-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcustomized_train_and_test.py
509 lines (439 loc) · 21 KB
/
customized_train_and_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""
Adapted from https://github.com/mlfoundations/open_clip.
Copyright (c) 2012-2021 Gabriel Ilharco, Mitchell Wortsman, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, John Miller, Hongseok Namkoong, Hannaneh Hajishirzi, Ali Farhadi, Ludwig Schmidt
"""
import glob
import json
import logging
import os
import re
import subprocess
import sys
import random
from datetime import datetime
import numpy as np
import torch
from torch import optim
from torch.cuda.amp import GradScaler
from torchvision import transforms
try:
import wandb
except ImportError:
wandb = None
try:
import torch.utils.tensorboard as tensorboard
except ImportError:
tensorboard = None
try:
import horovod.torch as hvd
except ImportError:
hvd = None
from src.open_clip.factory import create_model_and_transforms, get_tokenizer, create_loss
from src.open_clip.model import trace_model
# from src.open_clip import create_model_and_transforms, trace_model, get_tokenizer, create_loss
from src.training.data import get_data
from src.training.distributed import is_master, init_distributed_device, broadcast_object
from src.training.logger import setup_logging
from src.training.scheduler import cosine_lr, const_lr, const_lr_cooldown
from src.training.train import train_one_epoch, evaluate
from src.training.file_utils import pt_load, check_exists, start_sync_process, remote_sync
from src.training.main import natural_key, get_latest_checkpoint, copy_codebase
from test_zero_shot_classification import *
from params import parse_args
LATEST_CHECKPOINT_NAME = "epoch_latest.pt"
def RandomRotationNew(image):
angle = random.choice([0, 90, 180, 270])
image = transforms.functional.rotate(image, angle)
return image
def zero_shot_eval_during_training(model, test_dataloaders, epoch, args, tb_writer=None):
logging.info('Starting zero-shot evaluation.')
zero_shot_metrics = {}
for dataset_name in test_dataloaders:
logging.info(f'Evaluating zero-shot classification for dataset {dataset_name}')
results = test_zero_shot_classification(model, test_dataloaders[dataset_name]['dataloader'],
test_dataloaders[dataset_name]['labels'],
test_dataloaders[dataset_name]['is_binary'], args,
dataset_name=dataset_name, debugging=args.debugging)
for k, v in results.items():
if type(v) in [float, int, np.float16, np.float32, np.float64, np.int8, np.int16, np.int32, np.int64]:
zero_shot_metrics[k] = v
logging.info(
f"Zero-Shot Eval Epoch: {epoch} "
+ "\t".join([f"{k}: {round(v, 4):.4f}" for k, v in zero_shot_metrics.items()])
)
if args.save_logs:
for name, val in zero_shot_metrics.items():
if tb_writer is not None:
tb_writer.add_scalar(f"val/{name}", val, epoch)
with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f:
f.write(json.dumps(zero_shot_metrics))
f.write("\n")
# if args.wandb:
# assert wandb is not None, 'Please install wandb.'
# for name, val in zero_shot_metrics.items():
# wandb.log({f"val/{name}": val, 'epoch': epoch})
logging.info('Finished zero-shot evaluation.')
return zero_shot_metrics
def train_and_test(args):
args = parse_args(args)
if torch.cuda.is_available():
# This enables tf32 on Ampere GPUs which is only 8% slower than
# float16 and almost as accurate as float32
# This was a default in pytorch until 1.12
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
# fully initialize distributed device environment
device = init_distributed_device(args)
# get the name of the experiments
if args.name is None:
# sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule?
model_name_safe = args.model.replace('/', '-')
date_str = datetime.now().strftime("%Y_%m_%d-%H_%M_%S")
if args.distributed:
# sync date_str from master to all ranks
date_str = broadcast_object(args, date_str)
args.name = '-'.join([
date_str,
f"model_{model_name_safe}",
f"lr_{args.lr}",
f"b_{args.batch_size}",
f"j_{args.workers}",
f"p_{args.precision}",
])
resume_latest = args.resume == 'latest'
log_base_path = os.path.join(args.logs, args.name)
args.log_path = None
if is_master(args, local=args.log_local):
os.makedirs(log_base_path, exist_ok=True)
log_filename = f'out-{args.rank}' if args.log_local else 'out.log'
args.log_path = os.path.join(log_base_path, log_filename)
if os.path.exists(args.log_path) and not resume_latest:
print(
"Error. Experiment already exists. Use --name {} to specify a new experiment."
