Skip to content

Latest commit

 

History

History
121 lines (102 loc) · 3.77 KB

README.md

File metadata and controls

121 lines (102 loc) · 3.77 KB

PubTator Loader

Build - Main License: GPL v3 PyPI version

pubtator_loader is a python module that allows loading corpus from PubTator format and manipulate documents as Python object. It can also be used in combination with spacy to tokenize the documents and convert them to BILUO Tags to use for different NLP tasks.

PubTator Format

The PubTator format uses the following format:

<PMID>|t|<TITLE>
<PMID>|a|<ABSTRACT>
<PMID>	<START OFFSET 1>	<LAST OFFSET 1>	<MENTION 1>	<TYPE 1>	<IDENTIFIER 1>
<PMID>	<START OFFSET 2>	<LAST OFFSET 2>	<MENTION 2>	<TYPE 2>	<IDENTIFIER 2>

<PMID>|t|<TITLE>
<PMID>|a|<ABSTRACT>
<PMID>	<START OFFSET 1>	<LAST OFFSET 1>	<MENTION 1>	<TYPE 1>	<IDENTIFIER 1>
<PMID>	<START OFFSET 2>	<LAST OFFSET 2>	<MENTION 2>	<TYPE 2>	<IDENTIFIER 2>

where:

  • The first line contains the title of the paper.
  • The second line contains the abstract of the paper.
  • The subsequent lines contain the annotations for the entities in a tab separated format:
    • PMID
    • Start Offset
    • End Offset
    • Mention (entity text)
    • Type of Entity
    • Identifier (normalized form)

Usage

from pubtator_loader import PubTatorCorpusReader
dataset_reader = PubTatorCorpusReader('./sample_pubator_input.txt')

corpus = dataset_reader.load_corpus() 
# corpus will be a List[PubtatorDocuments]

for doc in corpus:
    print(doc)
"""
Console Output:
    {
  "id": 25763772,
  "title_text": "DCTN4 as a modifier of chronic ....",
  "abstract_text": "Pseudomonas aeruginosa (Pa) infection in cystic fibrosis .....",
  "entities": [
    {
      "document_id": 25763772,
      "start_index": 0,
      "end_index": 5,
      "text_segment": "DCTN4",
      "semantic_type_id": "T103",
      "entity_id": "UMLS:C4308010"
    },
    .
    .
    .
    {
      "document_id": 25763772,
      "start_index": 67,
      "end_index": 82,
      "text_segment": "cystic fibrosis",
      "semantic_type_id": "T038",
      "entity_id": "UMLS:C0010674"
    }
  ]
}
"""


import spacy
import scispacy

# load the scispacy model
nlp = spacy.load('en_core_sci_lg')

# Convert PubTator document to BILUO format.
doc_in_BILUO = doc.tokenize_and_convert_to_bilou(nlp)

for idx, (token, semantic_type_id, entity_id) in enumerate(doc_in_BILUO):
    print(f'{idx}\t{token}\t{semantic_type_id}\t{entity_id}')

"""
Console Output:

0         <START>          <START>     <START>
1           DCTN4      U-T116,T123  U-C4308010
2              as                O           O
3               a                O           O
4        modifier                O           O
5              of                O           O
6         chronic           B-T047  B-C0854135
7     Pseudomonas           I-T047  I-C0854135
8      aeruginosa           I-T047  I-C0854135
9       infection           L-T047  L-C0854135
10             in                O           O
11         cystic           B-T047  B-C0010674
12       fibrosis           L-T047  L-C0010674
13    Pseudomonas           B-T047  B-C0854135
14     aeruginosa           I-T047  I-C0854135
15              (           I-T047  I-C0854135
16             Pa           I-T047  I-C0854135
17              )           I-T047  I-C0854135
18      infection           L-T047  L-C0854135
19             in                O           O
20         cystic           B-T047  B-C0010674
21       fibrosis           L-T047  L-C0010674
.               .                .           .
.               .                .           .
.               .                .           .
.               .                .           .


"""