-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnnet.r
44 lines (29 loc) · 932 Bytes
/
nnet.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#Running the multinom Neural network
EDD <- read.csv('http://math.mercyhurst.edu/~sousley/STAT_139/data/EDDat3.csv')
dim(EDD)
summary(EDD)
NewEDD <- subset(EDD, select = c(Grp, i2, i3, i6, i7, i10, i22, i24, i35, i36, i37, i39, i45))
head(NewEDD)
newEDD2 <- na.omit(NewEDD)
table(newEDD2$Grp)
#1 2 3
#72 252 98
ED <-cbind(newEDD2["Grp"], scale(newEDD2[,c(2:13)]) )
head(ED)
ED$Grp <- as.factor(ED$Grp)
ED$Grp <- as.numeric(ED$Grp)
class(ED$Grp)
#[1] "numeric"
set.seed(1234)
Accuracies <- c(0.00)
for (i in seq(1000))
{
inTrain <- createDataPartition(y=ED$Grp, p=0.75, list=FALSE)
training <- ED[inTrain,]
testing <- ED[-inTrain,]
modelfit <- multinom(Grp ~ ., data=training, maxit=500, trace=T)
preds2 <- predict(modelfit, type="class", newdata=testing)
cm <- confusionMatrix(preds2, testing$Grp)
Accuracies[i] <- cm$overall["Accuracy"]
}
summary(Accuracies)