-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathcolmap_wrapper.py
251 lines (205 loc) · 10.1 KB
/
colmap_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""Part of this script is adapted from the Colmap codebase (scripts/python), which uses the new BSD license. Disclaimer:
Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
"""
import argparse
import shlex
import subprocess
import struct
import collections
import os
import numpy as np
# params
parser = argparse.ArgumentParser()
# data paths
parser.add_argument('--img_dir', type=str, required=True, help='path to file list of h5 train data')
parser.add_argument('--trgt_dir', required=True, help='path to file list of h5 train data')
parser.add_argument('--dense', action='store_true', default=False, help='#images')
def cond_mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def bundle_adjust(frame_dir, target_dir, dense):
colmap_template = 'colmap automatic_reconstructor --dense {} --quality low --single_camera 1 --workspace_path {} --image_path {}'
colmap_cmd = colmap_template.format(1 if dense else 0, target_dir, frame_dir)
args = shlex.split(colmap_cmd)
p = subprocess.Popen(args)
p.wait()
def write_poses(images, target_dir):
for _, image in images.items():
name = os.path.splitext(os.path.basename(image.name))[0]
rot = image.qvec2rotmat()
trans = image.tvec.reshape(3,1)
full_pose = np.concatenate((rot, trans), axis=1)
full_pose = np.concatenate((full_pose, np.array([[0, 0, 0, 1]])), axis=0)
full_pose = np.linalg.inv(full_pose)
with open(os.path.join(target_dir, name + '.txt'), 'w') as file:
file.write(' '.join(map(str, full_pose.reshape(-1).tolist())) + '\n')
def write_intrinsic(cameras, target_dir):
all_params = []
for _, camera in cameras.items():
all_params.append(camera.params)
example_cam = cameras[list(cameras.keys())[0]]
height, width = example_cam.height, example_cam.width
params = np.mean(all_params, axis=0)
with open(os.path.join(target_dir, 'intrinsics.txt'), 'w') as file:
file.write(' '.join(map(str, params.reshape(-1).tolist())) + '\n')
file.write(' '.join(map(str, [0.,0.,0.])) + '\n')
file.write(str(1.) + '\n')
file.write(str(height) + ' ' + str(width) + '\n')
file.write(str(cameras[list(cameras.keys())[0]].model))
""" From Colmap python scripts
"""
BaseImage = collections.namedtuple(
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
CameraModel = collections.namedtuple(
"CameraModel", ["model_id", "model_name", "num_params"])
Camera = collections.namedtuple(
"Camera", ["id", "model", "width", "height", "params"])
CAMERA_MODELS = {
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
CameraModel(model_id=7, model_name="FOV", num_params=5),
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS])
def qvec2rotmat(qvec):
return np.array([
[1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2]])
class Image(BaseImage):
def qvec2rotmat(self):
return qvec2rotmat(self.qvec)
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:param endian_character: Any of {@, =, <, >, !}
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)
def read_images_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
images = {}
with open(path_to_model_file, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for image_index in range(num_reg_images):
binary_image_properties = read_next_bytes(
fid, num_bytes=64, format_char_sequence="idddddddi")
image_id = binary_image_properties[0]
qvec = np.array(binary_image_properties[1:5])
tvec = np.array(binary_image_properties[5:8])
camera_id = binary_image_properties[8]
image_name = ""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
image_name += current_char.decode("utf-8")
current_char = read_next_bytes(fid, 1, "c")[0]
num_points2D = read_next_bytes(fid, num_bytes=8,
format_char_sequence="Q")[0]
x_y_id_s = read_next_bytes(fid, num_bytes=24 * num_points2D,
format_char_sequence="ddq" * num_points2D)
xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])),
tuple(map(float, x_y_id_s[1::3]))])
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
images[image_id] = Image(
id=image_id, qvec=qvec, tvec=tvec,
camera_id=camera_id, name=image_name,
xys=xys, point3D_ids=point3D_ids)
return images
def read_cameras_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
cameras = {}
with open(path_to_model_file, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for camera_line_index in range(num_cameras):
camera_properties = read_next_bytes(
fid, num_bytes=24, format_char_sequence="iiQQ")
camera_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = read_next_bytes(fid, num_bytes=8*num_params,
format_char_sequence="d"*num_params)
cameras[camera_id] = Camera(id=camera_id,
model=model_name,
width=width,
height=height,
params=np.array(params))
assert len(cameras) == num_cameras
return cameras
def read_poses(colmap_workspace):
'''Parses the colmap "images.bin" file
:param colmap_workspace:
:return:
'''
images = read_images_binary(os.path.join(colmap_workspace, 'sparse', '0', "images.bin"))
return images
def read_cameras(colmap_workspace):
cameras = read_cameras_binary(os.path.join(colmap_workspace, 'sparse', '0', "cameras.bin"))
return cameras
if __name__ == '__main__':
opt = parser.parse_args()
print('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()]))
cond_mkdir(opt.trgt_dir)
reconst_dir = os.path.join(opt.trgt_dir, 'reconstruction')
pose_dir = os.path.join(opt.trgt_dir, 'pose')
cond_mkdir(reconst_dir)
cond_mkdir(pose_dir)
print("Bundle Adjusting")
bundle_adjust(opt.img_dir, reconst_dir, opt.dense)
print("Extracting poses")
images = read_poses(reconst_dir)
print("Writing Poses")
write_poses(images, pose_dir)
print("Extracting intrinsics")
cameras = read_cameras(reconst_dir)
print("Writing intrinsics")
write_intrinsic(cameras, opt.trgt_dir)