-
Notifications
You must be signed in to change notification settings - Fork 0
/
cv_ctrl.py
981 lines (816 loc) · 43.4 KB
/
cv_ctrl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
import cv2
import imutils
import mediapipe as mp
import imageio
import threading
import datetime, time
import numpy as np
import math
import yaml, os, json, subprocess
from collections import deque
import textwrap
# config file.
curpath = os.path.realpath(__file__)
thisPath = os.path.dirname(curpath)
with open(thisPath + '/config.yaml', 'r') as yaml_file:
f = yaml.safe_load(yaml_file)
class OpencvFuncs():
"""docstring for OpencvFuncs"""
def __init__(self, project_path, base_ctrl):
self.base_ctrl = base_ctrl
self.cv_event = threading.Event()
self.cv_event.clear()
self.cv_mode = f['code']['cv_none']
self.detection_reaction_mode = f['code']['re_none']
self.this_path = project_path
self.photo_path = self.this_path + '/templates/pictures/'
self.video_path = self.this_path + '/templates/videos/'
self.frame_scale = 1
self.picture_capture_flag = False
self.set_video_record_flag = False
self.video_record_status_flag = False
self.writer = None
self.overlay = None
self.scale_rate = 1
self.video_quality = f['video']['default_quality']
# cv ctrl info
self.cv_light_mode = 0
self.pan_angle = 0
self.tilt_angle = 0
self.video_fps = 0
self.fps_start_time = time.time()
self.fps_count = 0
self.cv_movtion_lock = True
self.aimed_error = f['cv']['aimed_error']
self.track_spd_rate = f['cv']['track_spd_rate']
self.track_acc_rate = f['cv']['track_acc_rate']
self.CMD_GIMBAL = f['cmd_config']['cmd_gimbal_ctrl']
self.sampling_rad = f['cv']['sampling_rad']
# reaction
self.last_frame_capture_time = datetime.datetime.now()
self.last_movtion_captured = datetime.datetime.now()
# movtion detection
self.avg = None
# face detection & tracking
self.faceCascade = cv2.CascadeClassifier(thisPath + '/models/haarcascade_frontalface_default.xml')
self.min_radius = f['cv']['min_radius']
self.track_faces_iterate = f['cv']['track_faces_iterate']
# color detection
self.points = deque(maxlen=32)
self.color_list = {
'red': [np.array([ 0,200, 170]), np.array([ 10, 255, 255])],
'green':[np.array([ 50, 130, 130]), np.array([ 78, 255, 255])],
'blue': [np.array([ 90,160, 150]), np.array([105, 255, 255])]
}
if f['cv']['default_color'] in self.color_list:
self.color_lower = self.color_list[f['cv']['default_color']][0]
self.color_upper = self.color_list[f['cv']['default_color']][1]
else:
self.color_lower = np.array(f['cv']['color_lower'])
self.color_upper = np.array(f['cv']['color_upper'])
self.track_color_iterate = f['cv']['track_color_iterate']
# cv_dnn_objects
self.net = cv2.dnn.readNetFromCaffe(thisPath + '/models/deploy.prototxt', thisPath + '/models/mobilenet_iter_73000.caffemodel')
self.class_names = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
# mediapipe
self.mpDraw = mp.solutions.drawing_utils
# mediapipe detect hand
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(max_num_hands=1)
self.max_distance = 1
self.gs_pic_interval = 6
self.gs_pic_last_time = time.time()
# findline autodrive
self.sampling_line_1 = 0.6
self.sampling_line_2 = 0.9
self.slope_impact = 1.5
self.base_impact = 0.005
self.speed_impact = 0.5
self.line_track_speed = 0.3
self.slope_on_speed = 0.1
self.line_lower = np.array([25, 150, 70])
self.line_upper = np.array([42, 255, 255])
# mediapipe detect faces
self.mp_face_detection = mp.solutions.face_detection
self.face_detection = self.mp_face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
# mediapipe detect pose
self.mp_pose = mp.solutions.pose
self.pose = self.mp_pose.Pose(static_image_mode=False,
model_complexity=1,
smooth_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5)
# base data
self.show_base_info_flag = False
self.recv_deque = deque(maxlen=20)
# info update
self.show_info_flag = True
self.info_update_time = time.time()
self.info_deque = deque(maxlen=10)
self.info_scale = 270 / 480
self.info_bg_color = (0, 0, 0)
self.info_show_time = 10
self.recv_line_max = 26
# mission funcs
self.mission_flag = False
# osd settings
self.add_osd = f['base_config']['add_osd']
