-
Notifications
You must be signed in to change notification settings - Fork 14
/
ATM90E32.cpp
539 lines (462 loc) · 18.8 KB
/
ATM90E32.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/* ATM90E32 Energy Monitor Functions
The MIT License (MIT)
Copyright (c) 2016 whatnick,Ryzee and Arun
Modified to use with the CircuitSetup.us Split Phase Energy Meter by jdeglavina
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "ATM90E32.h"
ATM90E32::ATM90E32(void){
}
ATM90E32::~ATM90E32() {
// end
}
/* CommEnergyIC - Communication Establishment */
/*
- Defines Register Mask
- Treats the Register and SPI Comms
- Outputs the required value in the register
*/
unsigned short ATM90E32::CommEnergyIC(unsigned char RW, unsigned short address, unsigned short val)
{
unsigned char* data = (unsigned char*)&val;
unsigned char* adata = (unsigned char*)&address;
unsigned short output;
unsigned short address1;
//SPI interface rate is 200 to 160k bps. It will need to be slowed down for EnergyIC
#if !defined(ENERGIA) && !defined(ESP8266) && !defined(ESP32) && !defined(ARDUINO_ARCH_SAMD)
SPISettings settings(200000, MSBFIRST, SPI_MODE0);
#endif
#if defined(ESP8266)
SPISettings settings(200000, MSBFIRST, SPI_MODE1);
#endif
#if defined(ESP32)
SPISettings settings(200000, MSBFIRST, SPI_MODE3);
#endif
#if defined(ARDUINO_ARCH_SAMD)
SPISettings settings(200000, MSBFIRST, SPI_MODE3);
#endif
// Switch MSB and LSB of value
output = (val >> 8) | (val << 8);
val = output;
// Set R/W flag
address |= RW << 15;
// Swap byte address
address1 = (address >> 8) | (address << 8);
address = address1;
// Transmit & Receive Data
#if !defined(ENERGIA)
SPI.beginTransaction(settings);
#endif
// Chip enable and wait for SPI activation
digitalWrite(_cs, LOW);
delayMicroseconds(10);
// Write address byte by byte
for (byte i = 0; i < 2; i++)
{
SPI.transfer(*adata);
adata++;
}
/* Must wait 4 us for data to become valid */
delayMicroseconds(4);
// READ Data
// Do for each byte in transfer
if (RW)
{
for (byte i = 0; i < 2; i++)
{
*data = SPI.transfer(0x00);
data++;
}
}
else
{
for (byte i = 0; i < 2; i++)
{
SPI.transfer(*data);
data++;
}
}
// Chip enable and wait for transaction to end
digitalWrite(_cs, HIGH);
delayMicroseconds(10);
#if !defined(ENERGIA)
SPI.endTransaction();
#endif
output = (val >> 8) | (val << 8); // reverse MSB and LSB
return output;
}
int ATM90E32::Read32Register(signed short regh_addr, signed short regl_addr) {
int val, val_h, val_l;
val_h = CommEnergyIC(READ, regh_addr, 0xFFFF);
val_l = CommEnergyIC(READ, regl_addr, 0xFFFF);
val = CommEnergyIC(READ, regh_addr, 0xFFFF);
val = val_h << 16;
val |= val_l; //concatenate the 2 registers to make 1 32 bit number
return (val);
}
double ATM90E32::CalculateVIOffset(unsigned short regh_addr, unsigned short regl_addr /*, unsigned short offset_reg*/) {
//for getting the lower registers of Voltage and Current and calculating the offset
//should only be run when CT sensors are connected to the meter,
//but not connected around wires
uint32_t val, val_h, val_l;
uint16_t offset;
val_h = CommEnergyIC(READ, regh_addr, 0xFFFF);
val_l = CommEnergyIC(READ, regl_addr, 0xFFFF);
val = CommEnergyIC(READ, regh_addr, 0xFFFF);
val = val_h << 16; //move high register up 16 bits
val |= val_l; //concatenate the 2 registers to make 1 32 bit number
val = val >> 7; //right shift 7 bits - lowest 7 get ignored - V & I registers need this
val = (~val) + 1; //2s compliment
offset = val; //keep lower 16 bits
//CommEnergyIC(WRITE, offset_reg, (signed short)val);
