-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
105 lines (93 loc) · 3.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from collections import defaultdict
import numpy as np
class Vocab(object):
def __init__(self):
self.word_to_index = {}
self.index_to_word = {}
self.word_freq = defaultdict(int)
self.total_words = 0
self.unknown = '<unk>'
self.add_word(self.unknown, count=0)
def add_word(self, word, count=1):
if word not in self.word_to_index:
index = len(self.word_to_index)
self.word_to_index[word] = index
self.index_to_word[index] = word
self.word_freq[word] += count
def construct(self, words):
for word in words:
self.add_word(word)
self.total_words = float(sum(self.word_freq.values()))
print('{} total words with {} uniques'.format(self.total_words, len(self.word_freq)))
def encode(self, word):
if word not in self.word_to_index:
word = self.unknown
return self.word_to_index[word]
def decode(self, index):
return self.index_to_word[index]
def __len__(self):
return len(self.word_freq)
def calculate_perplexity(log_probs):
# https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
perp = 0
for p in log_probs:
perp += -p
return np.exp(perp / len(log_probs))
def get_ptb_dataset(dataset='train'):
fn = 'data/ptb/ptb.{}.txt'
for line in open(fn.format(dataset)):
for word in line.split():
yield word
# Add token to the end of the line
# Equivalent to <eos> in:
# https://github.com/wojzaremba/lstm/blob/master/data.lua#L32
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/rnn/ptb/reader.py#L31
yield '<eos>'
def ptb_iterator(raw_data, batch_size, num_steps):
# Pulled from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/rnn/ptb/reader.py#L82
raw_data = np.array(raw_data, dtype=np.int32)
data_len = len(raw_data)
batch_len = data_len // batch_size
data = np.zeros([batch_size, batch_len], dtype=np.int32)
for i in range(batch_size):
data[i] = raw_data[batch_len * i:batch_len * (i + 1)]
epoch_size = (batch_len - 1) // num_steps
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or num_steps")
for i in range(epoch_size):
x = data[:, i * num_steps:(i + 1) * num_steps]
y = data[:, i * num_steps + 1:(i + 1) * num_steps + 1]
yield (x, y)
def sample(a, temperature=1.0):
# helper function to sample an index from a probability array
# from https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py
a = np.log(a) / temperature
a = np.exp(a) / np.sum(np.exp(a))
return np.argmax(np.random.multinomial(1, a, 1))
def data_iterator(orig_X, orig_y=None, batch_size=32, label_size=2, shuffle=False):
# Optionally shuffle the data before training
if shuffle:
indices = np.random.permutation(len(orig_X))
data_X = orig_X[indices]
data_y = orig_y[indices] if np.any(orig_y) else None
else:
data_X = orig_X
data_y = orig_y
# ##
total_processed_examples = 0
total_steps = int(np.ceil(len(data_X) / float(batch_size)))
for step in range(total_steps):
# Create the batch by selecting up to batch_size elements
batch_start = step * batch_size
x = data_X[batch_start:batch_start + batch_size]
# Convert our target from the class index to a one hot vector
y = None
if np.any(data_y):
y_indices = data_y[batch_start:batch_start + batch_size]
y = np.zeros((len(x), label_size), dtype=np.int32)
y[np.arange(len(y_indices)), y_indices] = 1
# ##
yield x, y
total_processed_examples += len(x)
# Sanity check to make sure we iterated over all the dataset as intended
assert total_processed_examples == len(data_X), 'Expected {} and processed {}'.format(len(data_X), total_processed_examples)