# camera type detection
self.usb_camera_connected = True
# usb camera init
self.camera = cv2.VideoCapture(8)
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, f['video']['default_res_w'])
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, f['video']['default_res_h'])
def frame_process(self):
try:
success, input_frame = self.camera.read()
if not success:
self.camera.release()
time.sleep(1)
self.camera = cv2.VideoCapture(8)
except Exception as e:
print(f"[cv_ctrl.frame_process] error: {e}")
input_frame = 255 * np.ones((480, 640, 3), dtype=np.uint8)
cv2.putText(input_frame, f"camera read failed... \n{e}",
(round(0.05*640), round(0.1*640 + 5 * 13)),
cv2.FONT_HERSHEY_SIMPLEX, 0.369, (0, 0, 0), 1)
ret, buffer = cv2.imencode('.jpg', input_frame, [int(cv2.IMWRITE_JPEG_QUALITY), self.video_quality])
input_frame = buffer.tobytes()
return input_frame
# opencv funcs
if self.cv_mode != f['code']['cv_none']:
if not self.cv_event.is_set():
self.cv_event.set()
self.opencv_threading(input_frame)
try:
mask = self.overlay.astype(bool)
input_frame[mask] = self.overlay[mask]
cv2.addWeighted(self.overlay, 1, input_frame, 1, 0, input_frame)
except Exception as e:
print("An error occurred:", e)
elif self.show_info_flag:
if time.time() - self.info_update_time > self.info_show_time:
self.show_info_flag = False
try:
self.overlay = input_frame.copy()
cv2.rectangle(self.overlay, (round((self.info_scale-0.005)*640), round((0.33)*480)),
(round(0.98*640), round((0.78)*480)),
self.info_bg_color, -1)
cv2.addWeighted(self.overlay, 0.5, input_frame, 0.5, 0, input_frame)
except Exception as e:
print(f"[cv_ctrl.frame_process] error: {e}")
# info_deque.appendleft(time.time())
for i in range(0, len(self.info_deque)):
cv2.putText(input_frame, str(self.info_deque[i]['text']),
(round(self.info_scale*640), round(self.info_scale*640 - i * 20)),
cv2.FONT_HERSHEY_SIMPLEX, self.info_deque[i]['size'], self.info_deque[i]['color'], 1)
if self.show_base_info_flag:
for i in range(0, len(self.recv_deque)):
cv2.putText(input_frame, str(self.recv_deque[i]),
(round(0.05*640), round(0.1*640 + i * 13)),
cv2.FONT_HERSHEY_SIMPLEX, 0.369, (255, 255, 255), 1)
# render osd
input_frame = self.osd_render(input_frame)
# capture frame
if self.picture_capture_flag:
current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
photo_filename = f'{self.photo_path}photo_{current_time}.jpg'
try:
cv2.imwrite(photo_filename, input_frame)
self.picture_capture_flag = False
print(photo_filename)
except:
pass
# record video
if not self.set_video_record_flag and not self.video_record_status_flag:
pass
elif self.set_video_record_flag and not self.video_record_status_flag:
current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
video_filename = f'{self.video_path}video_{current_time}.mp4'
self.writer = imageio.get_writer(video_filename, fps=30, codec='libx264')
self.video_record_status_flag = True
elif self.set_video_record_flag and self.video_record_status_flag:
cv2.circle(input_frame, (15, 15), 5, (64, 64, 255), -1)
rgb_frame = cv2.cvtColor(input_frame, cv2.COLOR_BGRA2RGB)
rgb_frame_3d = np.expand_dims(rgb_frame, axis=0)
self.writer.append_data(rgb_frame_3d)
# self.writer.append_data(np.array(cv2.cvtColor(input_frame, cv2.COLOR_BGRA2RGB)))
elif not self.set_video_record_flag and self.video_record_status_flag:
self.video_record_status_flag = False
self.writer.close()
# frame scale
if self.scale_rate == 1:
pass
else:
img_height, img_width = input_frame.shape[:2]
img_width_d2 = img_width/2
img_height_d2 = img_height/2
x_start = int(img_width_d2 - (img_width_d2//self.scale_rate))
x_end = int(img_width_d2 + (img_width_d2//self.scale_rate))
y_start = int(img_height_d2 - (img_height_d2//self.scale_rate))
y_end = int(img_height_d2 + (img_height_d2//self.scale_rate))
input_frame = input_frame[y_start:y_end, x_start:x_end]
# encode frame
try:
ret, buffer = cv2.imencode('.jpg', input_frame, [int(cv2.IMWRITE_JPEG_QUALITY), self.video_quality])
input_frame = buffer.tobytes()
except:
pass
# get fps
self.fps_count += 1
if time.time() - self.fps_start_time >= 2:
self.video_fps = self.fps_count/2
self.fps_count = 0
self.fps_start_time = time.time()