return uint16_t(offset);
}
double ATM90E32::CalculatePowerOffset(unsigned short regh_addr, unsigned short regl_addr /*, unsigned short offset_reg*/) {
//for getting the lower registers of energy and calculating the offset
//should only be run when CT sensors are connected to the meter,
//but not connected around wires
uint32_t val, val_h, val_l;
uint16_t offset;
val_h = CommEnergyIC(READ, regh_addr, 0xFFFF);
val_l = CommEnergyIC(READ, regl_addr, 0xFFFF);
val = CommEnergyIC(READ, regh_addr, 0xFFFF);
val = val_h << 16; //move high register up 16 bits
val |= val_l; //concatenate the 2 registers to make 1 32 bit number
val = (~val) + 1; //2s compliment
offset = val; //keep lower 16 bits
//CommEnergyIC(WRITE, offset_reg, (signed short)val);
return uint16_t(offset);
}
double ATM90E32::CalibrateVI(unsigned short reg, unsigned short actualVal) {
//input the Voltage or Current register, and the actual value that it should be
//actualVal can be from a calibration meter or known value from a power supply
uint16_t gain, val, m, gainReg;
//sample the reading
val = CommEnergyIC(READ, reg, 0xFFFF);
val += CommEnergyIC(READ, reg, 0xFFFF);
val += CommEnergyIC(READ, reg, 0xFFFF);
val += CommEnergyIC(READ, reg, 0xFFFF);
//get value currently in gain register
switch (reg) {
case UrmsA: {
gainReg = UgainA; }
case UrmsB: {
gainReg = UgainB; }
case UrmsC: {
gainReg = UgainC; }
case IrmsA: {
gainReg = IgainA; }
case IrmsB: {
gainReg = IgainB; }
case IrmsC: {
gainReg = IgainC; }
}
gain = CommEnergyIC(READ, gainReg, 0xFFFF);
m = actualVal;
m = ((m * gain) / val);
gain = m;
//write new value to gain register
CommEnergyIC(WRITE, gainReg, gain);
return(gain);
}
/* Parameters Functions*/
/*
- Gets main electrical parameters,
such as: Voltage, Current, Power, Energy,
and Frequency, and Temperature
*/
// VOLTAGE
double ATM90E32::GetLineVoltageA() {
unsigned short voltage = CommEnergyIC(READ, UrmsA, 0xFFFF);
return (double)voltage / 100;
}
double ATM90E32::GetLineVoltageB() {
unsigned short voltage = CommEnergyIC(READ, UrmsB, 0xFFFF);
return (double)voltage / 100;
}
double ATM90E32::GetLineVoltageC() {
unsigned short voltage = CommEnergyIC(READ, UrmsC, 0xFFFF);
return (double)voltage / 100;
}
// CURRENT
double ATM90E32::GetLineCurrentA() {
unsigned short current = CommEnergyIC(READ, IrmsA, 0xFFFF);
return (double)current / 1000;
}
double ATM90E32::GetLineCurrentB() {
unsigned short current = CommEnergyIC(READ, IrmsB, 0xFFFF);
return (double)current / 1000;
}
double ATM90E32::GetLineCurrentC() {
unsigned short current = CommEnergyIC(READ, IrmsC, 0xFFFF);
return (double)current / 1000;
}
double ATM90E32::GetLineCurrentN() {
unsigned short current = CommEnergyIC(READ, IrmsN, 0xFFFF);
return (double)current / 1000;
}
// ACTIVE POWER
double ATM90E32::GetActivePowerA() {
int val = Read32Register(PmeanA, PmeanALSB);
return (double)val * 0.00032;
}
double ATM90E32::GetActivePowerB() {
int val = Read32Register(PmeanB, PmeanBLSB);
return (double)val * 0.00032;
}
double ATM90E32::GetActivePowerC() {
int val = Read32Register(PmeanC, PmeanCLSB);
return (double)val * 0.00032;
}
double ATM90E32::GetTotalActivePower() {
int val = Read32Register(PmeanT, PmeanTLSB);
return (double)val * 0.00032;
}
// Active Fundamental Power
double ATM90E32::GetTotalActiveFundPower() {
int val = Read32Register(PmeanTF, PmeanTFLSB);
return (double)val * 0.00032;
}
// Active Harmonic Power
double ATM90E32::GetTotalActiveHarPower() {
int val = Read32Register(PmeanTH, PmeanTHLSB);
return (double)val * 0.00032;
}
