-
Notifications
You must be signed in to change notification settings - Fork 110
/
app.py
86 lines (74 loc) · 3.02 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import streamlit as st
import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np4
import urllib.request
import PIL.Image
from io import BytesIO
import torchvision.transforms as T
from PIL import Image
import requests
from io import BytesIO
import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np
import urllib.request
from urllib.request import urlretrieve
import PIL.Image
from io import BytesIO
import torchvision.transforms as T
import torchvision.transforms as tfms
class FeatureLoss(nn.Module):
def __init__(self, m_feat, layer_ids, layer_wgts):
super().__init__()
self.m_feat = m_feat
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
] + [f'gram_{i}' for i in range(len(layer_ids))]
def make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def forward(self, input, target):
out_feat = self.make_features(target, clone=True)
in_feat = self.make_features(input)
self.feat_losses = [base_loss(input,target)]
self.feat_losses += [base_loss(f_in, f_out)*w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self): self.hooks.remove()
st.set_page_config(layout="wide")
#st.image(os.path.join('Images','2.jpg'), use_column_width = True)
st.markdown("<h1 style='text-align: center; color: white;'>Get deinked!!</h1>", unsafe_allow_html=True)
Image = st.file_uploader('Upload your picture here',type=['jpg','jpeg','png'])
if Image is not None:
col1, col2 = st.beta_columns(2)
img = PIL.Image.open(Image).convert("RGB")
#Image = Image.read()
#Image = tf.image.decode_image(Image, channels=3).numpy()
#Image = adjust_gamma(Image, gamma=gamma)
Image1 = np.array(img)
with col1:
st.image(Image1,width = 400, use_column_width=400)
#imageLocation = st.empty()
#imageLocation.image(img, width = 400)
MODEL_URL = "https://www.dropbox.com/s/vxgw0s7ktpla4dk/SkinDeep2.pkl?dl=1"
urlretrieve(MODEL_URL, "SkinDeep2.pkl")
path = Path(".")
learn=load_learner(path, 'SkinDeep2.pkl')
im1 = img.save("test.jpg")
img_fast = open_image("test.jpg")
#img_t = T.ToTensor()(img)
#img_fast = Image(img_t)
_, img_hr, _ = learn.predict(img_fast)
img_np=image2np(img_hr)
with col2:
st.image(img_np, width=400,clamp=True)