# output frame
return input_frame
def usb_camera_detection(self):
lsusb_output = subprocess.check_output(["lsusb"]).decode("utf-8")
if "Camera" in lsusb_output:
print("USB Camera connected")
return True
else:
print("USB Camera not connected")
return False
def osd_render(self, osd_frame):
if not self.add_osd:
return osd_frame
# add your osd info here
# cv2.putText(overlay_buffer, 'OSD_TEST', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
# render lidar data
lidar_points = []
for lidar_angle, lidar_distance in zip(self.base_ctrl.rl.lidar_angles_show, self.base_ctrl.rl.lidar_distances_show):
lidar_x = int(lidar_distance * np.cos(lidar_angle) * 0.05) + 320
lidar_y = int(lidar_distance * np.sin(lidar_angle) * 0.05) + 240
lidar_points.append((lidar_x, lidar_y))
for lidar_point in lidar_points:
cv2.circle(osd_frame, lidar_point, 3, (255, 0, 0), -1)
# render sensor data
sensor_index = 0
for sensor_line in self.base_ctrl.rl.sensor_data:
# sensor_line = sensor_line[:-2]
cv2.putText(osd_frame, sensor_line,
(100, 50 + sensor_index * 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1)
sensor_index = sensor_index + 1
return osd_frame
def picture_capture(self):
self.picture_capture_flag = True
def video_record(self, input_cmd):
if input_cmd:
self.set_video_record_flag = True
else:
self.set_video_record_flag = False
def scale_ctrl(self, input_rate):
if input_rate < 1:
self.scale_rate = 1
else:
self.scale_rate = input_rate
def set_video_quality(self, input_quality):
if input_quality < 1:
self.video_quality = 1
elif input_quality > 100:
self.video_quality = 100
else:
self.video_quality = int(input_quality)
def set_cv_mode(self, input_mode):
self.cv_mode = input_mode
if self.cv_mode == f['code']['cv_none']:
self.set_video_record_flag = False
def set_detection_reaction(self, input_reaction):
self.detection_reaction_mode = input_reaction
if self.detection_reaction_mode == f['code']['re_none']:
self.set_video_record_flag = False
def cv_detect_movition(self, img):
timestamp = datetime.datetime.now()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if self.avg is None:
self.avg = gray.copy().astype("float")
return
try:
cv2.accumulateWeighted(gray, self.avg, 0.5)
except:
return
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg))
# threshold the delta image, dilate the thresholded image to fill
# in holes, then find contours on thresholded image
thresh = cv2.threshold(frameDelta, 5, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
overlay_buffer = np.zeros_like(img)
for c in cnts:
# if the contour is too small, ignore it
if cv2.contourArea(c) < 2000:
continue
# compute the bounding box for the contour, draw it on the frame,
# and update the text
(mov_x, mov_y, mov_w, mov_h) = cv2.boundingRect(c)
cv2.rectangle(overlay_buffer, (mov_x, mov_y), (mov_x + mov_w, mov_y + mov_h), (128, 255, 0), 1)
self.last_movtion_captured = timestamp
if(timestamp - self.last_frame_capture_time).seconds >= 1:
if self.detection_reaction_mode == f['code']['re_none']:
pass
elif self.detection_reaction_mode == f['code']['re_capt']:
self.picture_capture()
elif self.detection_reaction_mode == f['code']['re_reco']:
self.video_record(True)
self.last_frame_capture_time = datetime.datetime.now()
if (timestamp - self.last_movtion_captured).seconds >= 1.5:
if self.detection_reaction_mode == f['code']['re_reco']:
if(timestamp - self.last_frame_capture_time).seconds >= 5:
self.video_record(False)
self.overlay = overlay_buffer
def gimbal_track(self, fx, fy, gx, gy, iterate):
global gimbal_x, gimbal_y
distance = math.sqrt((fx - gx) ** 2 + (gy - fy) ** 2)
self.pan_angle += (gx - fx) * iterate
self.tilt_angle += (fy - gy) * iterate
if self.pan_angle > 180:
self.pan_angle = 180
elif self.pan_angle < -180:
self.pan_angle = -180
if self.tilt_angle > 90:
self.tilt_angle = 90
elif self.tilt_angle < -30:
self.tilt_angle = -30
gimbal_spd = int(distance * self.track_spd_rate)
gimbal_acc = int(distance * self.track_acc_rate)
if gimbal_acc < 1:
gimbal_acc = 1
if gimbal_spd < 1:
gimbal_spd = 1
self.base_ctrl.base_json_ctrl({"T":self.CMD_GIMBAL,"X":self.pan_angle,"Y":self.tilt_angle,"SPD":gimbal_spd,"ACC":gimbal_acc})