)
return -1
# Setup text logger
args.log_level = logging.DEBUG if args.debug else logging.INFO
setup_logging(args.log_path, args.log_level)
# Setup wandb, tensorboard, checkpoint logging
args.wandb = 'wandb' in args.report_to or 'all' in args.report_to
args.tensorboard = 'tensorboard' in args.report_to or 'all' in args.report_to
args.checkpoint_path = os.path.join(log_base_path, "checkpoints")
if is_master(args):
args.tensorboard_path = os.path.join(log_base_path, "tensorboard") if args.tensorboard else ''
for dirname in [args.tensorboard_path, args.checkpoint_path]:
if dirname:
os.makedirs(dirname, exist_ok=True)
else:
args.tensorboard_path = ''
if resume_latest:
resume_from = None
checkpoint_path = args.checkpoint_path
# If using remote_sync, need to check the remote instead of the local checkpoints folder.
if args.remote_sync is not None:
checkpoint_path = os.path.join(args.remote_sync, args.name, "checkpoints")
if args.save_most_recent:
print('Error. Cannot use save-most-recent with remote_sync and resume latest.')
return -1
if args.remote_sync_protocol != 's3':
print('Error. Sync protocol not supported when using resume latest.')
return -1
if is_master(args):
# Checking for existing checkpoint via master rank only. It is possible for
# different rank processes to see different files if a shared file-system is under
# stress, however it's very difficult to fully work around such situations.
if args.save_most_recent:
# if --save-most-recent flag is set, look for latest at a fixed filename
resume_from = os.path.join(checkpoint_path, LATEST_CHECKPOINT_NAME)
if not os.path.exists(resume_from):
# If no latest checkpoint has been saved yet, don't try to resume
resume_from = None
else:
# otherwise, list checkpoint dir contents and pick the newest checkpoint
resume_from = get_latest_checkpoint(checkpoint_path, remote=args.remote_sync is not None)
if resume_from:
logging.info(f'Found latest resume checkpoint at {resume_from}.')
else:
logging.info(f'No latest resume checkpoint found in {checkpoint_path}.')
if args.distributed:
# sync found checkpoint path to all ranks
resume_from = broadcast_object(args, resume_from)
args.resume = resume_from
if args.copy_codebase:
copy_codebase(args)
# start the sync proces if remote-sync is not None
remote_sync_process = None
if is_master(args) and args.remote_sync is not None:
# first make sure it works
result = remote_sync(
os.path.join(args.logs, args.name),
os.path.join(args.remote_sync, args.name),
args.remote_sync_protocol
)
if result:
logging.info('remote sync successful.')
else:
logging.info('Error: remote sync failed. Exiting.')
return -1
# if all looks good, start a process to do this every args.remote_sync_frequency seconds
remote_sync_process = start_sync_process(
args.remote_sync_frequency,
os.path.join(args.logs, args.name),
os.path.join(args.remote_sync, args.name),
args.remote_sync_protocol
)
remote_sync_process.start()
if args.precision == 'fp16':
logging.warning(
'It is recommended to use AMP mixed-precision instead of FP16. '
'FP16 support needs further verification and tuning, especially for train.')
if args.horovod:
logging.info(
f'Running in horovod mode with multiple processes / nodes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
elif args.distributed:
logging.info(
f'Running in distributed mode with multiple processes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
else:
logging.info(f'Running with a single process. Device {args.device}.')
dist_model = None
args.distill = args.distill_model is not None and args.distill_pretrained is not None
if args.distill:
#FIXME: support distillation with grad accum.
assert args.accum_freq == 1
#FIXME: support distillation with coca.
assert 'coca' not in args.model.lower()
if isinstance(args.force_image_size, (tuple, list)) and len(args.force_image_size) == 1:
# arg is nargs, single (square) image size list -> int
args.force_image_size = args.force_image_size[0]
random_seed(args.seed, 0)
model, preprocess_train, preprocess_val = create_model_and_transforms(
args.model,
args.pretrained,
precision=args.precision,
device=device,
jit=args.torchscript,
force_quick_gelu=args.force_quick_gelu,
force_custom_text=args.force_custom_text,
force_patch_dropout=args.force_patch_dropout,
force_image_size=args.force_image_size,
pretrained_image=args.pretrained_image,
image_mean=args.image_mean,
image_std=args.image_std,
aug_cfg=args.aug_cfg,
output_dict=True,
)
if args.random_rotation:
# add random rotation step into preprocess_train
for i, trans in enumerate(preprocess_train.transforms):
if type(trans) == transforms.transforms.ToTensor:
# insert random rotation right before ToTensor
preprocess_train.transforms.insert(i, transforms.Lambda(RandomRotationNew))
break
if args.distill:
# FIXME: currenlty assumes the model your distilling from has the same tokenizer & transforms.
dist_model, _, _ = create_model_and_transforms(
args.distill_model,
args.distill_pretrained,
device=device,
precision=args.precision,
output_dict=True,
)
random_seed(args.seed, args.rank)
if args.trace:
model = trace_model(model, batch_size=args.batch_size, device=device)
if args.lock_image:
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
model.lock_image_tower(
unlocked_groups=args.lock_image_unlocked_groups,
freeze_bn_stats=args.lock_image_freeze_bn_stats)
if args.lock_text:
model.lock_text_tower(
unlocked_layers=args.lock_text_unlocked_layers,
freeze_layer_norm=args.lock_text_freeze_layer_norm)
if args.grad_checkpointing:
model.set_grad_checkpointing()
if is_master(args):
logging.info("Model:")
logging.info(f"{str(model)}")
logging.info("Params:")
params_file = os.path.join(args.logs, args.name, "params.txt")
with open(params_file, "w") as f:
for name in sorted(vars(args)):
val = getattr(args, name)
logging.info(f" {name}: {val}")
f.write(f"{name}: {val}\n")
if args.distributed and not args.horovod:
if args.use_bn_sync:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
ddp_args = {}
if args.ddp_static_graph:
# this doesn't exist in older PyTorch, arg only added if enabled
ddp_args['static_graph'] = True
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], **ddp_args)
if args.distill:
dist_model = torch.nn.parallel.DistributedDataParallel(dist_model, device_ids=[device], **ddp_args)
# create optimizer and scaler
optimizer = None
scaler = None
if args.train_data or args.dataset_type == "synthetic":
assert not args.trace, 'Cannot train with traced model'
exclude = lambda n, p: p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n
include = lambda n, p: not exclude(n, p)
named_parameters = list(model.named_parameters())
gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad]
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]
optimizer = optim.AdamW(
[
{"params": gain_or_bias_params, "weight_decay": 0.},
{"params": rest_params, "weight_decay": args.wd},
],
lr=args.lr,
betas=(args.beta1, args.beta2),
eps=args.eps,
)
if args.horovod:
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
scaler = GradScaler() if args.precision == "amp" else None
# optionally resume from a checkpoint
start_epoch = 0
if args.resume is not None:
checkpoint = pt_load(args.resume, map_location='cpu')
if 'epoch' in checkpoint:
# resuming a train checkpoint w/ epoch and optimizer state
start_epoch = checkpoint["epoch"]
sd = checkpoint["state_dict"]
if not args.distributed and next(iter(sd.items()))[0].startswith('module'):
sd = {k[len('module.'):]: v for k, v in sd.items()}
model.load_state_dict(sd)
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
if scaler is not None and 'scaler' in checkpoint:
scaler.load_state_dict(checkpoint['scaler'])
logging.info(f"=> resuming checkpoint '{args.resume}' (epoch {start_epoch})")
else:
# loading a bare (model only) checkpoint for fine-tune or evaluation
model.load_state_dict(checkpoint)
logging.info(f"=> loaded checkpoint '{args.resume}' (epoch {start_epoch})")
# initialize datasets
data = get_data(args, (preprocess_train, preprocess_val), epoch=start_epoch, tokenizer=get_tokenizer(args.model))
assert len(data), 'At least one train or eval dataset must be specified.'
