- The experiments are run with PyTorch 1.4.0, CUDA 10.1, and CUDNN 7.5.
- The models can be downloaded directly from the download links.
Model | GPUs | Train time | Val [email protected] | Val AMOTA | Download |
---|---|---|---|---|---|
nuScenes_3Dtracking | 8 | 144h | 0.352 | 0.242 | model |
nuScenes_LSTM_motion_model | 1 | 9h | - | - | model |
Place the tracking model weight under
${QD-3DT}/work_dirs/Nusc/quasi_r101_dcn_3dmatch_multibranch_conv_dep_dim_cen_clsrot_sep_aug_confidence_scale_no_filter/latest.pth
Place the LSTM model weight under
${QD-3DT}/checkpoints/batch128_min10_seq10_dim7_VeloLSTM_nuscenes_100_linear.pth
- Tracking model is trained on the keyframes of 6 camera images for 24 epochs on servers with 8x 32G V100 GPUs.
- LSTM model is trained on the pure detection results and greedy matching to the groundtruth on servers with 1x 1080Ti GPU.
! NOTE: Due to Waymo Open Dataset license, we cannot release the models trained on the dataset.
Model | GPUs | Train time | Val MOTA/L2 [0m,30m)] | Download |
---|---|---|---|---|
Waymo_3Dtracking | 8 | 336h | 0.0001 | model |
Waymo_LSTM_motion_model | 1 | 24h | - | model |
Place the tracking model weight under
${QD-3DT}/work_dirs/Waymo/quasi_r101_dcn_3dmatch_multibranch_conv_dep_dim_cen_clsrot_sep_aug_confidence_scale_no_filter_scaled_res/latest.pth
Place the LSTM model weight under
${QD-3DT}/checkpoints/batch128_min10_seq10_dim7_VeloLSTM_waymo_100_linear.pth
- Tracking model is trained on all 5 camera images for 24 epochs on servers with 8x 32G V100 GPUs.
- LSTM model is trained on the pure detection results and greedy matching to the groundtruth on servers with 1x 1080Ti GPU.
Model | GPUs | Train time | MOTA (2D Test) | Download |
---|---|---|---|---|
KITTI_train_3Dtrack | 4 | 16h | 86.41 | model |
KITTI_LSTM_motion_model | 1 | 0.5h | - | model |
KITTI_subtrain_3Dtrack | 4 | 14h | - | model |
KITTI_subtrain_LSTM_motion_model | 1 | 0.5h | - | model |
Place the full train tracking model weight under
${QD-3DT}/work_dirs/KITTI/quasi_dla34_dcn_3dmatch_multibranch_conv_dep_dim_cen_clsrot_sep_aug_confidence_mod_anchor_ratio_small_strides_GTA/latest.pth
and half train tracking model weight under
${QD-3DT}/work_dirs/KITTI/quasi_dla34_dcn_3dmatch_multibranch_conv_dep_dim_cen_clsrot_sep_aug_confidence_subtrain_mod_anchor_ratio_small_strides_GTA/latest.pth
Place the LSTM model weight under
${QD-3DT}/checkpoints/batch8_min10_seq10_dim7_train_dla34_regress_pretrain_VeloLSTM_kitti_100_linear.pth
and
${QD-3DT}/checkpoints/batch8_min10_seq10_dim7_subtrain_dla34_regress_pretrain_VeloLSTM_kitti_100_linear.pth
- Tracking model is trained on both detection and tracking images for 24 epochs on servers with 4x 32G V100 GPUs.
- LSTM model is trained on the pure detection results and greedy matching to the groundtruth on servers with 1x 1080Ti GPU