Skip to content

Latest commit

 

History

History
171 lines (84 loc) · 17.8 KB

TCP连接建立和关闭.md

File metadata and controls

171 lines (84 loc) · 17.8 KB

为什么 TCP 建立连接是三次握手,关闭连接确是四次挥手呢?

作者:小书go

https://blog.csdn.net/qzcsu/article/details/72861891

背景描述

我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。

UDP,在传送数据前不需要先建立连接,远地的主机在收到UDP报文后也不需要给出任何确认。虽然UDP不提供可靠交付,但是正是因为这样,省去和很多的开销,使得它的速度比较快,比如一些对实时性要求较高的服务,就常常使用的是UDP。对应的应用层的协议主要有 DNS,TFTP,DHCP,SNMP,NFS 等。

TCP,提供面向连接的服务,在传送数据之前必须先建立连接,数据传送完成后要释放连接。因此TCP是一种可靠的的运输服务,但是正因为这样,不可避免的增加了许多的开销,比如确认,流量控制等。对应的应用层的协议主要有 SMTP,TELNET,HTTP,FTP 等。

常用的熟知端口号

TCP的概述

TCP把连接作为最基本的对象,每一条TCP连接都有两个端点,这种端点我们叫作套接字(socket),它的定义为端口号拼接到IP地址即构成了套接字,例如,若IP地址为192.3.4.16 而端口号为80,那么得到的套接字为192.3.4.16:80。

TCP报文首部

源端口和目的端口,各占2个字节,分别写入源端口和目的端口;

序号,占4个字节,TCP连接中传送的字节流中的每个字节都按顺序编号。例如,一段报文的序号字段值是 301 ,而携带的数据共有100字段,显然下一个报文段(如果还有的话)的数据序号应该从401开始;

确认号,占4个字节,是期望收到对方下一个报文的第一个数据字节的序号。例如,B收到了A发送过来的报文,其序列号字段是501,而数据长度是200字节,这表明B正确的收到了A发送的到序号700为止的数据。因此,B期望收到A的下一个数据序号是701,于是B在发送给A的确认报文段中把确认号置为701;

数据偏移,占4位,它指出TCP报文的数据距离TCP报文段的起始处有多远;

保留,占6位,保留今后使用,但目前应都位0;

​ 紧急URG,当URG=1,表明紧急指针字段有效。告诉系统此报文段中有紧急数据;

​ 确认ACK,仅当ACK=1时,确认号字段才有效。TCP规定,在连接建立后所有报文的传输都必须把ACK置1;

​ 推送PSH,当两个应用进程进行交互式通信时,有时在一端的应用进程希望在键入一个命令后立即就能收到对方的响应,这时候就将PSH=1;

​ 复位RST,当RST=1,表明TCP连接中出现严重差错,必须释放连接,然后再重新建立连接;

​ 同步SYN,在连接建立时用来同步序号。当SYN=1,ACK=0,表明是连接请求报文,若同意连接,则响应报文中应该使SYN=1,ACK=1;

​ 终止FIN,用来释放连接。当FIN=1,表明此报文的发送方的数据已经发送完毕,并且要求释放;

窗口,占2字节,指的是通知接收方,发送本报文你需要有多大的空间来接受;

检验和,占2字节,校验首部和数据这两部分;

紧急指针,占2字节,指出本报文段中的紧急数据的字节数;

选项,长度可变,定义一些其他的可选的参数。

TCP连接的建立(三次握手)

最开始的时候客户端和服务器都是处于CLOSED状态。主动打开连接的为客户端,被动打开连接的是服务器。

TCP服务器进程先创建传输控制块TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了LISTEN(监听)状态;

TCP客户进程也是先创建传输控制块TCB,然后向服务器发出连接请求报文,这是报文首部中的同部位SYN=1,同时选择一个初始序列号 seq=x ,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状态。TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。

TCP服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=1,SYN=1,确认号是ack=x+1,同时也要为自己初始化一个序列号 seq=y,此时,TCP服务器进程进入了SYN-RCVD(同步收到)状态。这个报文也不能携带数据,但是同样要消耗一个序号。

TCP客户进程收到确认后,还要向服务器给出确认。确认报文的ACK=1,ack=y+1,自己的序列号seq=x+1,此时,TCP连接建立,客户端进入ESTABLISHED(已建立连接)状态。TCP规定,ACK报文段可以携带数据,但是如果不携带数据则不消耗序号。

当服务器收到客户端的确认后也进入ESTABLISHED状态,此后双方就可以开始通信了。

为什么TCP客户端最后还要发送一次确认呢?

一句话,主要防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。

如果使用的是两次握手建立连接,假设有这样一种场景,客户端发送了第一个请求连接并且没有丢失,只是因为在网络结点中滞留的时间太长了,由于TCP的客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时此前滞留的那一次请求连接,网络通畅了到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的浪费。

如果采用的是三次握手,就算是那一次失效的报文传送过来了,服务端接受到了那条失效报文并且回复了确认报文,但是客户端不会再次发出确认。由于服务器收不到确认,就知道客户端并没有请求连接。关注Java技术栈微信公众号,在后台回复关键字:Java,可以获取更多栈长整理的Java技术干货。

TCP连接的释放(四次挥手)

数据传输完毕后,双方都可释放连接。最开始的时候,客户端和服务器都是处于ESTABLISHED状态,然后客户端主动关闭,服务器被动关闭。

客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。关注Java技术栈微信公众号,在后台回复关键字:Java,可以获取更多栈长整理的Java技术干货。

为什么客户端最后还要等待2MSL?

MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值。

第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。

第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候, 服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。

而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。

如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75分钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

TCP连接时序图

上半部分是TCP三路握手过程的状态变迁,下半部分是TCP四次挥手过程的状态变迁。

CLOSED:起始点,在超时或者连接关闭时候进入此状态,这并不是一个真正的状态,而是这个状态图的假想起点和终点。 LISTEN:服务器端等待连接的状态。服务器经过 socket,bind,listen 函数之后进入此状态,开始监听客户端发过来的连接请求。此称为应用程序被动打开(等到客户端连接请求)。 SYN_SENT:第一次握手发生阶段,客户端发起连接。客户端调用 connect,发送 SYN 给服务器端,然后进入 SYN_SENT 状态,等待服务器端确认(三次握手中的第二个报文)。如果服务器端不能连接,则直接进入CLOSED状态。 SYN_RCVD:第二次握手发生阶段,跟 3 对应,这里是服务器端接收到了客户端的 SYN,此时服务器由 LISTEN 进入 SYN_RCVD状态,同时服务器端回应一个 ACK,然后再发送一个 SYN 即 SYN+ACK 给客户端。状态图中还描绘了这样一种情况,当客户端在发送 SYN 的同时也收到服务器端的 SYN请求,即两个同时发起连接请求,那么客户端就会从 SYN_SENT 转换到 SYN_REVD 状态。 ESTABLISHED:第三次握手发生阶段,客户端接收到服务器端的 ACK 包(ACK,SYN)之后,也会发送一个 ACK 确认包,客户端进入 ESTABLISHED 状态,表明客户端这边已经准备好,但TCP 需要两端都准备好才可以进行数据传输。服务器端收到客户端的 ACK 之后会从 SYN_RCVD 状态转移到 ESTABLISHED 状态,表明服务器端也准备好进行数据传输了。这样客户端和服务器端都是 ESTABLISHED 状态,就可以进行后面的数据传输了。所以 ESTABLISHED 也可以说是一个数据传送状态。 上面就是 TCP 三次握手过程的状态变迁。结合第一张三次握手过程图,从报文的角度看状态变迁:SYN_SENT 状态表示已经客户端已经发送了 SYN 报文,SYN_RCVD 状态表示服务器端已经接收到了 SYN 报文。

