forked from Robert-Campbell-256/Number-Theory-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathellipticcurve.py
executable file
·291 lines (278 loc) · 12.8 KB
/
ellipticcurve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
######################################################################################
# Elliptic Curve
# Elliptic curves in reduced Weierstrass form over prime order fields
# Author: Robert Campbell, <[email protected]>
# Date: 17 Feb, 2018
# Version 0.26
# License: Simplified BSD (see details at bottom)
######################################################################################
"""Elliptic Curve
EllipticCurve(p,[a,b]) is the elliptic curve in affine restricted Weierstrass form
y^2 = x^3 +ax + b (mod p)
Usage:
>>> from ellipticcurve import *
>>> ec29 = EllipticCurve(29,[4,20]); ec29
y^2 = x^3 + 4x + 20 (mod 29)
>>> pt = EllipticCurveElt(ec29,[2,6]); pt
(2, 6)
>>> 7*pt
(3, 28)
>>> 37*pt
(Infinity, Infinity)
>>> pt1 = 9*pt; pt1 - pt
(15, 27)
>>> '{0:f}'.format(ec29) # Full format
'EllipticCurve(29, (4,20))'
"""
__version__ = '0.26' # Format specified in Python PEP 396
Version = 'ELLIPTICCURVE.PY, version ' + __version__ + ', 17 Feb, 2018, by Robert Campbell, <[email protected]>'
import numbthy # For xgcd (for modinv) and sqrtmod
import random # Generate random elements
import sys # Check Python2 or Python3
import math # For sqrt
# Assumptions: Affine (later Projective?) Reduced Weierstrass form
# over prime field. Thus identity is point at infinity,
# and -P is gotten from P by negating the y value.
# y^2 = x^3 + ax + b (mod p)
# Refs:
# [HMV04] Guide to Elliptic Curve Cryptography by Hankerson, Menezes & Vanstone, 2004
# (see in particular, Sects 3.1.1 & 3.1.2)
# [Wash03] Elliptic Curves, L. Washington, 2003 (see Sect 2.2)
# [Many, many other decent references]
# Addition Rules:
# i) 0 + P = P
# ii) P + (-P) = 0 [i.e. x1==x2 but y1==-y2]
# iii) P + P [i.e. x1==x2 and y1==y2]
# lambda = (3x^2+a)/2y # "tangent slope"
# x3 = lambda^2 - 2x
# y3 = lambda*(x-x3) - y
# iv) P1 + P2 [i.e. x1!=x2]
# lambda = (y1-y2)/(x1-x2) # "slope"
# x3 = lambda^2 - x1 - x2
# y3 = lambda*(x1-x3) - y1
# Zero point (aka point at infinity) represented as ["Infinity","Infinity"]
class EllipticCurve(object):
"""Elliptic Curve
EllipticCurve(p,[a,b]) is the elliptic curve in affine restricted Weierstrass form
y^2 = x^3 +ax + b (mod p)
Usage:
>>> from ellipticcurve import *
>>> ec29 = EllipticCurve(29,[4,20]); ec29
y^2 = x^3 + 4x + 20 (mod 29)
>>> pt = EllipticCurveElt(ec29,[2,6]); pt
(2, 6)
>>> 7*pt
(3, 28)
>>> 37*pt
(Infinity, Infinity)
>>> pt1 = 9*pt; pt1 - pt
(15, 27)
>>> '{0:f}'.format(ec29) # Full format
'EllipticCurve(29, (4,20))'
"""
def __init__(self,prime,coeffs,fmtspec="s"):
self.prime = prime
if(not(numbthy.isprime(self.prime))): raise ValueError("***** Error *****: Characteristic of base field {0} must be prime".format(self.prime))
self.a = coeffs[0]
self.b = coeffs[1]
self.discriminant = -16*(4*(self.a**3)+27*(self.b**2)) % self.prime
if(self.discriminant == 0): raise ValueError("***** Error *****: Not an elliptic curve - Zero discriminant (-16*(4*({0}^3)+27*({1}^2)))".format(self.a,self.b))
self.fmtspec = fmtspec
def isIntType(self,x):
if sys.version_info < (3,): return isinstance(x,(int, long,))
else: return isinstance(x,(int,))
def __call__(self,pt): # Coerce constant or array of coeffs as elt of field
"""Create a point on the curve from a tuple or list of integers. (not [Infinity,Infinity])"""
if not (isinstance(pt,(list,tuple,)) and len(pt)==2 and self.isIntType(pt[0]) and self.isIntType(pt[1])):
raise ValueError('{0} should be a list or tuple of two integers'.format(pt))
if not ((pow(pt[0],3,self.prime) + self.a*pt[0] + self.b - pt[1]*pt[1]) % self.prime == 0):
raise ValueError('{0} is not a point on the curve {1}'.format(pt,self))
return EllipticCurveElt(self,pt)
def __iter__(self):
"""Generator producing all points on the elliptic curve."""