// REACTIVE POWER
double ATM90E32::GetReactivePowerA() {
int val = Read32Register(QmeanA, QmeanALSB);
return (double)val * 0.00032;
}
double ATM90E32::GetReactivePowerB() {
int val = Read32Register(QmeanB, QmeanBLSB);
return (double)val * 0.00032;
}
double ATM90E32::GetReactivePowerC() {
int val = Read32Register(QmeanC, QmeanCLSB);
return (double)val * 0.00032;
}
double ATM90E32::GetTotalReactivePower() {
int val = Read32Register(QmeanT, QmeanTLSB);
return (double)val * 0.00032;
}
// APPARENT POWER
double ATM90E32::GetApparentPowerA() {
int val = Read32Register(SmeanA, SmeanALSB);
return (double)val * 0.00032;
}
double ATM90E32::GetApparentPowerB() {
int val = Read32Register(SmeanB, SmeanBLSB);
return (double)val * 0.00032;
}
double ATM90E32::GetApparentPowerC() {
int val = Read32Register(SmeanC, SmeanCLSB);
return (double)val * 0.00032;
}
double ATM90E32::GetTotalApparentPower() {
int val = Read32Register(SmeanT, SAmeanTLSB);
return (double)val * 0.00032;
}
// FREQUENCY
double ATM90E32::GetFrequency() {
unsigned short freq = CommEnergyIC(READ, Freq, 0xFFFF);
return (double)freq / 100;
}
// POWER FACTOR
double ATM90E32::GetPowerFactorA() {
signed short pf = (signed short) CommEnergyIC(READ, PFmeanA, 0xFFFF);
return (double)pf / 1000;
}
double ATM90E32::GetPowerFactorB() {
signed short pf = (signed short) CommEnergyIC(READ, PFmeanB, 0xFFFF);
return (double)pf / 1000;
}
double ATM90E32::GetPowerFactorC() {
signed short pf = (signed short) CommEnergyIC(READ, PFmeanC, 0xFFFF);
return (double)pf / 1000;
}
double ATM90E32::GetTotalPowerFactor() {
signed short pf = (signed short) CommEnergyIC(READ, PFmeanT, 0xFFFF);
return (double)pf / 1000;
}
// MEAN PHASE ANGLE
double ATM90E32::GetPhaseA() {
unsigned short angleA = (unsigned short) CommEnergyIC(READ, PAngleA, 0xFFFF);
return (double)angleA / 10;
}
double ATM90E32::GetPhaseB() {
unsigned short angleB = (unsigned short) CommEnergyIC(READ, PAngleB, 0xFFFF);
return (double)angleB / 10;
}
double ATM90E32::GetPhaseC() {
unsigned short angleC = (unsigned short) CommEnergyIC(READ, PAngleC, 0xFFFF);
return (double)angleC / 10;
}
// TEMPERATURE
double ATM90E32::GetTemperature() {
short int atemp = (short int) CommEnergyIC(READ, Temp, 0xFFFF);
return (double)atemp;
}
/* Gets the Register Value if Desired */
// REGISTER
double ATM90E32::GetValueRegister(unsigned short registerRead) {
return (double) CommEnergyIC(READ, registerRead, 0xFFFF); //returns value register
}
// REGULAR ENERGY MEASUREMENT
// FORWARD ACTIVE ENERGY
// these registers accumulate energy and are cleared after being read
double ATM90E32::GetImportEnergy() {
unsigned short ienergyT = CommEnergyIC(READ, APenergyT, 0xFFFF);
return (double)ienergyT / 100 / 3200; //returns kWh
}
// unsigned short ienergyA = CommEnergyIC(READ, APenergyA, 0xFFFF);
// unsigned short ienergyB = CommEnergyIC(READ, APenergyB, 0xFFFF);
// unsigned short ienergyC = CommEnergyIC(READ, APenergyC, 0xFFFF);
// FORWARD REACTIVE ENERGY
double ATM90E32::GetImportReactiveEnergy() {
unsigned short renergyT = CommEnergyIC(READ, RPenergyT, 0xFFFF);
return (double)renergyT / 100 / 3200; //returns kWh
}
// unsigned short renergyA = CommEnergyIC(READ, RPenergyA, 0xFFFF);
// unsigned short renergyB = CommEnergyIC(READ, RPenergyB, 0xFFFF);
// unsigned short renergyC = CommEnergyIC(READ, RPenergyC, 0xFFFF);
// APPARENT ENERGY
double ATM90E32::GetImportApparentEnergy() {
unsigned short senergyT = CommEnergyIC(READ, SAenergyT, 0xFFFF);
return (double)senergyT / 100 / 3200; //returns kWh