return distance
def cv_detect_faces(self, img):
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = self.faceCascade.detectMultiScale(
gray_img,
scaleFactor=1.2,
minNeighbors=5,
minSize=(20, 20)
)
overlay_buffer = np.zeros_like(img)
height, width = img.shape[:2]
center_x, center_y = width // 2, height // 2
max_area = 0
max_face_center = (0, 0)
if len(faces):
if self.cv_light_mode == 1:
if self.base_ctrl.head_light_status == 0:
self.base_ctrl.head_light_status = 255
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, self.base_ctrl.head_light_status)
for (x,y,w,h) in faces:
cv2.rectangle(overlay_buffer,(x,y),(x+w,y+h),(64,128,255),1)
face_area = w * h
if face_area > max_area:
max_area = face_area
max_face_center = (x + w // 2, y + h // 2)
if not self.cv_movtion_lock:
self.gimbal_track(center_x, center_y, max_face_center[0], max_face_center[1], self.track_faces_iterate)
if(datetime.datetime.now() - self.last_frame_capture_time).seconds >= 3:
if self.detection_reaction_mode == f['code']['re_none']:
pass
elif self.detection_reaction_mode == f['code']['re_capt']:
self.picture_capture()
elif self.detection_reaction_mode == f['code']['re_reco']:
self.video_record(True)
self.last_frame_capture_time = datetime.datetime.now()
else:
if self.cv_light_mode == 1:
if self.base_ctrl.head_light_status != 0:
self.base_ctrl.head_light_status = 0
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, self.base_ctrl.head_light_status)
if self.detection_reaction_mode == f['code']['re_reco']:
if(datetime.datetime.now() - self.last_frame_capture_time).seconds >= 5:
self.video_record(False)
cv2.putText(overlay_buffer, 'NUMBER: {}'.format(len(faces)), (center_x+50, center_y+40),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, 'ITERATE: {}'.format(self.track_faces_iterate), (center_x+50, center_y+60),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' SPD_R: {}'.format(self.track_spd_rate), (center_x+50, center_y+80),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' ACC_R: {}'.format(self.track_acc_rate), (center_x+50, center_y+100),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
self.overlay = overlay_buffer
def cv_detect_objects(self, img):
overlay_buffer = np.zeros_like(img)
cv2.putText(overlay_buffer, 'CV_OBJS', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
(h, w) = img.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(img, (300, 300)), 0.007843, (300, 300), 127.5)
self.net.setInput(blob)
detections = self.net.forward()
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.2:
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
label = "{}: {:.2f}%".format(self.class_names[idx], confidence * 100)
cv2.rectangle(overlay_buffer, (startX, startY), (endX, endY), (0, 255, 0), 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(overlay_buffer, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
self.overlay = overlay_buffer
def cv_detect_color(self, img):
global head_light_pwm
blurred = cv2.GaussianBlur(img, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, self.color_lower, self.color_upper)
mask = cv2.erode(mask, None, iterations=5)
mask = cv2.dilate(mask, None, iterations=5)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
center = None
overlay_buffer = np.zeros_like(img)
height, width = img.shape[:2]
center_x, center_y = width // 2, height // 2
mask = np.zeros((height, width), dtype=np.uint8)
cv2.circle(mask, (center_x, center_y), self.sampling_rad, (255), thickness=-1)
masked_hsv = cv2.bitwise_and(hsv, hsv, mask=mask)
masked_hsv_pixels = masked_hsv[mask == 255]
lower_hsv = np.min(masked_hsv_pixels, axis=0)
upper_hsv = np.max(masked_hsv_pixels, axis=0)
cv2.putText(overlay_buffer, ' UPPER: {}'.format(upper_hsv), (center_x+50, center_y+40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' LOWER: {}'.format(lower_hsv), (center_x+50, center_y+60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' UPPER: {}'.format(self.color_upper), (center_x+50, center_y+100), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, ' LOWER: {}'.format(self.color_lower), (center_x+50, center_y+120), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, 'ITERATE: {}'.format(self.track_color_iterate), (center_x+50, center_y+140), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' SPD_R: {}'.format(self.track_spd_rate), (center_x+50, center_y+160), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' ACC_R: {}'.format(self.track_acc_rate), (center_x+50, center_y+180), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.circle(overlay_buffer, (center_x, center_y), self.sampling_rad, (64, 255, 64), 1)