yield EllipticCurveElt(self, ("Infinity","Infinity"))
x = 0
for x in range(self.prime):
ysq = (pow(x,3,self.prime) + self.a*x + self.b) % self.prime
if((ysq == 0) or (pow(ysq,(self.prime-1)//2,self.prime)==1)):
if (ysq == 0): y = 0
else: y = numbthy.sqrtmod(ysq,self.prime)
if((y % 2)==1): y = self.prime - y # Always even y first (consistent order)
yield EllipticCurveElt(self, (x,y))
if (y != 0): yield EllipticCurveElt(self, (x,self.prime - y)) # Distinct unless y==0
raise StopIteration
def random_element(self):
"""A random element of the elliptic curve."""
# Currently, choosing point at infinity (group identity) and point
# with y=0 is twice as likely as any other point.
# Find a random x such that y^2 = x^3 + ax + b has a solution (mod p)
xrand = random.randint(-1,self.prime-1)
if(xrand == -1): return EllipticCurveElt(self, ("Infinity","Infinity"))
ysq = (pow(xrand,3,self.prime) + self.a*xrand + self.b) % self.prime
while((ysq != 0) and (pow(ysq,(self.prime-1)//2,self.prime)!=1)):
xrand = random.randint(-1,self.prime-1)
if(xrand == -1): return EllipticCurveElt(self, ("Infinity","Infinity"))
ysq = (pow(xrand,3,self.prime) + self.a*xrand + self.b) % self.prime
# Given x, find a y solving y^2 = x^3 + ax + b (mod p)
if (ysq == 0): yrand = 0
else: yrand = numbthy.sqrtmod(ysq,self.prime)
if(random.randint(0,1)==1): yrand = self.prime - yrand # Choose between pt and -pt
return EllipticCurveElt(self,(xrand,yrand))
def __format__(self,fmtspec): # Over-ride format conversion
"""Override the format when outputting an elliptic curve.
A default can be set when the curve is defined or it can be specified for each output.
Possible formats are:
s - short format (default)
f - full format, can be used as input
t - LaTeX format"""
if(fmtspec == ''): fmtspec = self.fmtspec
if(fmtspec == 's'): # Short format
return "y^2 = x^3 + {0}x + {1} (mod {2})".format(self.a,self.b,self.prime)
if(fmtspec == 'f'): # Full format
return "EllipticCurve({0},({1},{2}))".format(self.prime,self.a,self.b)
if(fmtspec == 't'): # LaTeX format
return "\mathbb{{E}}_{{y^2 = x^3 + {0}x + {1} \pmod{{{2}}}}}".format(self.a,self.b,self.prime)
def __str__(self): # Over-ride string conversion used by print (?maybe?) and str()
return format(self)
def __repr__(self): # Over-ride string conversion for output
return format(self)
class EllipticCurveElt(object):
"""EllipticCurveElt(ec,[x,y]) is an element of the elliptic curve ec, with coordinates (x,y) in
affine Weierstrass form.
Usage:
>>> from ellipticcurve import *
>>> ec29 = EllipticCurve(29,[4,20]); ec29
y^2 = x^3 + 4x + 20 (mod 29)
>>> pt = EllipticCurveElt(ec29,[2,6]); pt
(2, 6)
>>> 7*pt
(3, 28)
>>> 37*pt
(Infinity, Infinity)
>>> pt1 = 9*pt; pt1 - pt
(15, 27)
>>> '{0:f}'.format(pt) # Full format
'EllipticCurveElt(EllipticCurve(29,(4,20)), (2,6))'
"""
def __init__(self, ellipticcurve, coords):
self.ec = ellipticcurve
self.x = coords[0]
self.y = coords[1]
def __format__(self,fmtspec): # Over-ride format conversion
"""Override the format when outputting a point on an elliptic curve.
A default can be set when the curve is defined or it can be specified for each output.