下面看看TCP四次挥手过程的状态变迁。结合第一张四次挥手过程图来理解。

FIN_WAIT_1:第一次挥手。主动关闭的一方(执行主动关闭的一方既可以是客户端,也可以是服务器端,这里以客户端执行主动关闭为例),终止连接时,发送 FIN 给对方,然后等待对方返回 ACK 。调用 close() 第一次挥手就进入此状态。 CLOSE_WAIT:接收到FIN 之后,被动关闭的一方进入此状态。具体动作是接收到 FIN,同时发送 ACK。之所以叫 CLOSE_WAIT 可以理解为被动关闭的一方此时正在等待上层应用程序发出关闭连接指令。前面已经说过,TCP关闭是全双工过程,这里客户端执行了主动关闭,被动方服务器端接收到FIN 后也需要调用 close 关闭,这个 CLOSE_WAIT 就是处于这个状态,等待发送 FIN,发送了FIN 则进入 LAST_ACK 状态。 FIN_WAIT_2:主动端(这里是客户端)先执行主动关闭发送FIN,然后接收到被动方返回的 ACK 后进入此状态。 LAST_ACK:被动方(服务器端)发起关闭请求,由状态2 进入此状态,具体动作是发送 FIN给对方,同时在接收到ACK 时进入CLOSED状态。 CLOSING:两边同时发起关闭请求时(即主动方发送FIN,等待被动方返回ACK,同时被动方也发送了FIN,主动方接收到了FIN之后,发送ACK给被动方),主动方会由FIN_WAIT_1 进入此状态,等待被动方返回ACK。 TIME_WAIT:从状态变迁图会看到,四次挥手操作最后都会经过这样一个状态然后进入CLOSED状态。共有三个状态会进入该状态 由CLOSING进入:同时发起关闭情况下,当主动端接收到ACK后,进入此状态,实际上这里的同时是这样的情况:客户端发起关闭请求,发送FIN之后等待服务器端回应ACK,但此时服务器端同时也发起关闭请求,也发送了FIN,并且被客户端先于ACK接收到。 由FIN_WAIT_1进入:发起关闭后,发送了FIN,等待ACK的时候,正好被动方(服务器端)也发起关闭请求,发送了FIN,这时客户端接收到了先前ACK,也收到了对方的FIN,然后发送ACK(对对方FIN的回应),与CLOSING进入的状态不同的是接收到FIN和ACK的先后顺序。 由FIN_WAIT_2进入:这是不同时的情况,主动方在完成自身发起的主动关闭请求后,接收到了对方发送过来的FIN,然后回应 ACK。 下面来看看这个看似有点多余的TIME_WAIT状态:从上面进入TIME_WAIT状态的三个状态动作来看(可以直接看状态变迁图)都是主动方最后回应一个ACK(CLOSING实际上前面的那个FIN_WAIT_1状态就已经回应了ACK)。

先考虑这样的一个情况,假如这个最后回应的ACK丢失了,也就是服务器端接收不到这个ACK,那么服务器将继续发送它最终的那个FIN,因此客户端必须维护状态信息(TIME_WAIT)允许它重发最后的那个ACK。如果没有这个TIME_WAIT状态,客户端处于CLOSED状态(开头就说了CLOSED状态实际并不存在,是我们为了方便描述假想的),那么客户端将响应RST,服务器端收到后会将该RST分节解释成一个错误,也就不能实现最后的全双工关闭了(可能是主动方单方的关闭)。所以要实现TCP全双工连接的正常终止(两方都关闭连接),必须处理终止过程中四个分节任何一个分节的丢失情况,那么主动关闭连接的主动端必须维持TIME_WAIT状态,最后一个回应ACK的是主动执行关闭的那端。从变迁图可以看出,如果没有TIME_WAIT状态,我们将没有任何机制来保证最后一个ACK能够正常到达。前面的FIN,ACK正常到达均有相应的状态对应。

还有这样一种情况,如果目前的通信双方都已经调用了 close(),都到达了CLOSED状态,没有TIME_WAIT状态时,会出现这样一种情况,现在有一个新的连接被建立起来,使用的IP地址和端口和这个先前到达了CLOSED状态的完全相同,假定原先的连接中还有数据报残存在网络之中,这样新的连接建立以后传输的数据极有可能就是原先的连接的数据报,为了防止这一点,TCP不允许从处于TIME_WAIT状态的socket 建立一个连接。处于TIME_WAIT状态的 socket 在等待了两倍的MSL时间之后,将会转变为CLOSED状态。这里TIME_WAIT状态持续的时间是2MSL(MSL是任何IP数据报能够在因特网中存活的最长时间),足以让这两个方向上的数据包被丢弃(最长是2MSL)。通过实施这个规则,我们就能保证每成功建立一个TCP连接时,来自该连接先前化身的老的重复分组都已经在网络中消逝了。

综上来看:TIME_WAIT存在的两个理由就是

​ 可靠地实现TCP全双工连接的终止;

​ 允许老的重复分节(数据报)在网络中消逝。