-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmathfi n-period ax^2+bx.py
158 lines (125 loc) · 4.29 KB
/
mathfi n-period ax^2+bx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy
import matplotlib.pyplot as plt
import math
import sympy
import fractions
from sympy import S
import copy
#p = 0.02 # actual probability Heads
a = -0.1
b = 100
S = 1 # Initial cost of Stock
u = 2 # Up Factor
d = fractions.Fraction(1, 2) # Down Factor
r = fractions.Fraction(1, 4)
X = 100 # initial capital
def nCr(n, r):
return math.factorial(n)/(math.factorial(n-r)*math.factorial(r))
def findPoly(N,p): # Assuming U(x) = ln(x), return a polynomial function for E(U(x))
q = 1-p # actual probability Tails
# a = -0.1
# b = 10
y = sympy.symbols("y", real=True) # Number of shares of each stock
poly = 0
for i in range(0, N+1):
prob = (p**i) * (q**(N-i))
binom = nCr(N, i)
numerator = (-1*S*((1+r)**N)) + (u**i)*(d**(N-i))*S
denominator = ((X-S*y)*((1+r)**N) + ((u**i)*(d**(N-i))*S*y))
poly += prob * binom * numerator*(2*a*denominator + b)
print("poly", poly)
return poly
#return all y roots
def getRoots(N,p):
q = 1-p # actual probability Tails
# a = -0.1
# b = 10
util = 0
#yValues = testSymPy(N)
y = sympy.symbols("y", real = True)
expValPoly = findPoly(N,p)
roots = (sympy.solveset(sympy.Eq(expValPoly, 0), y))
roots = list(roots)
boots = []
print("before real filter", roots)
for root in roots:
if (sympy.re(root) == root):
boots.append(sympy.re(root))
return boots
def getValidRoots(N,p): # return all valid roots
q = 1-p # actual probability Tails
# a = -0.1
# b = 10
util = 0
allRoots = getRoots(N,p)
rootsCopy = copy.deepcopy(allRoots)
badRoots = set()
for root in allRoots:
for i in range(0, N+1):
#print(root, i, (((X-S*root)*((1+r)**N)+((u**i)*(d**(N-i))*S*root))) )
if almostEqual(0,((X-S*root)*((1+r)**N)+((u**i)*(d**(N-i))*S*root))) == True:
continue
elif (((X-S*root)*((1+r)**N)+((u**i)*(d**(N-i))*S*root))) <= 0:
badRoots.add(root)
print("bad",badRoots)
allRoots = set(allRoots)
goodRoots = allRoots.difference(badRoots)
print("goodRoots",sorted(list(goodRoots)))
posRoots = []
if list(goodRoots) == []:
for root in rootsCopy:
if root > 0:
posRoots.append(root)
return [posRoots[0]]
return sorted(list(goodRoots))
def almostEqual(x, y):
return abs(x - y) < 10**-8
def getExpectedUtil(N,p): #return E(U(x)) for each good root
q = 1-p # actual probability Tails
# a = -0.1
# b = 10
util = 0
yValues = getValidRoots(N,p)
terminalCaps = []
for val in yValues:
for i in range(0, N+1):
#print(val)
if (X-S*N*val)*(1+r) + S*d*N*val + S*(u-d)*val*i <= 0:
util += 0
else:
denominator = ((X-S*y)*((1+r)**N) + ((u**i)*(d**(N-i))*S*y) )
#poly += prob * binom * (-1/mu)* ((math.e) ** -1*mu*(denominator)) * numerator
util += (p**i)*(q**(N-i)) * nCr(N, i) * (a*(denominator**2) + b*(denominator))
terminalCaps.append(util)
util = 0
#print(terminalCaps)
return sorted(terminalCaps)
def getValidUtilNY(N,p): # get Ny yValues
q = 1-p # actual probability Tails
validRoots = getValidRoots(N,p)
for i in range(len(validRoots)):
validRoots[i] *= N
return validRoots
yCoord = []
print("here",getRoots(2,2/3))
# print("here",getValidRoots(1,0.52)[0])
# print("test", getValidRoots(15))B
# print("exp",getExpectedUtil(11))
# print(getValidUtilNY(15))
def graph():
for j in range(1,10):
print("p=",j/10)
for i in range(1,10):
print("N="+str(i))
global yCoord
yCoord.append(getRoots(i, j/10)[0])
#print("ycoord", yCoord)
plt.plot([i for i in range(1,len(yCoord)+1)], yCoord, label = str(j/10))
yCoord = []
#plt.plot(i, getExpectedUtil(i), "o" , label = str(i))
plt.xlabel('N (period-number)')
plt.ylabel('Optimal y-value')
plt.grid(True)
plt.legend(bbox_to_anchor = (1.0, 1.15), loc='upper left', borderaxespad=0.)
plt.show()
graph()