Possible formats are:
s - short format (default)
f - full format, can be used as input
t - LaTeX format"""
if(fmtspec == 'f'):
if(self.x == "Infinity"):
return "EllipticCurveElt("+'{0:f}'.format(self.ec)+", (Infinity,Infinity))"
return "(Infinity,Infinity)"
else:
return "EllipticCurveElt("+'{0:f}'.format(self.ec)+", ("+format(self.x)+","+format(self.y)+"))"
else: # Both short and LaTeX formats
if(self.x == "Infinity"):
if(fmtspec == 't'): # LaTeX format
return "(\infty,\infty)"
else: # short format
return "(Infinity,Infinity)"
else:
return "({0}, {1})".format(self.x,self.y)
def __str__(self): # Over-ride string conversion used by str()
return format(self)
def __repr__(self): # Over-ride string conversion for output
return format(self)
def __cmpec__(self,other): # Implement cmp for both Python2 and Python3
"""compare two points for equality and (possibly in future allow sorting)
overloaded to allow comparisons to lists of integers"""
# Coerce if comparing list (x,y) and point
if (isinstance(other,(list,tuple,)) and len(other)==2 and self.ec.isIntType(pt[0]) and self.ec.isIntType(pt[1])):
if (other[0]==self.x) and (other[1]==self.y): return 0
else: return 1
elif(self.ec != other.ec):
raise ValueError("Cannot compare elements of different elliptic curves: <{0}> and <{1}>".format(self.ec,other.ec))
else:
if (other.x==self.x) and (other.y==self.y): return 0
else: return 1
def __eq__(self,other): return (self.__cmpec__(other) == 0)
def __ne__(self,other): return (self.__cmpec__(other) != 0)
def add(self,summand):
"""add elements of elliptic curves"""
if (self.x == "Infinity"): # Add to zero (i.e. point at infinity)
return summand
elif (summand.x == "Infinity"): # Add zero (i.e. point at infinity)
return self
elif ((summand.x == self.x) and ((summand.y + self.y) % self.ec.prime == 0)): # P + (-P) = infty
return EllipticCurveElt(self.ec, ("Infinity","Infinity"))
else: # Usual addition and doubling (what a nuisance: lambda is a keyword - shorten to lamb)
if (self.x == summand.x): # Point doubling
lamb = (3*(self.x**2)+self.ec.a)*numbthy.xgcd(2*self.y,self.ec.prime)[1] % self.ec.prime
else: # Point addition
lamb = (self.y - summand.y) * numbthy.xgcd((self.x - summand.x), self.ec.prime)[1] % self.ec.prime
x3 = (lamb*lamb - self.x - summand.x) % self.ec.prime
y3 = (lamb*(self.x-x3) - self.y) % self.ec.prime
return EllipticCurveElt(self.ec, (x3,y3))
def __add__(self,summand): # Overload the "+" operator
return self.add(summand)
def __iadd__(self,summand): # Overload the "+=" operator
self = self + summand
return self
def __neg__(self): # Overload the "-" unary operator
return EllipticCurveElt(self.ec, (self.x, ((-self.y) % self.ec.prime)))
def __sub__(self,summand): # Overload the "-" binary operator
return self.__add__(-summand)
def __isub__(self,summand): # Overload the "-=" operator
self = self - summand
return self
def mult(self,multand): # Multiply EC point by integer (repeated addition in EC)
"""multiply elliptic curve point by integer (repeated addition in the elliptic curve)"""
accum = EllipticCurveElt(self.ec, ("Infinity","Infinity")) # start with identity
i = 0
bpow2 = self
while ((multand>>i) > 0):
if((multand>>i) & 1):
accum = (accum + bpow2)
bpow2 = (bpow2 + bpow2)
i+=1
return accum
def __rmul__(self,multip): # Overload the "*" operator
return self.mult(multip)
def __imul__(self,multip): # Overload the "*=" operator
self = self.mult(multip)
return self
############################################################################
# License: Freely available for use, abuse and modification
# (this is the Simplified BSD License, aka FreeBSD license)
# Copyright 2001-2018 Robert Campbell. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
# SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
############################################################################
# 4 Feb 2018: ver 0.25
# Formatting - for EllipticCurve and EllipticCurveElt
# Added document strings
# Remove verbose mode
# Fixed support for Python 3
# 17 Feb 2018: ver 0.26
# Added random_element
# Added iterator
# Added call (coerce list as point on curve)
# Changed list to tuple for (x,y) - fix comparison bug