-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathdeepforest_config.yml
60 lines (52 loc) · 1.55 KB
/
deepforest_config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Config file for DeepForest pytorch module
# Cpu workers for data loaders
# Dataloaders
workers: 0
devices: auto
accelerator: auto
batch_size: 1
# Model Architecture
architecture: 'retinanet'
num_classes: 1
nms_thresh: 0.05
# Architecture specific params
retinanet:
# Non-max supression of overlapping predictions
score_thresh: 0.1
train:
csv_file:
root_dir:
# Optimizer initial learning rate
lr: 0.001
scheduler:
type:
params:
# Common parameters
T_max: 10
eta_min: 0.00001
lr_lambda: "lambda epoch: 0.95 ** epoch" # For lambdaLR and multiplicativeLR
step_size: 30 # For stepLR
gamma: 0.1 # For stepLR, multistepLR, and exponentialLR
milestones: [50, 100] # For multistepLR
# ReduceLROnPlateau parameters (used if type is not explicitly mentioned)
mode: "min"
factor: 0.1
patience: 10
threshold: 0.0001
threshold_mode: "rel"
cooldown: 0
min_lr: 0
eps: 0.00000001
# Print loss every n epochs
epochs: 1
# Useful debugging flag in pytorch lightning, set to True to get a single batch of training to test settings.
fast_dev_run: False
# pin images to GPU memory for fast training. This depends on GPU size and number of images.
preload_images: False
validation:
# callback args
csv_file:
root_dir:
# Intersection over union evaluation
iou_threshold: 0.4
val_accuracy_interval: 20