1=7, + slope2=1, + midPointDistance=8) intensity=intensity+intensity_noise dataInput=data.frame(intensity=intensity,time=time) @@ -85,8 +84,8 @@ intensityData=intensityData/intensityRatio The normalization code is ```{r normalize_data} -normalizedInput = normalizeData(dataInput = dataInput, - dataInputName = "Sample001") +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") ``` @@ -108,9 +107,9 @@ normalizedInput$timeIntensityData %>% dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined combined$process <- factor(combined$process, levels = c("raw","normalized")) -ggplot(combined,aes(x=time, y=intensity))+ - facet_wrap(~process, scales = "free")+ - geom_point() +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() ``` ## Double-Sigmoidal fit of the data @@ -118,7 +117,7 @@ ggplot(combined,aes(x=time, y=intensity))+ Now it is time to calculate the parameters by using `sicegar::doublesigmoidalFitFunction()` ```{r doublesigmoidalfit_data} -parameterVector<-doublesigmoidalFitFunction(normalizedInput,tryCounter=2) +parameterVector<-sicegar::doublesigmoidalFitFunction(normalizedInput,tryCounter=2) # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. @@ -200,16 +199,16 @@ They are the parameters associated with parameter “finalAsymptoteIntensity” * `finalAsymptoteIntensity_Std_Error` * `finalAsymptoteIntensity_t_value` * `finalAsymptoteIntensity_Pr_t` - + They are the parameters associated with the quality of the fit. * `residual_Sum_of_Squares`: Small value indicate better fit * `log_likelihood`: Higher value indicate a better fit * `AIC_value`: Smaller value indicate a better fit * `BIC_value`: Smaller value indicate a better fit - + They are the fitted values after converting everything from normalized to un-normalized scale. (Without numeric correction) - + * `maximum_Estimate`: Maximum intensity estimate for the raw data * `slope1_Estimate`: __Slope1 parameter__ estimate for the raw data * `midPoint1_Estimate`: Mid-point 1 estimate (time the intensity reaches 1/2 of maximum) for the raw data. _Needs numerical correction_ @@ -223,20 +222,20 @@ By using the `maximum_Estimate`, `slope_Estimate`, `midPoint_Estimate` parameter ```{r plot raw data and fit, fig.height=4, fig.width=8} intensityTheoretical= - doublesigmoidalFitFormula( - time, - finalAsymptoteIntensity=parameterVector$finalAsymptoteIntensity_Estimate, - maximum=parameterVector$maximum_Estimate, - slope1=parameterVector$slope1_Estimate, - midPoint1=parameterVector$midPoint1_Estimate, - slope2=parameterVector$slope2_Estimate, - midPointDistance=parameterVector$midPointDistance_Estimate) - - comparisonData=cbind(dataInput,intensityTheoretical) - - require(ggplot2) - ggplot(comparisonData)+ - geom_point(aes(x=time, y=intensity))+ - geom_line(aes(x=time,y=intensityTheoretical))+ - expand_limits(x = 0, y = 0) -``` \ No newline at end of file + sicegar::doublesigmoidalFitFormula( + time, + finalAsymptoteIntensity=parameterVector$finalAsymptoteIntensity_Estimate, + maximum=parameterVector$maximum_Estimate, + slope1=parameterVector$slope1_Estimate, + midPoint1=parameterVector$midPoint1_Estimate, + slope2=parameterVector$slope2_Estimate, + midPointDistance=parameterVector$midPointDistance_Estimate) + +comparisonData=cbind(dataInput,intensityTheoretical) + +require(ggplot2) +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) +``` diff --git a/vignettes/linear_vignette.Rmd b/vignettes/linear_vignette.Rmd index 0db5e90..66dc47c 100644 --- a/vignettes/linear_vignette.Rmd +++ b/vignettes/linear_vignette.Rmd @@ -32,7 +32,6 @@ set.seed(seedNo) require("sicegar") require("dplyr") require("ggplot2") -require("cowplot") ###***************************** ``` @@ -77,8 +76,8 @@ intensityData=intensityData/intensityRatio The normalization code is ```{r normalize_data} -normalizedInput = normalizeData(dataInput = dataInput, - dataInputName = "Sample001") +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") ``` @@ -100,9 +99,9 @@ normalizedInput$timeIntensityData %>% dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined combined$process <- factor(combined$process, levels = c("raw","normalized")) -ggplot(combined,aes(x=time, y=intensity))+ - facet_wrap(~process, scales = "free")+ - geom_point() +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() ``` ## Line fit of the data @@ -110,7 +109,7 @@ ggplot(combined,aes(x=time, y=intensity))+ Now it is time to calculate the parameters by using `sicegar::lineFitFunction()` ```{r linefit_data} -parameterVector<-lineFitFunction(dataInput = normalizedInput, tryCounter = 2) +parameterVector<-sicegar::lineFitFunction(dataInput = normalizedInput, tryCounter = 2) # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::lineFitFunction is called from sicegar::fitFunction. @@ -183,13 +182,13 @@ They are the fitted values after converting everything from normalized to un-nor By using the `intersection_Estimate`, `slope_Estimate` parameters of the linefit and the time sequence that we already created we can calculate the intensity values by the help of `sicegar::lineFitFormula()`. We can draw the best line on top of our initial data. ```{r plot raw data and fit, fig.height=4, fig.width=8} -intensityTheoretical=lineFitFormula(time, - slope=parameterVector$slope_Estimate, - intersection=parameterVector$intersection_Estimate) +intensityTheoretical=sicegar::lineFitFormula(time, + slope=parameterVector$slope_Estimate, + intersection=parameterVector$intersection_Estimate) comparisonData=cbind(dataInput,intensityTheoretical) -ggplot(comparisonData)+ - geom_point(aes(x=time, y=intensity))+ - geom_line(aes(x=time,y=intensityTheoretical))+ - expand_limits(x = 0, y = 0) -``` \ No newline at end of file +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) +``` diff --git a/vignettes/sigmoidal_vignette.Rmd b/vignettes/sigmoidal_vignette.Rmd index 07423fc..25bcc18 100644 --- a/vignettes/sigmoidal_vignette.Rmd +++ b/vignettes/sigmoidal_vignette.Rmd @@ -12,12 +12,12 @@ vignette: > ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` - -# The Sigmoidal Fit Function -This is a document invetigates details of sigmoidal model - - -```{r install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE} + + # The Sigmoidal Fit Function + This is a document invetigates details of sigmoidal model + + + ```{r install packages, echo=FALSE, warning=FALSE, results='hide',message=FALSE} ###***************************** # INITIAL COMMANDS TO RESET THE SYSTEM @@ -32,7 +32,6 @@ set.seed(seedNo) require("sicegar") require("dplyr") require("ggplot2") -require("cowplot") ###***************************** ``` @@ -83,8 +82,8 @@ intensityData=intensityData/intensityRatio The normalization code is ```{r normalize_data} -normalizedInput = normalizeData(dataInput = dataInput, - dataInputName = "Sample001") +normalizedInput = sicegar::normalizeData(dataInput = dataInput, + dataInputName = "Sample001") ``` @@ -106,9 +105,9 @@ normalizedInput$timeIntensityData %>% dplyr::bind_rows(dataInput2,timeIntensityData2) -> combined combined$process <- factor(combined$process, levels = c("raw","normalized")) -ggplot(combined,aes(x=time, y=intensity))+ - facet_wrap(~process, scales = "free")+ - geom_point() +ggplot2::ggplot(combined,aes(x=time, y=intensity))+ + ggplot2::facet_wrap(~process, scales = "free")+ + ggplot2::geom_point() ``` ## Sigmoidal fit of the data @@ -116,7 +115,7 @@ ggplot(combined,aes(x=time, y=intensity))+ Now it is time to calculate the parameters by using `sicegar::sigmoidalFitFunction()` ```{r sigmoidalfit_data} -parameterVector<-sigmoidalFitFunction(normalizedInput,tryCounter=2) +parameterVector<-sicegar::sigmoidalFitFunction(normalizedInput,tryCounter=2) # Where tryCounter is a tool usually provided by sicegar::fitFunction when the sicegar::sigmoidalFitFunction is called from sicegar::fitFunction. @@ -192,14 +191,14 @@ They are the fitted values after converting everything from normalized to un-nor By using the `maximum_Estimate`, `slope_Estimate`, `midPoint_Estimate` parameters of the sigmoidalfit and the time sequence that we already created we can calculate the intensity values by the help of `sicegar::sigmoidalFitFormula()`. We can draw the best sigmoidal fit on top of our initial data. ```{r plot raw data and fit, fig.height=4, fig.width=8} -intensityTheoretical=sigmoidalFitFormula(time, - maximum=parameterVector$maximum_Estimate, - slope=parameterVector$slope_Estimate, - midPoint=parameterVector$midPoint_Estimate) +intensityTheoretical=sicegar::sigmoidalFitFormula(time, + maximum=parameterVector$maximum_Estimate, + slope=parameterVector$slope_Estimate, + midPoint=parameterVector$midPoint_Estimate) comparisonData=cbind(dataInput,intensityTheoretical) -ggplot(comparisonData)+ - geom_point(aes(x=time, y=intensity))+ - geom_line(aes(x=time,y=intensityTheoretical))+ - expand_limits(x = 0, y = 0) -``` \ No newline at end of file +ggplot2::ggplot(comparisonData)+ + ggplot2::geom_point(aes(x=time, y=intensity))+ + ggplot2::geom_line(aes(x=time,y=intensityTheoretical))+ + ggplot2::expand_limits(x = 0, y = 0) +```