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > self.min_radius:
if not self.cv_movtion_lock:
distance = self.gimbal_track(center_x, center_y, center[0], center[1], self.track_color_iterate)
if distance < self.aimed_error:
head_light_pwm = 10
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, head_light_pwm)
else:
head_light_pwm = 0
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, head_light_pwm)
cv2.putText(overlay_buffer, 'DIF: {}'.format(distance), (center_x+50, center_y+20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(overlay_buffer, (int(x), int(y)), int(radius),
(128, 255, 255), 1)
cv2.circle(overlay_buffer, center, 3, (128, 255, 255), -1)
cv2.line(overlay_buffer, center, (center_x, center_y), (0, 0, 255), 1)
cv2.putText(overlay_buffer, 'RAD: {}'.format(radius), (center_x+50, center_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
self.points.appendleft(center)
else:
head_light_pwm = 0
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, head_light_pwm)
self.points.appendleft(None)
for i in range(1, len(self.points)):
if self.points[i-1] is None or self.points[i] is None:
continue
cv2.line(overlay_buffer, self.points[i - 1], self.points[i], (255, 255, 128), 1)
self.overlay = np.zeros_like(img)
self.overlay = overlay_buffer
def calculate_distance(self, lm1, lm2):
return ((lm1.x - lm2.x) ** 2 + (lm1.y - lm2.y) ** 2) ** 0.5
def calculate_angle(self, A1, A2, B1, B2):
vector_A = (A2.x - A1.x, A2.y - A1.y)
vector_B = (B2.x - B1.x, B2.y - B1.y)
dot_product = vector_A[0] * vector_B[0] + vector_A[1] * vector_B[1]
magnitude_A = math.sqrt(vector_A[0]**2 + vector_A[1]**2)
magnitude_B = math.sqrt(vector_B[0]**2 + vector_B[1]**2)
angle = math.acos(dot_product / (magnitude_A * magnitude_B))
angle_deg = math.degrees(angle)
return angle_deg
def map_value(self, value, original_min, original_max, new_min, new_max):
if original_max == 0:
return 0
return (value - original_min) / (original_max - original_min) * (new_max - new_min) + new_min
def mp_detect_hand(self, img):
height, width = img.shape[:2]
center_x, center_y = width // 2, height // 2
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = self.hands.process(imgRGB)
overlay_buffer = np.zeros_like(imgRGB)
get_pwm = 0
if results.multi_hand_landmarks:
for handLms in results.multi_hand_landmarks:
# draw joints
for id, lm in enumerate(handLms.landmark):
h, w, c = imgRGB.shape
cx, cy = int(lm.x * w), int(lm.y * h)
cv2.circle(overlay_buffer, (cx, cy), 5, (255, 0, 0), -1)
# draw lines
self.mpDraw.draw_landmarks(overlay_buffer, handLms, self.mpHands.HAND_CONNECTIONS)
target_pos = handLms.landmark[self.mpHands.HandLandmark.INDEX_FINGER_TIP]
# print(f"x:{target_pos.x} y:{target_pos.y}")
if not self.cv_movtion_lock:
distance = self.gimbal_track(center_x, center_y, width*target_pos.x, height*target_pos.y, self.track_faces_iterate)
# check hand gs
pinky_finger_gs = self.calculate_angle(
handLms.landmark[self.mpHands.HandLandmark.WRIST],
handLms.landmark[self.mpHands.HandLandmark.PINKY_MCP],
handLms.landmark[self.mpHands.HandLandmark.PINKY_MCP],
handLms.landmark[self.mpHands.HandLandmark.PINKY_TIP])
index_finger_gs = self.calculate_angle(
handLms.landmark[self.mpHands.HandLandmark.INDEX_FINGER_MCP],
handLms.landmark[self.mpHands.HandLandmark.INDEX_FINGER_PIP],
handLms.landmark[self.mpHands.HandLandmark.INDEX_FINGER_PIP],
handLms.landmark[self.mpHands.HandLandmark.INDEX_FINGER_TIP])
middle_finger_gs = self.calculate_angle(
handLms.landmark[self.mpHands.HandLandmark.MIDDLE_FINGER_MCP],
handLms.landmark[self.mpHands.HandLandmark.MIDDLE_FINGER_PIP],
handLms.landmark[self.mpHands.HandLandmark.MIDDLE_FINGER_PIP],
handLms.landmark[self.mpHands.HandLandmark.MIDDLE_FINGER_TIP])