}
// unsigned short senergyA = CommEnergyIC(READ, SenergyA, 0xFFFF);
// unsigned short senergyB = CommEnergyIC(READ, SenergyB, 0xFFFF);
// unsigned short senergyC = CommEnergyIC(READ, SenergyC, 0xFFFF);
// REVERSE ACTIVE ENERGY
double ATM90E32::GetExportEnergy() {
unsigned short eenergyT = CommEnergyIC(READ, ANenergyT, 0xFFFF);
return (double)eenergyT / 100 / 3200; //returns kWh
}
// unsigned short eenergyA = CommEnergyIC(READ, ANenergyA, 0xFFFF);
// unsigned short eenergyB = CommEnergyIC(READ, ANenergyB, 0xFFFF);
// unsigned short eenergyC = CommEnergyIC(READ, ANenergyC, 0xFFFF);
// REVERSE REACTIVE ENERGY
double ATM90E32::GetExportReactiveEnergy() {
unsigned short reenergyT = CommEnergyIC(READ, RNenergyT, 0xFFFF);
return (double)reenergyT / 100 / 3200; //returns kWh
}
// unsigned short reenergyA = CommEnergyIC(READ, RNenergyA, 0xFFFF);
// unsigned short reenergyB = CommEnergyIC(READ, RNenergyB, 0xFFFF);
// unsigned short reenergyC = CommEnergyIC(READ, RNenergyC, 0xFFFF);
/* System Status Registers */
unsigned short ATM90E32::GetSysStatus0() {
return CommEnergyIC(READ, EMMIntState0, 0xFFFF);
}
unsigned short ATM90E32::GetSysStatus1() {
return CommEnergyIC(READ, EMMIntState1, 0xFFFF);
}
unsigned short ATM90E32::GetMeterStatus0() {
return CommEnergyIC(READ, EMMState0, 0xFFFF);
}
unsigned short ATM90E32::GetMeterStatus1() {
return CommEnergyIC(READ, EMMState1, 0xFFFF);
}
/* BEGIN FUNCTION */
/*
- Define the pin to be used as Chip Select
- Set serialFlag to true for serial debugging
- Use SPI MODE 0 for the ATM90E32
*/
void ATM90E32::begin(int pin, unsigned short lineFreq, unsigned short pgagain, unsigned short ugain, unsigned short igainA, unsigned short igainB, unsigned short igainC)
{
_cs = pin; // SS PIN
_lineFreq = lineFreq; //frequency of power
_pgagain = pgagain; //PGA Gain for current channels
_ugain = ugain; //voltage rms gain
_igainA = igainA; //CT1
_igainB = igainB; //CT2 - not used for single split phase meter
_igainC = igainC; //CT2 for single split phase meter - CT3 otherwise
pinMode(_cs, OUTPUT);
/* Enable SPI */
SPI.begin();
Serial.println("Connecting to ATM90E32");
#if defined(ENERGIA)
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV16);
#endif
//calculation for voltage sag threshold - assumes we do not want to go under 90v for split phase and 190v otherwise
//determine proper low and high frequency threshold
unsigned short vSagTh;
unsigned short sagV;
unsigned short FreqHiThresh;
unsigned short FreqLoThresh;
if (_lineFreq == 4485 || _lineFreq == 4231)
{
sagV = 90;
FreqHiThresh = 61 * 100;
FreqLoThresh = 59 * 100;
}
else
{
sagV = 190;
FreqHiThresh = 51 * 100;
FreqLoThresh = 49 * 100;
}
vSagTh = (sagV * 100 * sqrt(2)) / (2 * _ugain / 32768);
//Initialize registers
CommEnergyIC(WRITE, SoftReset, 0x789A); // 70 Perform soft reset
CommEnergyIC(WRITE, CfgRegAccEn, 0x55AA); // 7F enable register config access
CommEnergyIC(WRITE, MeterEn, 0x0001); // 00 Enable Metering
CommEnergyIC(WRITE, SagPeakDetCfg, 0x143F); // 05 Sag and Voltage peak detect period set to 20ms
CommEnergyIC(WRITE, SagTh, vSagTh); // 08 Voltage sag threshold
CommEnergyIC(WRITE, FreqHiTh, FreqHiThresh); // 0D High frequency threshold
CommEnergyIC(WRITE, FreqLoTh, FreqLoThresh); // 0C Lo frequency threshold
CommEnergyIC(WRITE, EMMIntEn0, 0xB76F); // 75 Enable interrupts
CommEnergyIC(WRITE, EMMIntEn1, 0xDDFD); // 76 Enable interrupts
CommEnergyIC(WRITE, EMMIntState0, 0x0001); // 73 Clear interrupt flags
CommEnergyIC(WRITE, EMMIntState1, 0x0001); // 74 Clear interrupt flags
CommEnergyIC(WRITE, ZXConfig, 0xD654); // 07 ZX2, ZX1, ZX0 pin config - set to current channels, all polarity
//Set metering config values (CONFIG)
CommEnergyIC(WRITE, PLconstH, 0x0861); // 31 PL Constant MSB (default) - Meter Constant = 3200 - PL Constant = 140625000
CommEnergyIC(WRITE, PLconstL, 0xC468); // 32 PL Constant LSB (default) - this is 4C68 in the application note, which is incorrect
CommEnergyIC(WRITE, MMode0, _lineFreq); // 33 Mode Config (frequency set in main program)
CommEnergyIC(WRITE, MMode1, _pgagain); // 34 PGA Gain Configuration for Current Channels - 0x002A (x4) // 0x0015 (x2) // 0x0000 (1x)
CommEnergyIC(WRITE, PStartTh, 0x1D4C); // 35 All phase Active Startup Power Threshold - 50% of startup current = 0.02A/0.00032 = 7500
CommEnergyIC(WRITE, QStartTh, 0x1D4C); // 36 All phase Reactive Startup Power Threshold
CommEnergyIC(WRITE, SStartTh, 0x1D4C); // 37 All phase Apparent Startup Power Threshold
CommEnergyIC(WRITE, PPhaseTh, 0x02EE); // 38 Each phase Active Phase Threshold = 10% of startup current = 0.002A/0.00032 = 750
CommEnergyIC(WRITE, QPhaseTh, 0x02EE); // 39 Each phase Reactive Phase Threshold
CommEnergyIC(WRITE, SPhaseTh, 0x02EE); // 3A Each phase Apparent Phase Threshold
//Set metering calibration values (CALIBRATION)
CommEnergyIC(WRITE, PQGainA, 0x0000); // 47 Line calibration gain
CommEnergyIC(WRITE, PhiA, 0x0000); // 48 Line calibration angle
CommEnergyIC(WRITE, PQGainB, 0x0000); // 49 Line calibration gain
CommEnergyIC(WRITE, PhiB, 0x0000); // 4A Line calibration angle
CommEnergyIC(WRITE, PQGainC, 0x0000); // 4B Line calibration gain
CommEnergyIC(WRITE, PhiC, 0x0000); // 4C Line calibration angle
CommEnergyIC(WRITE, PoffsetA, 0x0000); // 41 A line active power offset FFDC
CommEnergyIC(WRITE, QoffsetA, 0x0000); // 42 A line reactive power offset
CommEnergyIC(WRITE, PoffsetB, 0x0000); // 43 B line active power offset
CommEnergyIC(WRITE, QoffsetB, 0x0000); // 44 B line reactive power offset
CommEnergyIC(WRITE, PoffsetC, 0x0000); // 45 C line active power offset
CommEnergyIC(WRITE, QoffsetC, 0x0000); // 46 C line reactive power offset
//Set metering calibration values (HARMONIC)
CommEnergyIC(WRITE, POffsetAF, 0x0000); // 51 A Fund. active power offset
CommEnergyIC(WRITE, POffsetBF, 0x0000); // 52 B Fund. active power offset
CommEnergyIC(WRITE, POffsetCF, 0x0000); // 53 C Fund. active power offset
CommEnergyIC(WRITE, PGainAF, 0x0000); // 54 A Fund. active power gain
CommEnergyIC(WRITE, PGainBF, 0x0000); // 55 B Fund. active power gain
CommEnergyIC(WRITE, PGainCF, 0x0000); // 56 C Fund. active power gain
//Set measurement calibration values (ADJUST)
CommEnergyIC(WRITE, UgainA, _ugain); // 61 A Voltage rms gain
CommEnergyIC(WRITE, IgainA, _igainA); // 62 A line current gain
CommEnergyIC(WRITE, UoffsetA, 0x0000); // 63 A Voltage offset - 61A8
CommEnergyIC(WRITE, IoffsetA, 0x0000); // 64 A line current offset - FE60
CommEnergyIC(WRITE, UgainB, _ugain); // 65 B Voltage rms gain
CommEnergyIC(WRITE, IgainB, _igainB); // 66 B line current gain
CommEnergyIC(WRITE, UoffsetB, 0x0000); // 67 B Voltage offset - 1D4C
CommEnergyIC(WRITE, IoffsetB, 0x0000); // 68 B line current offset - FE60
CommEnergyIC(WRITE, UgainC, _ugain); // 69 C Voltage rms gain
CommEnergyIC(WRITE, IgainC, _igainC); // 6A C line current gain
CommEnergyIC(WRITE, UoffsetC, 0x0000); // 6B C Voltage offset - 1D4C
CommEnergyIC(WRITE, IoffsetC, 0x0000); // 6C C line current offset
CommEnergyIC(WRITE, CfgRegAccEn, 0x0000); // 7F end configuration
}