forked from xiaoyu2er/leetcode-js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
096-Unique-Binary-Search-Trees.js
50 lines (45 loc) · 1.18 KB
/
096-Unique-Binary-Search-Trees.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/**
* https://leetcode.com/problems/unique-binary-search-trees/description/
* Difficulty:Medium
*
* Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
* For example,
* Given n = 3, there are a total of 5 unique BST's.
*
* 1 3 3 2 1
* \ / / / \ \
* 3 2 1 1 3 2
* / / \ \
* 2 1 2 3
*
*/
/**
* G(n): the number of unique BST for a sequence of length n.
* F(i, n), 1 <= i <= n: the number of unique BST, where the number i is the root of BST, and the sequence ranges from 1 to n.
*
* G(n) = F(1, n) + F(2, n) + ... + F(n, n).
* G(0)=1, G(1)=1.
*
* F(i, n) = G(i-1) * G(n-i) 1 <= i <= n
* G(n) = G(0) * G(n-1) + G(1) * G(n-2) + … + G(n-1) * G(0)
*
*
*
*/
/**
* @param {number} n
* @return {number}
*/
var numTrees = function (n) {
var dp = [1, 1];
for (var i = 2; i <= n; i++) {
dp[i] = 0;
for (var j = 0; j < i; j++) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
return dp[n];
};
console.log(numTrees(1));
console.log(numTrees(2));
console.log(numTrees(3));