# LED Ctrl
if middle_finger_gs > 20 and pinky_finger_gs > 90:
cv2.putText(overlay_buffer, ' GS: LED Ctrl', (center_x+50, center_y+100),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
tips_distance = self.calculate_distance(handLms.landmark[self.mpHands.HandLandmark.INDEX_FINGER_TIP],
handLms.landmark[self.mpHands.HandLandmark.THUMB_TIP])
if index_finger_gs < 3:
self.max_distance = tips_distance
# print(index_finger_gs)
get_pwm = int(self.map_value(tips_distance, 0.01, self.max_distance, 0, 128))
self.base_ctrl.lights_ctrl(get_pwm, get_pwm)
# try:
# print(f"dis:{tips_distance} max:{self.max_distance} pwm:{get_pwm}")
# except Exception as e:
# print(e)
# Take Pic
elif middle_finger_gs < 10 and pinky_finger_gs > 90 and index_finger_gs < 10:
cv2.putText(overlay_buffer, ' GS: Take Pic', (center_x+50, center_y+100),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
if time.time() - self.gs_pic_last_time > self.gs_pic_interval:
self.base_ctrl.lights_ctrl(255, 255)
time.sleep(0.01)
self.picture_capture()
self.base_ctrl.lights_ctrl(0, 0)
self.gs_pic_last_time = time.time()
# Not Found
else:
cv2.putText(overlay_buffer, ' GS: Not Defined', (center_x+50, center_y+100),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
self.base_ctrl.lights_ctrl(0, 0)
cv2.putText(overlay_buffer, 'ITERATE: {}'.format(self.track_faces_iterate), (center_x+50, center_y+140),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' SPD_R: {}'.format(self.track_spd_rate), (center_x+50, center_y+160),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' ACC_R: {}'.format(self.track_acc_rate), (center_x+50, center_y+180),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
self.overlay = overlay_buffer
def cv_auto_drive(self, img):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# get a sampling
height, width = img.shape[:2]
center_x, center_y = width // 2, height // 2
mask_sampling = np.zeros((height, width), dtype=np.uint8)
cv2.circle(mask_sampling, (center_x, center_y), int(self.sampling_rad/4), (255), thickness=-1)
masked_hsv = cv2.bitwise_and(hsv, hsv, mask=mask_sampling)
masked_hsv_pixels = masked_hsv[mask_sampling == 255]
lower_hsv = np.min(masked_hsv_pixels, axis=0)
upper_hsv = np.max(masked_hsv_pixels, axis=0)
# select the line color & get the mask
# img = cv2.GaussianBlur(img, (11, 11), 0)
line_mask = cv2.inRange(hsv, self.line_lower, self.line_upper)
line_mask = cv2.erode(line_mask, None, iterations=2)
line_mask = cv2.dilate(line_mask, None, iterations=2)
sampling_h1 = int(height * self.sampling_line_1)
sampling_h2 = int(height * self.sampling_line_2)
get_sampling_1 = line_mask[sampling_h1]
get_sampling_2 = line_mask[sampling_h2]
sampling_width_1 = np.sum(get_sampling_1 == 255)
sampling_width_2 = np.sum(get_sampling_2 == 255)
if sampling_width_1:
sam_1 = True
else:
sam_1 = False
if sampling_width_2:
sam_2 = True
else:
sam_2 = False
line_index_1 = np.where(get_sampling_1 == 255)
line_index_2 = np.where(get_sampling_2 == 255)
if sam_1:
sampling_1_left = line_index_1[0][0]
sampling_1_right = line_index_1[0][sampling_width_1 - 1]
sampling_1_center= int((sampling_1_left + sampling_1_right) / 2)
if sam_2:
sampling_2_left = line_index_2[0][0]
sampling_2_right = line_index_2[0][sampling_width_2 - 1]
sampling_2_center= int((sampling_2_left + sampling_2_right) / 2)
line_slope = 0
input_speed = 0
input_turning = 0
if sam_1 and sam_2:
line_slope = (sampling_1_center - sampling_2_center) / abs(sampling_h1 - sampling_h2)
impact_by_slope = self.slope_on_speed * abs(line_slope)
# if impact_by_slope > input_speed:
# impact_by_slope = input_speed
input_speed = self.line_track_speed - impact_by_slope
# print(f'im_by_slope:{impact_by_slope} input_speed:{input_speed}')
input_turning = -(line_slope * self.slope_impact + (sampling_2_center - center_x) * self.base_impact) #+ (speed_impact * input_speed)
elif not sam_1 and sam_2:
input_speed = 0
input_turning = (sampling_2_center - center_x) * self.base_impact
elif sam_1 and not sam_2:
input_speed = (self.line_track_speed / 3)
input_turning = 0
else:
input_speed = - (self.line_track_speed / 3)
input_turning = 0