# initialize benchmark dataloaders for testing zero-shot classification
if args.datasets_for_testing is not None or args.test_data_name is not None:
test_dataloaders = get_test_dataloaders(args, preprocess_val)
else:
test_dataloaders = None
# create scheduler if train
scheduler = None
if 'train' in data and optimizer is not None:
total_steps = (data["train"].dataloader.num_batches // args.accum_freq) * args.epochs
if args.lr_scheduler == "cosine":
scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps)
elif args.lr_scheduler == "const":
scheduler = const_lr(optimizer, args.lr, args.warmup, total_steps)
elif args.lr_scheduler == "const-cooldown":
assert args.epochs_cooldown is not None,\
"Please specify the number of cooldown epochs for this lr schedule."
cooldown_steps = (data["train"].dataloader.num_batches // args.accum_freq) * args.epochs_cooldown
scheduler = const_lr_cooldown(
optimizer, args.lr, args.warmup, total_steps,
cooldown_steps, args.lr_cooldown_power, args.lr_cooldown_end)
else:
logging.error(
f'Unknown scheduler, {args.lr_scheduler}. Available options are: cosine, const, const-cooldown.')
exit(1)
# determine if this worker should save logs and checkpoints. only do so if it is rank == 0
args.save_logs = args.logs and args.logs.lower() != 'none' and is_master(args)
writer = None
if args.save_logs and args.tensorboard:
assert tensorboard is not None, "Please install tensorboard."
writer = tensorboard.SummaryWriter(args.tensorboard_path)
if args.wandb and is_master(args):
assert wandb is not None, 'Please install wandb.'
logging.debug('Starting wandb.')
args.train_sz = data["train"].dataloader.num_samples
if args.val_data is not None:
args.val_sz = data["val"].dataloader.num_samples
# you will have to configure this for your project!
wandb.init(
project=args.wandb_project_name,
name=args.name,
id=args.name,
notes=args.wandb_notes,
tags=[],
resume='auto' if args.resume == "latest" else None,
config=vars(args),
)
if args.debug:
wandb.watch(model, log='all')
wandb.save(params_file)
logging.debug('Finished loading wandb.')
if 'train' not in data:
evaluate(model, data, start_epoch, args, writer)
if test_dataloaders is not None:
eval_metrics = zero_shot_eval_during_training(model, test_dataloaders, start_epoch, args, tb_writer=writer)
print(eval_metrics)
return
loss = create_loss(args)
for epoch in range(start_epoch, args.epochs):
if is_master(args):
logging.info(f'Start epoch {epoch}')
train_one_epoch(model, data, loss, epoch, optimizer, scaler, scheduler, dist_model, args, tb_writer=writer)
completed_epoch = epoch + 1
if any(v in data for v in ('val', 'imagenet-val', 'imagenet-v2')):
evaluate(model, data, completed_epoch, args, writer)
# evaluate zero-shot classification
if (test_dataloaders is not None) and (args.zeroshot_frequency and ((epoch % args.zeroshot_frequency) == 0 or epoch == args.epochs)):
eval_metrics = zero_shot_eval_during_training(model, test_dataloaders, completed_epoch, args, tb_writer=writer)
if args.wandb and is_master(args):
assert wandb is not None, 'Please install wandb.'
for name, val in eval_metrics.items():
wandb.log({f"eval/{name}": val, 'epoch': completed_epoch})
# Saving checkpoints.
if args.save_logs:
checkpoint_dict = {
"epoch": completed_epoch,
"name": args.name,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
if scaler is not None:
checkpoint_dict["scaler"] = scaler.state_dict()
if completed_epoch == args.epochs or (
args.save_frequency > 0 and (completed_epoch % args.save_frequency) == 0
):
torch.save(
checkpoint_dict,
os.path.join(args.checkpoint_path, f"epoch_{completed_epoch}.pt"),
)
if args.delete_previous_checkpoint:
previous_checkpoint = os.path.join(args.checkpoint_path, f"epoch_{completed_epoch - 1}.pt")
if os.path.exists(previous_checkpoint):
os.remove(previous_checkpoint)
if args.save_most_recent:
# try not to corrupt the latest checkpoint if save fails
tmp_save_path = os.path.join(args.checkpoint_path, "tmp.pt")
latest_save_path = os.path.join(args.checkpoint_path, LATEST_CHECKPOINT_NAME)
torch.save(checkpoint_dict, tmp_save_path)
os.replace(tmp_save_path, latest_save_path)
if args.wandb and is_master(args):
wandb.finish()
# run a final sync.
if remote_sync_process is not None:
logging.info('Final remote sync.')
remote_sync_process.terminate()
result = remote_sync(
os.path.join(args.logs, args.name),
os.path.join(args.remote_sync, args.name),
args.remote_sync_protocol
)
if result:
logging.info('Final remote sync successful.')
else:
logging.info('Final remote sync failed.')
if __name__ == "__main__":
train_and_test(sys.argv[1:])