You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am using my own datasets as source and target images but I am encountering an error. Help needed ASAP.
Input images size : 256
Target Image size : 256
Nunber of classes :1 (source and target both)
What does your label look like, e.g., only [0, 1] categories? If so, please make sure that you have the correct size in the classifier (final output layer), so that you can output only 2 channels for computing the cross-entropy loss with respect to your ground truth.
I am using my own datasets as source and target images but I am encountering an error. Help needed ASAP.
Input images size : 256
Target Image size : 256
Nunber of classes :1 (source and target both)
I got this error -
/opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [16,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [17,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [18,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [19,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [20,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [21,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [22,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [23,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [24,0,0] Assertion
t >= 0 && t < n_classes
failed./opt/conda/conda-bld/pytorch_1579022021485/work/aten/src/THCUNN/ClassNLLCriterion.cu:106: void cunn_ClassNLLCriterion_updateOutput_kernel(Dtype *, Dtype *, Dtype *, long *, Dtype *, int, int, int, int, long) [with Dtype = float, Acctype = float]:
block: [0,0,0], thread: [25,0,0] Assertion
t >= 0 && t < n_classes
failed.Traceback (most recent call last):
File "train_com.py", line 419, in
main()
File "train_com.py", line 306, in main
loss_seg2 = loss_calc(pred2, labels, args.gpu)
File "train_com.py", line 152, in loss_calc
label = Variable(label.long()).cuda(gpu)
RuntimeError: CUDA error: device-side assert triggered
The text was updated successfully, but these errors were encountered: