forked from xiaoyu2er/leetcode-js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path051-N-Queens.js
67 lines (64 loc) · 1.63 KB
/
051-N-Queens.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/**
* https://leetcode.com/problems/n-queens/description/
* Difficulty:Hard
*
* The n-queens puzzle is the problem of placing n queens on an n×n chessboard
* such that no two queens attack each other.
*
* Given an integer n, return all distinct solutions to the n-queens puzzle.
* Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
*
* For example,
* There exist two distinct solutions to the 4-queens puzzle:
* [
* [".Q..", // Solution 1
* "...Q",
* "Q...",
* "..Q."],
*
* ["..Q.", // Solution 2
* "Q...",
* "...Q",
* ".Q.."]
* ]
* 2,1 3,2
*/
/**
* @param {number} n
* @return {string[][]}
*/
var solveNQueens = function (n) {
var ret = [];
var board = [];
for (var i = 0; i < n; i++) {
board.push(new Array(n).fill('.'));
}
helper(board, 0, ret);
return ret;
};
function helper(board, col, ret) {
if (col === board.length) {
ret.push(construct(board));
} else {
for (var i = 0; i < board.length; i++) {
if (check(board, i, col)) {
board[i][col] = 'Q';
helper(board, col + 1, ret);
board[i][col] = '.';
}
}
}
}
function check(board, x, y) {
for (var i = 0; i < board.length; i++) {
for (var j = 0; j < y; j++) {
if (board[i][j] === 'Q' &&
(i === x || i + j === x + y || i + y === j + x)) return false;
}
}
return true;
}
function construct(board) {
return board.map(arr => arr.join(''));
}
console.log(solveNQueens(4));