# input_turning = - line_slope * slope_impact
# try:
# input_turning = -(sampling_2_center - center_x) * base_impact
# except:
# pass
if not self.cv_movtion_lock:
self.base_ctrl.base_json_ctrl({"T":13,"X":input_speed,"Z":input_turning})
overlay_buffer = np.zeros_like(img)
overlay_buffer = cv2.cvtColor(line_mask, cv2.COLOR_GRAY2BGR)
cv2.putText(overlay_buffer, 'Line Following', (100, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
cv2.circle(overlay_buffer, (center_x, center_y), int(self.sampling_rad/4), (64, 255, 64), 1)
cv2.putText(overlay_buffer, ' SAM_H1: {}'.format(self.sampling_line_1), (center_x-150, sampling_h1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, ' SAM_H2: {}'.format(self.sampling_line_2), (center_x-150, sampling_h2-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, f'X: {input_speed:.2f}, Z: {input_turning:.2f}', (center_x+50, center_y+0), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' UPPER: {}'.format(upper_hsv), (center_x+50, center_y+40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' LOWER: {}'.format(lower_hsv), (center_x+50, center_y+60), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(overlay_buffer, ' UPPER: {}'.format(self.line_upper), (center_x+50, center_y+100), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, ' LOWER: {}'.format(self.line_lower), (center_x+50, center_y+120), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, f' SLOPE: {line_slope:.2f}', (center_x+50, center_y+140), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, f' SAM_1 SAM_2 SLOPE_IM BASE_IM SPD_IM LT_SPD SLOPE_SPD', (center_x-250, center_y-70), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.putText(overlay_buffer, f' {self.sampling_line_1:.2f} {self.sampling_line_2:.2f} {self.slope_impact:.2f} {self.base_impact:.4f} {self.speed_impact:.2f} {self.line_track_speed:.2f} {self.slope_on_speed:.2f}', (center_x-250, center_y-50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 128, 128), 1)
cv2.line(overlay_buffer, (0, sampling_h1), (width, sampling_h1), (255, 0, 0), 2)
cv2.line(overlay_buffer, (0, sampling_h2), (width, sampling_h2), (255, 0, 0), 2)
if sam_1:
cv2.line(overlay_buffer, (sampling_1_left, sampling_h1+20), (sampling_1_left, sampling_h1-20), (0, 255, 0), 2)
cv2.line(overlay_buffer, (sampling_1_right, sampling_h1+20), (sampling_1_right, sampling_h1-20), (0, 255, 0), 2)
if sam_2:
cv2.line(overlay_buffer, (sampling_2_left, sampling_h2+20), (sampling_2_left, sampling_h2-20), (0, 255, 0), 2)
cv2.line(overlay_buffer, (sampling_2_right, sampling_h2+20), (sampling_2_right, sampling_h2-20), (0, 255, 0), 2)
if sam_1 and sam_2:
cv2.line(overlay_buffer, (sampling_1_center, sampling_h1), (sampling_2_center, sampling_h2), (255, 0, 0), 2)
self.overlay = overlay_buffer
def mediaPipe_faces(self, img):
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = self.face_detection.process(image)
overlay_buffer = np.zeros_like(image)
cv2.putText(overlay_buffer, 'MediaPipe Faces', (100, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
if results.detections:
for detection in results.detections:
self.mpDraw.draw_detection(overlay_buffer, detection)
self.overlay = overlay_buffer
def mediaPipe_pose(self, img):
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = self.pose.process(image)
overlay_buffer = np.zeros_like(image)
cv2.putText(overlay_buffer, 'MediaPipe Pose', (100, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
if results.pose_landmarks:
self.mpDraw.draw_landmarks(overlay_buffer, results.pose_landmarks, self.mp_pose.POSE_CONNECTIONS)
self.overlay = overlay_buffer
def info_update(self, megs, color, size):
if megs == -1:
self.info_update_time = time.time()
self.show_info_flag = True
return
wrapped_lines = textwrap.wrap(megs, self.recv_line_max)
for line in wrapped_lines:
self.info_deque.appendleft({'text':line,'color':color,'size':size})
self.info_update_time = time.time()
self.show_info_flag = True
def commandline_ctrl(self, args_str):
return
def show_recv_info(self, input_cmd):
if input_cmd == True:
self.show_base_info_flag = True
else:
self.show_base_info_flag = False
print(self.show_base_info_flag)
