diff --git a/examples/recipe.sherlock-gpu.md b/examples/recipe.sherlock-gpu.md new file mode 100644 index 0000000..c33a36a --- /dev/null +++ b/examples/recipe.sherlock-gpu.md @@ -0,0 +1,143 @@ +A recipe for interactive computing using custom Jupyter kernels on Stanford's Sherlock. + +# Setting up custom conda environment on Sherlock's login node +## 1. Download and install Miniconda +```bash +wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh +# install +bash Miniconda3-latest-Linux-x86_64.sh +conda config --set always_yes yes +``` + + +## 2. Install jupyter notebook/lab and secure your notebooks with a password + +```bash +# install the default py3 kernel for jupyter notebook +conda install ipython jupyter notebook jupyterlab +# add password +jupyter notebook password +``` + +## 3. (Optional) Add custom conda environment. i.e. fastai +```bash +conda create -n fastai ipython ipykernel +# add the custom to Jupyter notebook +conda activate fastai +python -m ipykernel install --user --name fastai --display-name FastAI + +``` +you could also add R, Julia etc kernel. + +## 4. Install pytorch/tensorflow + +You should select the existed cuda version which installed in Sherlock +```bash +conda install -c pytorch pytorch torchvision cudatoolkit=10.1 +``` +tensorflow +```bash +conda install tensorflow-gpu cudatoolkit=10.1 +``` + +## 5. Load gpu modules. Select the corresponding cuda version you've just installed +```bash +# this is my version +module load cuda/10.1.168 +module load cudnn/7.6.4 +module load nccl +``` + +## 6. now, open ipython, run +```python +import torch +print(torch.cuda.is_avilable()) +``` +if print out is `True`, then you'er OK to use GPUs. + +# Follow these steps on your local machine +see details [here](https://vsoch.github.io/lessons/sherlock-jupyter/). + +## 7. Download the `forward` repo +```bash +git clone https://github.com/vsoch/forward +cd forward +``` +## 8. Generate your parameters +``` +bash setup.sh +``` +Select Sherlock partition: gpu + +## 9. SSH Credentials + +```bash +bash hosts/sherlock_ssh.sh >> ~/.ssh/config +``` + +## 10. create a sbatch script in forward/sbatches/sherlock and save as `jupyter-gpu.sbatch` + +```bash +#!/bin/bash + +PORT=$1 +NOTEBOOK_DIR=$2 +if [ -z "$NOTEBOOK_DIR" ]; then + cd $SCRATCH +else + cd $NOTEBOOK_DIR +fi + +## to compile libtorch C++ code, load these modules +# module load gcc/7.3.0 +# module load gdb +# module load cmake +# export CC=$(which gcc) +# export CXX=$(which g++) + +# select cuda version you need +module load cuda/10.1.168 +module load cudnn/7.6.4 +module load nccl + +# activate fastai env +source activate fastai +jupyter lab --no-browser --port=$PORT +``` + +## 11. Start a session +The default working directory is `$SCRATCH` +```bash +bash start.sh jupyter-gpu +``` +change the working directory +``` +bash start.sh jupyter /path/to/dir +``` + +## 12. open your browser in local machine and type + +if your port is 51888, then +``` +http://localhost:51888/ +``` +here is my jupyter lab computing environment. Have fun! + + +## 13. Resume a session +```bash +bash resume.sh jupyter-gpu +# or +bash resume.sh jupyter-gpu /path/to/dir +``` +## 14. Stop a session + +```bash +bash end.sh jupyter-gpu +# or +bash end.sh jupyter-gpu /path/to/dir +``` + + + + diff --git a/sbatches/sherlock/jupyter-gpu.sbatch b/sbatches/sherlock/jupyter-gpu.sbatch new file mode 100755 index 0000000..f702311 --- /dev/null +++ b/sbatches/sherlock/jupyter-gpu.sbatch @@ -0,0 +1,24 @@ +#!/bin/bash + +PORT=$1 +NOTEBOOK_DIR=$2 +if [ -z "$NOTEBOOK_DIR" ]; then + cd $SCRATCH +else + cd $NOTEBOOK_DIR +fi + +## to compile libtorch C++ code, load these modules +# module load gcc/7.3.0 +# module load gdb +# module load cmake +# export CC=$(which gcc) +# export CXX=$(which g++) + +# please select correct cuda version match to the pytorch/tensorflow +module load cuda/10.1.168 +module load cudnn/7.6.4 +module load nccl + +source activate base +jupyter lab --no-browser --port=$PORT