def format_json_numbers(self, obj):
if isinstance(obj, dict):
return {k: self.format_json_numbers(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [self.format_json_numbers(elem) for elem in obj]
elif isinstance(obj, float):
return round(obj, 2)
return obj
def update_base_data(self, input_data):
if not input_data:
return
try:
if self.show_base_info_flag:
self.recv_deque.appendleft(json.dumps(self.format_json_numbers(input_data)))
if input_data['T'] == 1003:
self.info_deque.appendleft({'text':json.dumps(input_data['mac']),'color':(16,64,255),'size':0.5})
wrapped_lines = textwrap.wrap(json.dumps(input_data['megs']), self.recv_line_max)
for line in wrapped_lines:
self.info_deque.appendleft({'text':line,'color':(255,255,255),'size':0.5})
self.info_update_time = time.time()
self.show_info_flag = True
except Exception as e:
print(f"[cv_ctrl.update_base_data] error: {e}")
def cv_process(self, frame):
cv_mode_list = {
f['code']['cv_moti']: self.cv_detect_movition,
f['code']['cv_face']: self.cv_detect_faces,
f['code']['cv_objs']: self.cv_detect_objects,
f['code']['cv_clor']: self.cv_detect_color,
f['code']['mp_hand']: self.mp_detect_hand,
f['code']['cv_auto']: self.cv_auto_drive,
f['code']['mp_face']: self.mediaPipe_faces,
f['code']['mp_pose']: self.mediaPipe_pose
}
try:
cv_mode_list[self.cv_mode](frame)
except Exception as e:
print(f'[cv_ctrl.cv_process] error: {e}')
self.cv_event.clear()
def opencv_threading(self, input_img):
cv_thread = threading.Thread(target=self.cv_process, args=(input_img,), daemon=True)
cv_thread.start()
def head_light_ctrl(self, input_mode):
self.cv_light_mode = input_mode
if input_mode == 0:
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, 0)
self.cv_light_mode = input_mode
elif input_mode == 2:
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, 255)
self.cv_light_mode = input_mode
elif input_mode == 3:
if self.cv_light_mode == 1:
return
elif self.base_ctrl.head_light_status == 0:
self.cv_light_mode = 2
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, 255)
elif self.base_ctrl.head_light_status != 0:
self.cv_light_mode = 0
self.base_ctrl.lights_ctrl(self.base_ctrl.base_light_status, 0)
def set_movtion_lock(self, input_cmd):
if not input_cmd:
self.cv_movtion_lock = False
self.pan_angle = 0
self.tilt_angle = 0
else:
self.cv_movtion_lock = True
def change_target_color(self, lc, uc):
self.color_lower = np.array([lc[0], lc[1], lc[2]])
self.color_upper = np.array([uc[0], uc[1], uc[2]])
def selet_target_color(self, color_name):
if color_name in self.color_list:
self.color_lower = self.color_list[color_name][0]
self.color_upper = self.color_list[color_name][1]
def change_line_color(self, lc, uc):
self.line_lower = np.array([lc[0], lc[1], lc[2]])
self.line_upper = np.array([uc[0], uc[1], uc[2]])
def set_line_track_args(self, sam_pos_1, sam_pos_2, slope_im, base_im, spd_im, lt_spd, slope_spd):
self.sampling_line_1 = sam_pos_1
if sam_pos_2 < sam_pos_1:
sam_pos_2 = sam_pos_1 + 0.1
self.sampling_line_2 = sam_pos_2
self.slope_impact = slope_im
self.base_impact = base_im
self.speed_impact = spd_im
self.line_track_speed = lt_spd
self.slope_on_speed = slope_spd
def set_pt_track_args(self, args_1, args_2):
if args_1 == '-c' or args_1 == '--color_iterate':
self.track_color_iterate = float(args_2)
elif args_1 == '-f' or args_1 == '--faces_iterate':
self.track_faces_iterate = float(args_2)
elif args_1 == '-s' or args_1 == '--speed':
self.track_spd_rate = float(args_2)
elif args_1 == '-a' or args_1 == '--acc':
self.track_acc_rate = float(args_2)
def timelapse(self, input_speed, input_time, input_interval, input_loop_times):
self.mission_flag = True
for i in range(0, input_loop_times):
if not self.mission_flag:
self.mission_flag = False
break
self.base_ctrl.base_json_ctrl({"T":1,"L":input_speed,"R":input_speed})
time.sleep(input_time)
self.base_ctrl.base_json_ctrl({"T":1,"L":0,"R":0})
time.sleep(input_interval/2)
self.base_ctrl.lights_ctrl(255, 255)
time.sleep(0.01)
self.picture_capture()
self.base_ctrl.lights_ctrl(0, 0)
time.sleep(input_interval/2)
if not self.mission_flag:
self.mission_flag = False
break
def mission_stop(self):
self.mission_flag = False